DUNE Oscillation Physics

Animesh Chatterjee (UTA)

for the DUNE Collaboration

NuFact 2018, Aug. 16, 2018 Blacksburg, Virginia

<u>D</u>eep <u>U</u>nderground <u>N</u>eutrino <u>E</u>xperiment

A next generation experiment for **neutrino science**, **nucleon decay**, and **supernova physics**

2 Aug 16, 2018 | NuFact 2018 | A Chatterjee | UT Arlington

Primary Physics goals

- v oscillation physics
 - * Precise measurements of the oscillation parameters θ_{23} , θ_{13} , Δm_{31}^2
 - * Neutrino mass hierarchy
 - * Octant of $\boldsymbol{\theta}_{_{23}}$
 - * CP Violation and measurement of $\boldsymbol{\delta}_{_{\mathrm{CP}}}$
- Nucleon decay
- Supernova neutrinos
- Physics beyond the standard model

- * Most intense neutrino beam : "LBNF"
- * 60-120 GeV protons from Fermilab Main Injector
- * Horn-focused beam line similar to NuMI beam line
- * Initial power: 1.2 MW; plan(2032) to upgrade to
- 2.4 MW

Aug 16, 2018 | NuFact 2018 | A Chatterjee | UT Arlington

Detail talk by Mary Bishai

DUNE Near Detector(ND)

- Primary Purpose: constrain systematic uncertainty for long baseline oscillation analysis
- High precision cross-section and short baseline measurements
- DUNE ND design concept near final
- DUNE ND design concept is an integrated system composed of multiple detectors:
 - * Highly segmented LArTPC
 - * Straw tube tracker
 - * Electromagnetic calorimeter
 - * Muon chambers

5

DUNE Far Detector(FD)

- Two FD designs of Liquid Argon Time Projection Chamber (LArTPC) are considered: single phase (only LAr) and dual phase (LAr + GAr)
- Four 10-kt (fiducial) modules, totally 40-kt (fiducial)LAr at 4850ft level

6

DUNE Timeline

* DUNE Far Detector Interim Design Reports are available (on arXiv:1807.10334, 1807.10327,1807.10340)

Neutrino Oscillations

Neutrino mixing matrix :

8

$$\begin{pmatrix} \nu_e \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix} \begin{vmatrix} |U_{e3}| \neq 0 \\ (\text{recent} \\ \text{discovery}) \end{vmatrix}$$

$$\star$$
 δ_{CP} ≠ (0,π)?, Neutrino and anti-neutrino asymmetry

$$\frac{\text{Octant of }\theta_{23}}{\text{mixing? If so, which way?}}$$

9

$V_{\mu} \rightarrow V_{e}$ Appearance

$$P(\nu_{\mu} \rightarrow \nu_{e}) \simeq \frac{\sin^{2}\theta_{23}\sin^{2}2\theta_{13}}{(\Delta_{31} - aL)^{2}} \Delta_{31}^{2} \qquad \qquad \Delta_{ij} = \Delta m_{ij}^{2}L/4E_{\nu}$$

$$+ \frac{\sin^{2}\theta_{23}\sin^{2}2\theta_{13}}{(\Delta_{31} - aL)^{2}} \Delta_{31}^{2} \frac{\sin(aL)}{(\Delta_{31} - aL)} \Delta_{31} \frac{\sin(aL)}{(aL)} \Delta_{21}\cos(\Delta_{31} + \delta_{CP})$$

$$+ \frac{\cos^{2}\theta_{23}}{(aL)^{2}} \sin^{2}2\theta_{12} \frac{\sin^{2}(aL)}{(aL)^{2}} \Delta_{21}^{2},$$

- v_e appearance probability depends on $: \theta_{23}, \theta_{13}, \delta_{cp}$, matter effect
- Large value of $\sin^2 2\theta_{13}$ provides significant v_e events
- Large matter effect help for the determination of hierarchy
- + θ_{23} octant measurement from ν_{μ} disappearance channel

Oscillations at DUNE

- $\boldsymbol{\delta}_{_{CP}}$ affects both the amplitude and the frequency of oscillation
- Measure v_{e} appearance with v_{u} beam to determine $\boldsymbol{\delta}_{_{\mathrm{CD}}}$ MH
- Wide band beam covers 1st and 2nd oscillation maxima

