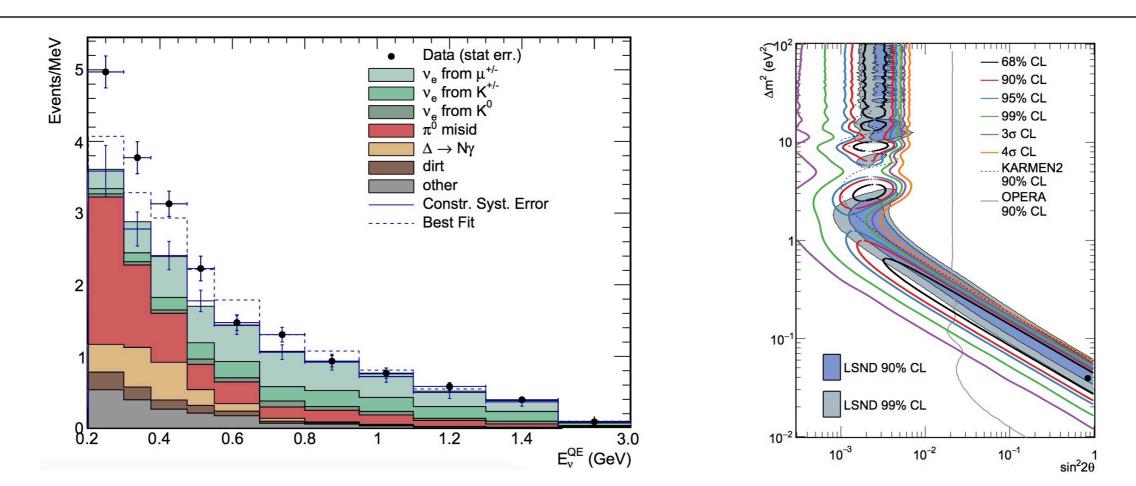
MicroBooNE Search for Low-Energy Excess Using Deep Learning Algorithms

Lauren Yates Massachusetts Institute of Technology On Behalf of the MicroBooNE Collaboration

NuFACT 2018

MiniBooNE Low-Energy Excess



• MiniBooNE sees a 4.5 σv_e -like excess

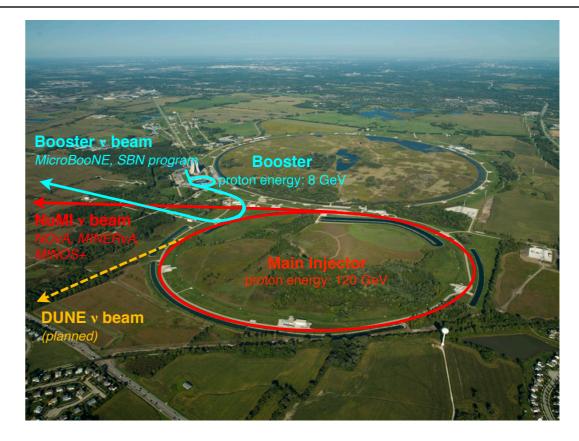
arXiv:1805.12028 [hep-ex]

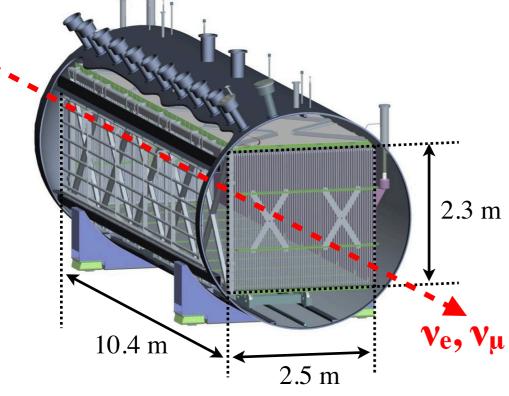
µBooN

- This result is in tension with global 3+1 model fit
- MiniBooNE
 - Mineral oil Cherenkov detector
 - Significant fraction of the background from γ/e⁻ mis-ID

- MicroBooNE
 - Same beam and similar baseline
 - LArTPC detector technology gives better γ/e^- separation power

