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The MINOS+ Collaboration

Argonne · Athens · Brookhaven · Caltech · Cambridge · 
Campinas · Cincinnati · Fermilab · Goiás · Harvard · Holy 
Cross · Houston · IIT · Indiana · Iowa State · Lancaster · 
Manchester · Minnesota-Twin Cities · Minnesota-Duluth ·
Otterbein · Oxford · Pittsburgh · Rutherford · São Paulo · 
South Carolina · Stanford · Sussex · Texas A&M · Texas-

Austin · Tufts · UCL · Warsaw · William & Mary

◆MINOS and MINOS+

◆New: Final Three-flavor 
oscillations results

▪ νμ and νμ beam samples

• Update: final year of beam 
data

▪ Atmospheric samples

• Update: final three years of 
atmospheric data

◆New: Sterile Neutrino Search

▪ Two-detector simultaneous fit

▪ νμ-CC and NC disappearance

• Full MINOS νμ beam sample

• First two years of MINOS+

◆Summary



MINOS and MINOS+
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MINOS and MINOS+

◆Observed neutrino oscillations over a long-baseline using two 
functionally identical detectors

▪ Iron-scintillator tracking calorimeters – muon track containment

▪ Magnetized – charge determination and energy estimation

▪ Numerous systematic uncertainties cancel to first order

◆Detectors sample the NuMI beam on axis 
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◆ Near Detector

▪ Location: Fermilab

▪ Mass: 1 kton

▪ Baseline: 1 km

◆ Far Detector

▪ Location: Soudan 
Undergound Laboratory

▪ 5.4 kton mass

▪ 735 km baseline 



10.56 x 1020 POT 5.80 x 1020 POT

Two-detector LED Analysis

MINOS MINOS+

Far-over-Near LED Analysis

10.56 x 1020 POT

10.56 x 1020 POT 9.69 x 1020 POT3.36 x 1020 POT

The NuMI Beam
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MINOS:
▪ 10.56 x 1020 POT (νμ -mode)
▪ 3.36 x 1020 POT (νμ -mode)

MINOS+:
▪ 9.69 x 1020 POT 

(νμ -mode)

◆MINOS
▪ Peak Energy: ~3 GeV

▪ Optimized for 
atmospheric frequency 
oscillations

◆MINOS+
▪ Peak Energy: ~7 GeV

▪ Constrain deviations 
from 3-flavor paradigm

MINOS & MINOS+
▪ ~25 x 1020 POT in 11 years of running



MINOS & MINOS+ Atmospheric Neutrinos
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Full dataset (2003 – 2016): 60.8 kt-yr

Update: 12.1 kt-yr (25% more data)



Event Topologies
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Event Selection
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CC NC

◆νμ charged current selection

▪ Use 4 variable kNN designed 
to distinguish muon from 
pion tracks

▪ Applied to events failing NC 
selection

▪ 86% efficiency, 99% purity 
at the FD

◆Neutral current selection

▪ Selection based on topological quantities

• Require compact events

• No long tracks extending out of shower

▪ 89% efficiency and 61% purity at FD

▪ Primary background is inelastic νμ

▪ 97% of νe CC pass selection



Three-Flavor Oscillations 
Analysis
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Far Detector Beam Data
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◆MINOS and MINOS+ sample muon-neutrino disappearance over a 
broad range of energies

◆Data agrees strongly with three flavor prediction

▪ Oscillations beyond three flavors are tightly constrained



Far Detector Atmospheric Data
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◆Fit in bins of cos(θzen) and energy

◆Magnetic field permits separate neutrino and antineutrino 
samples for mass ordering discrimination

◆Complements beam neutrino sample



Combined Fit Results
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Δm2
32 = 2.42 x 10-3 eV2

sin2θ23 = 0.42

Mass Splitting (x10-3 eV2)

NH: 2.33 < Δm2
32 < 2.50

IH: -2.38 > Δm2
32 > -2.55

Mixing Angle

NH: 0.37 < sin2θ23 < 0.65

IH: 0.36 < sin2θ23 < 0.65

Best Fit

Confidence 
Intervals

Data Preferences 
(Δχ2)

Normal Hierarchy:  0.06

Lower Octant θ23:  0.65

Non-Maximal Mixing:  1.27



Comparison with Other Experiments
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Measurement of 
Δm2

32 to 3.5% 
at 68% C.L. 