Appearance and disappearance spectra

<u>Staging</u>

- 2026:20kt far detector with 1.2MW beam
- 2027: 30kt far detector
- 2029: 40kt far detector

12

• 2032 : Upgrade to 2.4MW beam

- Reconstructed
 spectra based on
 GEANT4 beam
 simulation, GENIE
 event generator,
 and Fast MC
- Simultaneous fit to four spectra to extract oscillation parameters
- Systematics applied using normalization uncertainties
- GLOBES configurations arXiv:1606.09550

Systematic Uncertainties

- The effect of systematic uncertainty is approximated using signal and background normalization uncertainties
- Signal normalization uncertainty is 5±2% in both neutrino and anti-neutrino modes.

$$\rightarrow v_{\mu} \& \overline{v}_{\mu} = 5\%$$
 (constraints from the near detector)

 $\rightarrow v_{e} \& \overline{v}_{e} = 2\%$ (constraints from the near detector and fit)

- Oscillation parameter central values and uncertainties are taken from NuFit 2016 (arXiv:1611.01514)
- Parameters are allowed to vary constrained by $1/6 \; \text{of the} \pm 3\sigma \; \text{range}$ in the global fit.

Mass hierarchy sensitivity

Sensitivity vs.time

Significant milestones within few years of beam run DUNE CDR

Width of band corresponds to 90% C.L. variations in value of θ_{23} based on NuFit 2016 fit values

Sensitivity to θ_{23} Octant and θ_{23} resolution

• DUNE CDR

Oscillation parameter resolution

Normal hierarchy : DUNE CDR

Width of band corresponds to 90% C.L. variations in value of θ_{23} based on NuFit 2016 fit values

Physics milestone

DUNE IDR arxiv:1807.10334

Physics milestone	Exposure (kt · MW · year)	Exposure (years)
$1^{\circ} \theta_{23}$ resolution ($\theta_{23} = 42^{\circ}$)	29	1
CPV at 3σ ($\delta_{\rm CP} = -\pi/2$)	77	3
MH at 5σ (worst point)	209	6
$10^{\circ} \ \delta_{\rm CP}$ resolution ($\delta_{\rm CP}=0$)	252	6.5
CPV at 5σ ($\delta_{\rm CP} = -\pi/2$)	253	6.5
CPV at 5σ 50% of $\delta_{ m CP}$	483	9
CPV at 3σ 75% of $\delta_{ m CP}$	775	12.5
Reactor θ_{13} resolution	857	13.5
$(\sin^2 2\theta_{13} = 0.084 \pm 0.003)$		_

Monte-Carlo Studies (New!)

- GEANT4 beam simulation of updated beam design
- Full LArSoft Monte Carlo simulation
- Automated energy reconstruction
- Event selection using convolutional visual network (CVN)
- CDR-style systematics analysis

- > Sensitivity from MC-based analysis with automated reconstruction and event selection exceeds CDR sensitivity!
- > Full update planned for TDR 2019!

 The DUNE experiment with the world's most intense neutrino beam, a deep underground site, and massive LAr detectors, will be enable to address the most fundamental questions in particle physics

• DUNE has a broad physics program

- > DUNE will determine Mass hierarchy and can measure CP violation with 5σ
- > Precision oscillation parameter measurements
- > Search for Nucleon Decay and Supernova Burst v
- > And a rich BSM physics program both inside and outside the neutrino sector
- Far site construction and prototypes are underway this year

Thank You

Aug 16, 2018 | NuFact 2018 | A Chatterjee | UT Arlington

CVN Event selection

- ResNet architecture implemented in TensorFlow
- DUNE MC images classified into categories

 $\nu_{\rm e}$ CC, ν_{μ} CC, ν_{τ} CC, NC

- Event selection performed by applying cuts on $\nu_{\rm e}$ CC-like and $\nu_{\rm u}$ CC-like CVN classifiers
- <u>Selection efficiency</u> :

Appearance Efficiency (FHC)

CVN $\nu_{\rm e}$ event selection efficiency similar to that from CDR Fast MC