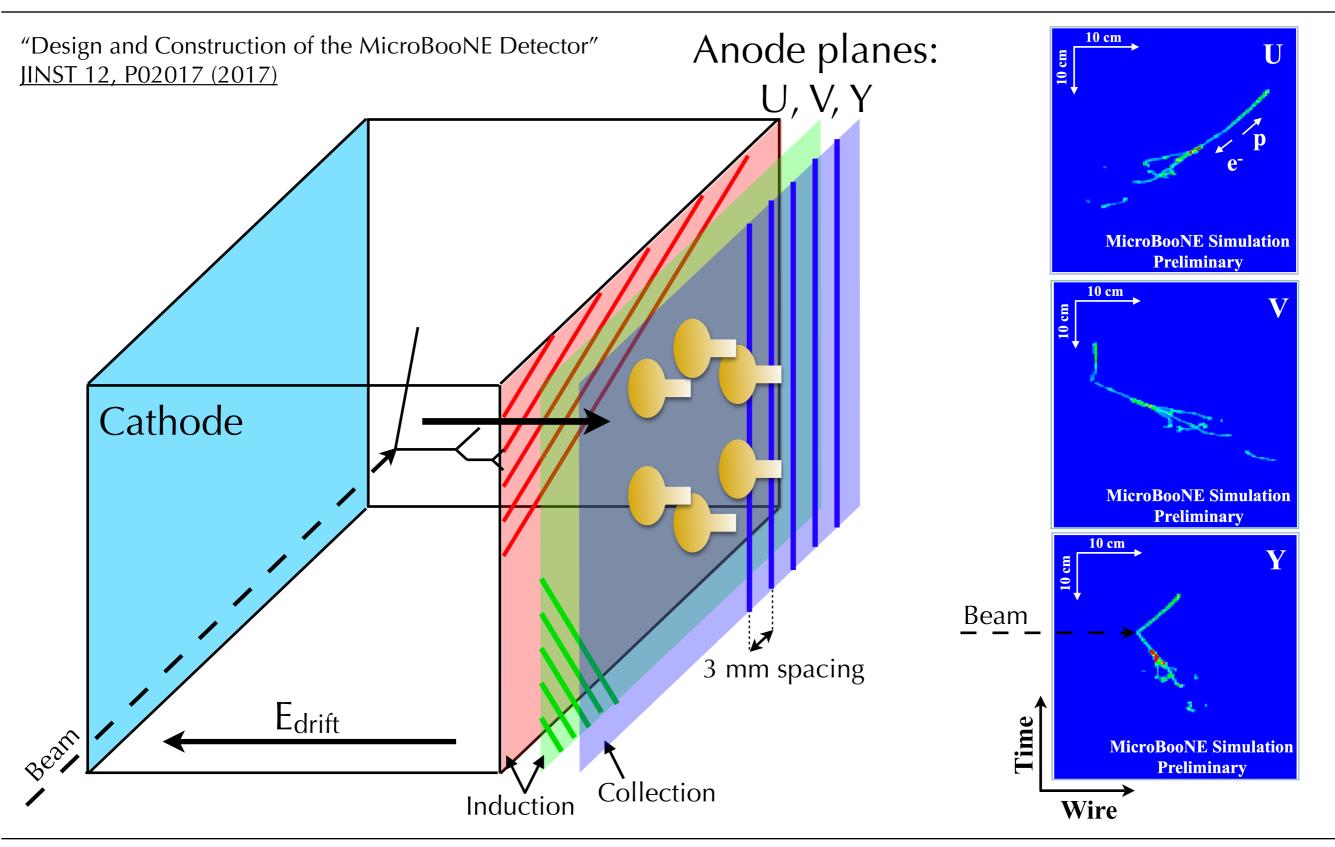
The MicroBooNE Experiment





- Micro Booster Neutrino Experiment
- 85 tonne Liquid Argon Time Projection Chamber (active mass)
- Located in the Fermilab Booster Neutrino Beam
- $\nu_{\mu} \rightarrow \nu_{e}$ appearance experiment
- >95% detector uptime
- 9.6×10²⁰ POT on tape to date