Sterile Neutrino Search
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3+1 Model
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◆Short-baseline electron-(anti)neutrino 
appearance results consistent with new 
mass state and new sterile flavor

▪ No weak interaction

◆Expand PMNS matrix from 3x3 to 4x4

◆6 new parameters
▪ New mass scale (Δm2

41)

▪ Three mixing angles (θ14, θ24, θ34)

▪ Two CP-violating phases (δ14, δ24)

◆Search for two signals

▪ Neutral current disappearance

• NC events independent of 3-flavor oscillations

• Sterile neutrinos would deplete interactions

• Sensitive to Δm2
41, θ24, θ34

▪ νμ-charged current disappearance

• Sterile neutrinos cause modulations with 
differing frequency to 3-flavor oscillations

• Sensitive to Δm2
41 and θ24



Standard (3-flavor) Oscillations
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Δm2
41 = 0 eV2

◆Far Detector oscillations 
only

▪ CC signal – single 
pronounced oscillation 
maximum

▪ NC signal – no oscillations 
observed

◆Near Detector observes 
no oscillations

▪ Constrains beam

▪ Cancels systematic 
uncertainties



(3+1)-flavor Oscillations
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Δm2
41 = 0.5 eV2

◆Far Detector oscillations 
at two frequencies

▪ CC signal – modulation on 
3-flavor at high energy, 
net deficit

▪ NC signal – deficit 
inconsistent with 3-flavor

◆Near Detector observes 
low energy deficit



(3+1)-flavor Oscillations
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Δm2
41 = 5.0 eV2

◆Far Detector oscillations 
at two frequencies

▪ CC signal – modulation on 
3-flavor at high energy, 
net deficit

▪ NC signal – deficit 
inconsistent with 3-flavor

◆Near Detector observes 
oscillations inconsistent 
with 3-flavor in both 
samples



Simultaneous Two-Detector Fit
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FD ND

FD ND

F
D

N
D

F
D

N
D

CC

NC

◆ Near and Far Detectors are fit simultaneously 
with coequal treatment

▪ Maximal utilization of extremely high Near 
Detector event rate – low statistical error

▪ Flux estimate derived from PPFX method which 
uses only hadron production experimental data

◆ Systematic uncertainties are encoded in 
covariance matrices

▪ 26 sources of systematic uncertainty

▪ Effects of correlated systematics are mitigated 
by off-diagonal cancellations

◆ Best fit determined by minimization of χ2

function computed from covariance matrices

◆ νμ-CC and NC samples fit jointly by summing 
the χ2 contributions



Asimov Sensitivity
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Δm2
41 ≥ 4 eV2;

Near Detector
dominates

Δm2
41 ≥ 10-3 eV2;

Far Detector 
dominates

NC oscillations 
with

Δm2
41 ~ Δm2

32 or 
Δm2

41 < Δm2
32 

2017 August 2018



An Improved Search Paradigm

Jacob Todd - University of Cincinnati

Phys. Rev. Lett. 117, 209901 (2016)

2117 August 2018

◆ Asimov sensitivity 
calculated using 
the Two-Detector 
and Far/Near 
Methods as 
indicated

◆ Far/Near ratio 
method loses 
sensitivity due to 
limited Near 
Detector constraint



νμ CC Sample
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Far Detector Near Detector

◆ Data consistent with 3-flavor oscillations paradigm

◆ Evidence indicates that variations from 3-flavor prediction are attributable to 
statistical and systematic uncertainty



NC Sample
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Far Detector Near Detector

◆ Data consistent with 3-flavor oscillations paradigm

◆ Evidence indicates that variations from 3-flavor prediction are attributable to 
statistical and systematic uncertainty



