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❏  nuSTORM: storage ring for 3.8 GeV/c muons 

 
–  Pions of 5 Gev/c captured and injected into ring. 
–  52% of pions decay to muons before first turn: 
–  For 1020 POT, flash of neutrinos from 8.6×1018 pion decays  
–  Muon momentum acceptance: p = 3.8 GeV ± 10% 
–  Muon decays (1 lifetime=27 orbits): 
–  For 1020 POT, expect 2.6×1017 µ+ decays 
–  Creates hybrid beam of neutrinos from pions & muons 

nuSTORM: Neutrinos from STORed Muons 

3.8 GeV/c

NUFACT 2018, Virginia Tech, 12 August 2018 
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Physics motivation 

❏  Physics motivation of nuSTORM: 
–  Light sterile neutrino problem: short baseline oscillations  
–  Neutrino beam with flux accuracy of 10-3  for neutrino 

scattering physics 
–  Measurement of νe cross sections and nuclear effects in 

neutrino-nucleus collisions 
–  Test bed for muon accelerator R&D 

❏  Detector concepts for nuSTORM need to address  
physics topics 
–  Magnetised detector for neutrino oscillations 
–  Generic high resolution detector for neutrino scattering 
–  Low density detector to resolve nuclear effects 

NUFACT 2018, Virginia Tech, 12 August 2018 
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nuSTORM and long-baseline physics 
❏  Precision requirement for CP violation: 

–  For 75% of CP asymmetry coverage at 3σ: ACP as low as 5% 
–  Requires 1.5% measurement of            (~1% syst. error),   

but we measure rate:  

Huber, Palmer, Bross 
arXiv:1411:0629 

NUFACT 2018, Virginia Tech, 12 August 2018 
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–  Syst. error on ratio              in T2HK 
–  Difference in       and       can be 

large    

nuSTORM and long baseline physics 
❏  Precision requirement for CP violation: 

–  In disappearance experiment we can satisfy: 

–  In an appearance experiment          ,                                      
so να beam cannot measure 

Huber, Mezzetto, Schwetz  
arXiv:0711.2950 

Huber, Palmer, Bross 
arXiv:1411:0629 

CP violation sensitivity  
for 75% δCP coverage  
at LBNE 

NUFACT 2018, Virginia Tech, 12 August 2018 
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nuSTORM and long baseline physics 
❏  Influence of measurement of cross-sections with less than 

1% precision as potentially provided by nuSTORM: 

Huber, Palmer, Bross 
arXiv:1411:0629 

NUFACT 2018, Virginia Tech, 12 August 2018 
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Short baseline physics 
❏  LSND and MiniBooNE hints of     and     appearance     
                                  and reactor anomaly (6%     deficit) 

Reactor anomaly 

LSND 

MiniBooNE 

NUFACT 2018, Virginia Tech, 12 August 2018 
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Short baseline physics 
❏  Precision requirement for CP violation: 
 

–  nuSTORM probes all possible sterile neutrino appearance  and 
disappearance channels (if Eν>τ threshold) to test paradigm 

NUFACT 2018, Virginia Tech, 12 August 2018 
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nuSTORM Facility 
❏  nuSTORM facility: 

–  120 GeV protons on carbon or inconel target (100 kW) 
–  NuMI-style horn for pion collection: recently optimised 
–  Injection pions (5 GeV/c ± 10%) into storage ring: 0.09 π/POT 
–  Storage ring: large aperture FODO lattice (3.8 GeV/c ± 10%) muons: 

8×10-3 µ/POT 

NUFACT 2018, Virginia Tech, 12 August 2018 
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❏  nuSTORM flux and energy spectrum 

 
–  νµ from pion decay                     flux: 6.3×1016 ν/m2 at 50 m 
–  νe from muon decay                           flux: 3.0×1014 ν/m2 at 50 m 
–  νµ from kaon decay                     flux: 3.8×1014 ν/m2 at 50 m  
–  Can be used for cross-section measurements and short baseline 

experiments 

nuSTORM Flux and Spectrum 

Use muon decay  
neutrinos to  
calibrate hadron  
decay neutrinos? 

