

Sterile Neutrino Search via Neutral-Current Disappearance with NOvA

Mike Wallbank, University of Cincinnati on behalf of the NOvA collaboration

The 20th International Workshop on Neutrinos from Accelerators August 17, 2018

Sterile Neutrinos

- Short-baseline neutrino oscillation experiments (LSND, MiniBooNE) observed an excess of v_e (\overline{v}_e) events in v_μ (\overline{v}_μ) beams.
- Inconsistent with oscillations between three neutrino flavors; may be explained through oscillations by introducing a fourth neutrino with a mass splitting $\Delta m^2 \sim 1 \text{ eV}^2$.

Sterile Neutrinos

- Short-baseline neutrino oscillation experiments (LSND, MiniBooNE) observed an excess of v_e (\bar{v}_e) events in v_μ (\bar{v}_μ) beams.
- Inconsistent with oscillations between three neutrino flavors; may be explained through oscillations by introducing a fourth neutrino with a mass splitting $\Delta m^2 \sim 1 \text{ eV}^2$.
- Measurements of the Z-boson decay width at LEP placed strict limits on the number of light neutrinos:
 - Any additional neutrinos must be *sterile*.

3+1 Model

Simplest model adds a single additional neutrino — PMNS matrix increases from 3x3 to 4x4:

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \\ \nu_{s} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\ U_{s1} & U_{s2} & U_{s3} & U_{s4} \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \\ \nu_{4} \end{pmatrix}$$
Six additional parameters:
$$m_{3}$$

$$M_{4}$$

 m_2

 m_1

Two CP-violating phases, δ_{14} , δ_{24} .

- Neutral Current (NC) interaction rate is the same for the 3 active neutrino flavors — insensitive to 3flavor oscillations.
 - Oscillations to sterile neutrino states will result in deficit in the NC interaction rate.
 - Sensitive to mixing parameters θ_{24} , θ_{34} , Δm^2_{41} , δ_{24} (assume small δ_{14}).

Approximate disappearance probability (Exact formalism used in the fit)

- Region $0.05 < \Delta m^2_{41}$ (eV²) < 0.5;
 - No significant ND oscillations,
 - Rapid oscillations in FD independent of Δm^{2}_{41} .

- $\Delta m^{2}_{41} > 0.5 \text{ eV}^{2};$
 - ND oscillations become significant,
 - Dependence on Δm^{2}_{41} .

The NOvA Experiment

- The NOvA (NuMI Off-Axis *v_e* Appearance) experiment is a long-baseline neutrino oscillation experiment based at Fermi National Accelerator Laboratory.
- Rich physics program:
 - Precision Standard Model measurements, mass ordering, leptonic CPV: v_{μ} , \bar{v}_{μ} disappearance, v_e , \bar{v}_e appearance.
 - Sterile neutrino searches: NC disappearance, short-baseline studies.
 - Other searches: supernovae, exotics, cross-sections.

The NOvA Experiment

• The NOvA (experiment l

Rich physics

Precisior

 v_e, \overline{v}_e app

Sterile ne

Other sea

NOvA @ NuFACT 2018

Posters

F. Psihas: Neutrino Physics with Deep Learning on NOvA A. Sutton: The NOvA Test Beam Program

Monday M. Judah, WG2: NOvA Cross Section Results

Tuesday_

J. Bian, Plenary III: Results and Prospects from NOvA

Thursday E. Smith, WG1: Details of the NOvA Oscillation Analyses

Friday

J. Wolcott, WG2: NOvA Cross Section Model / Oscillation Needs M. Wallbank, WG1+WG5: Sterile Neutrinos Search via NC disappearance at NOvA oscillation

isappearance,

The NuMI Beam

• Can use horn polarity to preferentially select positively or negatively charged pions — neutrino- or antineutrino-dominated beam.

MN O, WI

Near Detector 300 tons 14.3 m x 4.1 m x 4.1 m 214 layers, ~20,000 channels

The NOvA Detectors

- Neutrinos sampled 14.6 mrad off-axis at 1 km and 810 km by two functionally identical detectors.
- Low Z tracking calorimeter composed of alternating horizontal and vertical planes of liquid filled scintillator, read out out by photodiodes.

Far Detector

Near

IL

Detector

Far Detector 14 kton 60 m x 15.6 m x 15.6 m 896 layers, ~344,000 channels

Accumulated Dataset

Event Classification

Event Classification

- Utilize deep-learning techniques to perform event classification NOvA's convolutional visual network.
 - Multipurpose classifier used to identify v_{μ} CC, v_{e} CC, v_{τ} CC and NC events.
- Treat minimally-reconstructed events as feature maps and use convolutional layers which learn filters to extract discriminating features from the events.

Neutral Current Disappearance Analysis

Neutral Current Selection

• The CVN classifier is trained separately for **neutrino** and **antineutrino** data and gives good separation between NC signal and CC backgrounds.