(3+1)-flavor Disappearance Limit
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◆ Upper limit from joint CC and NC 
sample fit using the simultaneous 
two-detector method

◆ Free Parameters: Δm2
41, Δm2

32, θ24, 
θ34, θ23

◆ Null Parameters: δ14, δ24, δ13, θ14

◆ Fixed (3-flavor) Parameters: Δm2
21, 

θ12, θ13

◆ Feldman-Cousins method used to 
form proper 90% C.L. frequentist 
intervals

Δm2
41 = 2.33 x 10-3 eV2

sin2θ24 = 1.1 x 10-4

θ34 = 7.0 x 10-5

χ2
min/dof = 99.3/140

χ2
3ν - χ2

4ν < 0.01

Best Fit



(3+1)-flavor Limit Comparison
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^S. Gariazzo, C. Giunti, M. Laveder, Y.F. Li, E.M. Zavanin, J.Phys. G43 033001 (2016)

◆ MINOS & MINOS+ sets 90% C.L. 
limit over 7 orders of magnitude in 
Δm2

41

◆ Improvement over previous MINOS 
fit due to:

▪ Utilizing Near Detector statistical 
power

▪ Covariance matrix systematic 
uncertainty cancellations

▪ Improved binning for atmospheric 
oscillations in Far Detector

◆ Increased tension with global best 
fit

◆ Final year of MINOS+ data yet to be 
analyzed

▪ Represents 50% more data in 
MINOS+ spectrum

◆ View the manuscript and data 
release:

▪ arXiv:1710.06488

▪ Ancillary materials included for more 
detail



Summary

◆Standard Oscillations: Improved 
measurement of atmospheric oscillation 
parameters using the full sample of beam 
and atmospheric neutrino data

▪ Results competitive with running experiments

▪ Measured Δm2
32 to 3.5% precision

◆Using simultaneous two-detector fit, 
MINOS+ places strong constraints on (3+1)-
flavor sterile neutrino mixing

▪ Tension with the critical global best fit region

◆Over 11 years of running MINOS & MINOS+ 
have mapped neutrino oscillations across a 
broad energy spectrum

▪ Strong evidence for 3-flavor oscillations 
paradigm

▪ Sharpening constraints to guide future sterile 
neutrino searches
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Thank You!
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Backup
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Comparison to MiniBooNE + LSND Best Fit:
CC Selected Events
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Far Detector Near Detector



Comparison to MiniBooNE + LSND Best Fit:
CC Selected Events
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FD

ND

Three-flavor 
Oscillations

MiniBooNE + LSND 
Best Fit



Comparison to MiniBooNE + LSND Best Fit:
NC Selected Events
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Far Detector Near Detector



Comparison to MiniBooNE + LSND Best Fit:
NC Selected Events
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FD

ND

Three-flavor 
Oscillations

MiniBooNE + LSND 
Best Fit



Comparison to MiniBooNE: MINOS/Daya
Bay/Bugey Combination
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◆MINOS and MINOS+ are in 
significant tension with the 
new MiniBooNE result, even 
assuming a conservative 
sin22θ14 = 1

◆Using θ14 from Daya Bay and 
Bugey combined with the 
previous MINOS result leads to 
an even larger tension, which 
will only increase if a future 
combination with Daya Bay is 
performed



Shape/Normalization Factorization
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Nominal vs. Shape Normalization

“Counting Experiment”



Median vs. Asimov Sensitivity
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Consistency with Three Flavor Oscillations
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Detector and Sample Contributions
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Asimov Sensitivities



(3+1)-Flavor Oscillations
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Constrained by 
observation of near-
maximal mixing

Rapid oscillations 
regime causes 
normalization 
shifts

Position independent 
of mass-splitting



(3+1)-Flavor Oscillations
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Rapid oscillations 
regime causes 
normalization 
shifts

Constrained by 
observation of near-
maximal mixing

0

Position independent 
of mass-splitting



Sterile Systematics: CC Hadron Production
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Sterile Systematics: NC Hadron Production
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Sterile Systematics: CC Cross Sections
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Sterile Systematics: NC Cross Sections
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Sterile Systematics: CC Energy Scale
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Sterile Systematics: NC Energy Scale
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Sterile Systematics: CC Beam Optics

17 August 2018 Jacob Todd - University of Cincinnati 46



Sterile Systematics: NC Beam Optics
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Sterile Systematics: Acceptance
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(3+1)-Flavor Degeneracies
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Atmospheric Data and Fit
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◆ Two techniques used to identify atmospheric
neutrinos in the Far Detector.