NUFACT 2018, Virginia Tech, 12 August 2018 
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nuSTORM Event Rates 
❏  Flux uncertainties for nuSTORM from beam diagnostics: < 1% 
❏  Event rates per 1021 POT in 100 ton Liquid Argon at 50 m  

 
–  Limited by detector systematics: 

NUFACT 2018, Virginia Tech, 12 August 2018 
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Sterile neutrino search 
❏  Requires two magnetised detectors for neutrino oscillations: 

 
❏  Super-saturated Magnetised                                                   

Iron to remove wrong-sign muons:                                   
SuperBIND 

❏  Magnetic field: 1.5-2.6 T 

ND FD

p

π μ

μ

226 m
~2000 m

3.8 GeV [ ± 10% ]

1018 decays/yr
5 GeV [ ± 10% ]

240 kA from 8 Superconducting  
Trasmission Lines

NUFACT 2018, Virginia Tech, 12 August 2018 

νe →νµ



 
13 

Sterile neutrino search 
❏  Appearance search: 

❏  Disappearance search: 

Adey et al., PRD 89 (2014) 071301

With full reconstruction  
and efficiencies, 1021 POT

NUFACT 2018, Virginia Tech, 12 August 2018 
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Sterile neutrino search 

Appearance efficiencies Disappearance efficiencies

Adey et al., PRD 89 (2014) 071301 (Ryan Bayes’ analysis)

❏  Short-baseline oscillation search with near detector at 
50 m and far detector at 2 km, 1021 POT exposure  

❏  Appearance and disappearance multi-variate analyses 

NUFACT 2018, Virginia Tech, 12 August 2018 
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Sterile neutrino search 
❏  Short-baseline oscillation search with near detector at 

50 m and far detector at 2 km, 1021 POT exposure  
❏  Appearance and disappearance multi-variate analyses 

After FNAL SBL programme, sterile neutrinos might not be relevant

Appearance sensitivity Disappearance sensitivity

99%
99%

99%

NUFACT 2018, Virginia Tech, 12 August 2018 

Adey et al., PRD 89 (2014) 071301 (Ryan Bayes’ analysis)
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Neutrino interactions at nuSTORM 
❏  Example of CCQE measurement errors: 

–  Data for       and      cross-sections 
–  Systematic errors completely dominated by detector 
 

νe

NUFACT 2018, Virginia Tech, 12 August 2018 
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❏  ProtoDUNE detectors at CERN: 
–  Two 770 ton liquid argon detectors: 

single phase and dual phase 
–  Ideally located in North Area at 

CERN for nuSTORM 

Detectors for neutrino interactions  

NUFACT 2018, Virginia Tech, 12 August 2018 

Neutrino extension 



 
18 

❏  High resolution straw-tube tracker detector: 
–  HiResMuNu as was first proposed for LBNE 
 

Detectors for neutrino interactions  

NUFACT 2018, Virginia Tech, 12 August 2018 
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❏  High pressure argon gas detector: 
–  Best resolution to measure nuclear effects in argon 
 

Detectors for neutrino interactions  

NUFACT 2018, Virginia Tech, 12 August 2018 
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❏  Totally active scintillator, surrounded by magnetised 
iron spectrometers (similar to WAGASCI/Baby MIND) 
 

WAGASCI/Baby MIND concept 

NUFACT 2018, Virginia Tech, 12 August 2018 
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❏  Baby MIND concept: 
–  Individually magnetised plates with two slots to be able to 

thread 25 turns of conductor: inexpensive to manufacture 

WAGASCI/Baby MIND concept 

NUFACT 2018, Virginia Tech, 12 August 2018 

B = 1.5 T, with 140 A (11.5 kW) 
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❏  Baby MIND concept: 
–  Modular spectrometer with array of magnetised plates and 

scintillator planes, which can be interspersed in bespoke 
ways to optimise acceptance and momentum reconstruction  

 

WAGASCI/Baby MIND concept 

NUFACT 2018, Virginia Tech, 12 August 2018 
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❏  Baby MIND at T9 Test Beam at CERN 
–  Constructed 33 magnetic plates and 18 scintillator planes 
–  Tested at CERN test beam and now installed at J-PARC 
 

WAGASCI/Baby MIND concept 

NUFACT 2018, Virginia Tech, 12 August 2018 
See talk by Patrik Hallsjö for performance
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Conclusions 
❏  nuSTORM fluxes very well determined (<1% accuracy) 
❏  For short-baseline neutrino oscillations, requires magnetised 

detectors to perform “wrong-sign” muon analysis 
❏  For scattering physics, need to measure both      and  
❏  Requires high-resolution detectors (ie. liquid argon, totally 

active scintillator or high resolution straw tubes), ideally 
magnetised 

❏  At CERN, ProtoDUNE LAr detectors would be already in place 
❏  To perform measurements of nuclear reinteractions, gaseous 

argon would probably be ideal, but mass much lower 
❏  Hybrid detector with active target and modular magnetic 

spectrometer (à la Baby MIND), could also be possible 
                           

NUFACT 2018, Virginia Tech, 12 August 2018 

νe