Cosmic Rejection

- The NOvA far detector is on the surface and is exposed to cosmic muons at a rate of 11 billion a day. Neutrons from cosmic induced interactions are a large background to NC events in NOvA.
- Remove cosmic events by cutting on directionality of showering particles, transverse momentum, activity in events close in temporal and spatial proximity, and using an NC-specific Boosted Decision Tree (BDT) trained on 13 shower variables.

NOvA Preliminary

Event Selection

Neutrino Data

- 191 events selected
 (148 NC, 35 CC bg, 7.9 cosmic bg).
- Overall selection efficiency of 52% and purity 77%.

Antineutrino Data

- 68.9 events selected
 (53.4 NC, 10.2 CC bg, 5.3 cosmic bg).
- Overall selection efficiency of 50% and purity 78%.

NOvA Preliminary

Candidate Selected Event

M Wallbank (Cincinnati) Sterile Neutrino Search via Neutral Current Disappearance with NOvA (NuFact 2018)

Extrapolation

- Assuming a small mass-splitting such that there are no ND oscillations, can produce a FD 'prediction' using ND data.
- Constrain the ND simulation with data and convolve with the predicted ratio of the FD and ND distributions, taking into account geometrical differences, beam dispersion and the effect of oscillations.
 - Partially cancels correlated systematic uncertainties between two detectors.
- Since each component oscillates differently, decompose observed ND spectrum according to simulated proportions.
- Use migration matrix to convert reconstructed energy to true energy, apply oscillations and migrate back to reconstructed energy.

Far Detector: Neutrino Prediction

- Use NOvA best fit point from the joint v_{μ} - v_e analysis:
 - $\sin^2\theta_{23} = 0.558 \pm 0.042$,
 - $\delta_{13} = 1.21\pi$,
 - $\Delta m^{2}_{32} = 2.44 \times 10^{-3} \text{ eV}^{2}$.
- Used for both **neutrino** and **antineutrino** analyses.

Far Detector Neutrino Data

Neutrino Data

 Observed 214 events, with prediction of 191.2 ± 13.8 (stat) ± 22.0 (syst).

No evidence of neutral current disappearance

$$R_{NC} \equiv \frac{N^{Data} - \sum N^{Pred}_{Bkg}}{N^{Pred}_{NC}} = 1.19 \pm 0.14 \text{(stat.)} \pm 0.12 \text{(syst.)}$$

- Uncertainties dominated by calibration and interaction systematics.
- Future work, in particular the NOvA test beam program, will aim to reduce these uncertainties for future analyses.

NOvA Preliminary

Far Detector Antineutrino Data

Antineutrino Data Observed 61 events, with prediction of $69 \pm 8 \text{ (stat.)} \pm 10 \text{ (syst.)}.$ **NOvA Preliminary** Events / 1 GeV / 6.91 × 10²⁰ POT FD Data: Antineutrino Beam 20 Total Prediction 1o syst. range Beam-induced Backgrounds 15 Cosmic-induced Background 10 15 5 10 Deposited Energy (GeV)

• Similarly large experimental uncertainties to the neutrino analysis.

Again consistent with oscillations in 3-flavor framework.

$$R_{NC} \equiv \frac{N^{Data} - \sum N^{Pred}_{Bkg}}{N^{Pred}_{NC}} = 0.86 \pm 0.15 (\text{stat.})^{+0.09}_{-0.12} (\text{syst.})$$

NOvA Preliminary

Limits

- Perform shape-based fits to create allowed regions in θ_{24} - θ_{34} parameter space:
 - Valid for $0.05 < m^2_{41}$ (eV²) < 0.5;
 - Profile over θ_{23} and δ_{14} .
 - Assume $\theta_{14} = 0$ and $\delta_{14} = 0$ (solar and reactor constrains $\sin^2 \theta_{41} < 0.04$).
- 1D limits from neutrino data:
 - $\theta_{24} < 16.2^{\circ}, \, \theta_{34} < 29.8^{\circ} \, (90\% \, \text{C.L.}).$
- 1D limits from antineutrino data:
 - $\theta_{24} < 25.5^{\circ}, \theta_{34} < 31.5^{\circ}$ (68% C.L.).

Future Improvements

Improved Selection for Neutrino Analysis

- Retrain CVN for improved event classification.
- Train the cosmic rejection BDT separately on different data-taking running conditions.
- Selection purity increased to 81% from 77%, maintaining 52% efficiency.

Fitting for Sterile Mass Splitting

- Oscillations in both ND and FD, can no longer treat Δm^{2}_{41} as constant.
- Must perform joint fit in both ND and FD to properly account for these effects.

- Use covariance matrix to track correlated systematics between two detectors, maintaining the cancellation of uncertainties.
- Technique recently used by MINOS/ MINOS+ (arXiv:1710.06488v2), this will be the first use in NOvA.

Test Beam Program

Poster: 'The NOvA Test Beam', A. Sutton

- Six-month test beam run scheduled January June 2019, currently under construction and commissioning at Fermilab Test Beam Facility.
- Will use a scaled-down (30 ton) NOvA detector to sample beams of tagged electrons, muons, pions, and protons in the momentum range of 0.3 to 2 GeV and will further the NOvA physics reach by precisely measuring the detector's muon energy scale and electromagnetic and hadronic response.