1) Contained-vertex events:

– Apply series of containment requirements   
on reconstructed tracks and showers to   
reduce cosmic-ray backgrounds.

– Far Detector is equipped with a scintillator 
veto shield, which tags cosmic-ray muons
with 96% efficiency.

2) Upward and horizontal muons:

– Far Detector has a timing resolution of 2.5ns.

– Can identify neutrino-induced upward and  
horizontal muons using timing information.

– Soudan mine has a uniform rock overburden,
enabling events to be identified above the
horizon (cosqzen<0.05).



Atmospheric Data and Fit
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Event Classification Data No oscillations Best fit

Contained-vertex showers 1123 1248 1134

Contained-vertex muons 1399 1923 1379

Non-fiducial muons 736 924 737

Total events 3258 4095 3250

◆ Selected atmospheric neutrinos are categorised based on event topology:



Atmospheric Data and Fit
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◆ Timing information is used to 
select “high resolution” sample
of events with well-measured
muon propagation direction.

– 950 contained-vertex muons
and all 736 non-fiducial muons
pass this selection.

– Can reconstruct zenith angle
and L/E for these events.

◆ Plots on right show zenith angle 
and L/E distributions of selected
high-resolution events.

– Clear oscillation signature!



Atmospheric Data and Fit
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Selected nm Selected anti-nm Total

Contained-vertex muons 574 255 829

Non-fiducial muons 239 143 382

Total 813 398 1211

◆ Neutrinos and antineutrinos are separated based on muon charge sign, 
which is reconstructed using curvature of final-state muon tracks.



Atmospheric Data and Fit
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◆ In the MINOS+ oscillation analysis, atmospheric neutrino data are binned 
as a function of reconstructed energy and zenith angle.

– Sensitivity to Dm2
32 and sin2q23 is complementary with accelerator data.

– Additional limited sensitivity to mass hierarchy in MSW resonance region.



Atmospheric Data and Fit
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◆ Results of oscillation fit to MINOS/MINOS+ atmospheric neutrino data:



Beam Flux Estimation: Hadron Production
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Beam Flux Estimation: Hadron Production 
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Beam Flux Estimation: Hadron Production 
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Beam Flux Estimation: Hadron Production 
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Beam Flux Estimation: Hadron Production
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◆Standard analysis uses ND 
data to produce extrapolated 
FD predictions

◆Improving the beam flux 
estimate makes this technique 
more powerful

◆Parameterize hadron 
production for pions and 
translate to kaons using 
measured pion/kaon ratios

◆Warp parameterization to fit 
ND data with no focusing to 
isolate hadron production only

Neutrinos – Horn-off



Beam Flux Estimation: Hadron Production 
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◆ND data provides a powerful 
constraint on beam flux

◆Use samples with focusing 
horns off to isolate hadron 
production

◆Fit empirical pion hadron 
production parameters for 
neutrinos and antineutrinos

◆Transfer weights to kaons 
using measured pion/kaon 
ratios

Antineutrinos – Horn-off



Beam Flux Estimation: Focusing
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◆Apply hadron production weights to sample with focusing on

◆Fit for focusing effects

Hadron Production 
Weights Only

Hadron Production 
and Focusing Weights

Neutrinos



Beam Flux Estimation: Focusing
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◆Apply hadron production weights to sample with focusing on

◆Fit for focusing effects

Hadron Production 
Weights Only

Hadron Production 
and Focusing Weights

Antineutrinos