Short-Baseline Analyses

- With sterile neutrino oscillations, electron neutrino and tau neutrino appearance must be consistent with muon neutrino disappearance.
- Joint analysis of v_e , v_τ appearance with v_μ disappearance allows partial cancellation of systematics.
- Short-baseline oscillations at the NOvA near detector covers L/E range of LSND and allows searching for high-energy v_{τ} s in the tail above the beam peak.
- Results coming soon!

Summary

- Searched for deficit in Neutral Current neutrino events in the NOvA detectors with
 - 8.85x10²⁰ POT neutrino data;
 - 6.91x10²⁰ POT antineutrino data (new analysis!).
- Results for both analyses consistent with no sterile oscillations;
 - For $0.05 < m^2_{41}$ (eV²) < 0.5:
 - 1D limits (90% C.L.) from neutrino data: $\theta_{24} < 16.2^{\circ}$, $\theta_{34} < 29.8^{\circ}$;
 - 1D limits (68% C.L.) from antineutrino data: $\theta_{24} < 25.5^{\circ}$, $\theta_{34} < 31.5^{\circ}$.
 - Limits from the new two-detector joint-fit with neutrino data coming later this year.
- Two short-baseline sterile searches are nearing completion.

Thank You!

http://novaexperiment.fnal.gov

Short-Baseline Oscillations

$$P_{\nu_{\mu} \to \nu_{\mu}}^{SBL,3+1} = 1 - 4 |U_{\mu4}|^{2} (1 - |U_{\mu4}|^{2}) \sin^{2} \Delta_{41}$$
$$= 1 - \cos^{2} \theta_{14} \sin^{2} \theta_{24} \sin^{2} \Delta_{41}$$

Extrapolation

$$F_{jk\beta}^{\text{pred}} = \sum \frac{N_{jk\alpha}^{\text{data}}}{N_{jk\alpha}^{\text{sim}}} F_{jk\beta}^{\text{sim}} P(\nu_{\alpha}, \nu_{\beta})$$

Covariance Matrix Fit

$$V_{ij,syst} = \frac{\sum_{n=1}^{U} (S_{n,i} - \mu_i)(S_{n,j} - \mu_j)}{U - 1}$$

$$\chi^2 = \sum_{i=1}^N \sum_{j=1}^N (x_i - \mu_i) [V^{-1}]_{ij} (x_j - \mu_j)$$

- Mixing angles, θ_{24} , θ_{34} :
 - Depth of oscillations at maximum controlled by θ_{34} ,
 - Shape of decent controlled by θ_{24} .

- Mixing angle θ_{23} :
 - Also affect depth of oscillations, fix to NOvA best fit from v_e/v_{μ} analysis.

- CP-violating phase δ_{24} can also affect NC disappearance.
- Profile over this in fit, slightly degrade our resolution.

NOvA Playing Left Field?

Energy Reconstruction

- Determine 'calorimetric energy' based on calibrated charge collected in detector.
- Use simulation to convert reconstructed energy into 'true deposited energy' in the event.
- Final energy resolution ~25%.

Cosmic Rejection BDT

- Variables:
 - CVN cosmic,
 - Number of showers,
 - Leading shower direction,
 - Leading shower length,
 - Transverse momentum fraction,
 - Leading shower number of hits [4] (each view separately, sum and difference),
 - Leading shower number of hits (X-Y)/(X+Y) view,
 - Leading shower width,
 - Leading shower gap,
 - Number of MIP hits in slice,
 - 'Calorimetric energy' for leading shower.

- Three running periods:
 - Coarse timing, low gain;
 - Low gain, fine timing;
 - High gain, fine timing.

New NOvA NC Disappearance Analyses

- Two new analyses for 2018:
 - Reanalysis of neutrino dataset with improved selection and a new two-detector joint fit method;
 - First analysis of NOvA's antineutrino dataset with the traditional extrapolation technique (first NC disappearance analysis with long-baseline antineutrino data).
- Analysis improvements:
 - NOvA CVN retrain, include first training for antineutrino data;
 - Retrained BDT used for cosmic rejection, now separated by different detector running conditions.

Selection Plots

Antineutrino Candidate Event

M Wallbank (Cincinnati) Sterile Neutrino Search via Neutral Current Disappearance with NOvA (NuFact 2018)

Background Uncertainties

Comparison

	θ_{24}	$ heta_{34}$	$ U_{\mu 4} ^2$	$ U_{\tau 4} ^2$
NOvA 2016	20.8°	31.2°	0.126	0.268
NOvA 2017	16.2°	29.8°	0.078	0.228
MINOS	7.3°	26.6°	0.016	0.20
SuperK	11.7°	25.1°	0.041	0.18
IceCube	4.1°	-	0.005	-
IceCube-DeepCore	19.4°	22.8°	0.11	0.15

MINS/MINOS+ 2018 (0.5 eV²): 4.05 23.6