The MicroBooNE Detector



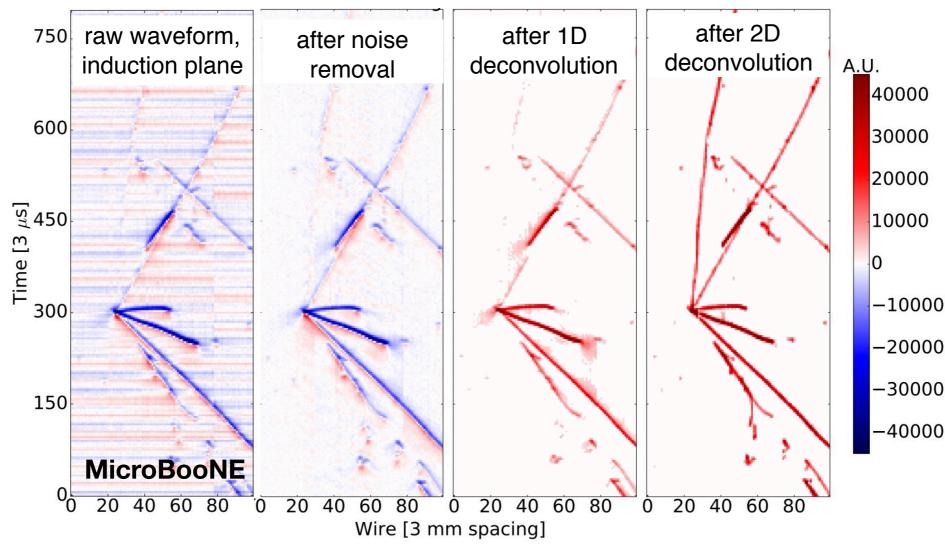
Understanding the Detector

"Ionization Electron Signal Processing in Single Phase LArTPCs"

Parts I & II, JINST 13, P07006 (2018) & JINST 13, P07007 (2018)

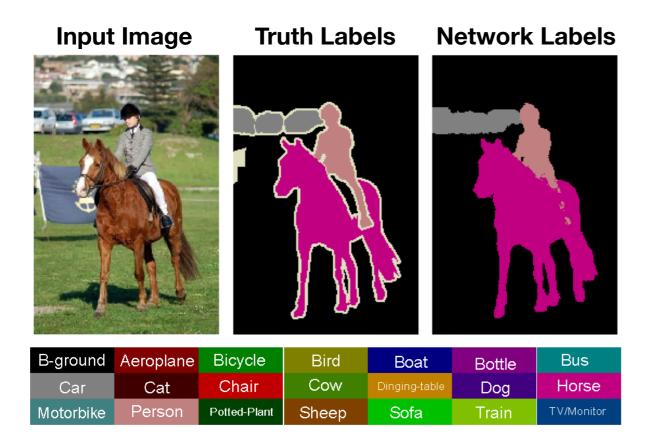
- Detailed understanding of our detector is key to our physics goals and to R&D efforts for future LArTPC detectors
- Developed novel techniques for noise filtering and signal processing

"Noise Characterization and Filtering in the MicroBooNE Liquid Argon TPC", JINST 12, P08003 (2017)

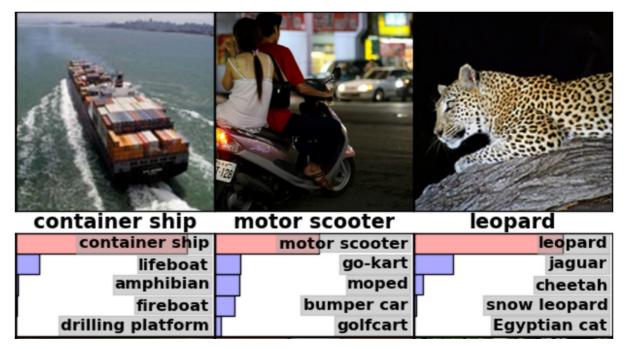


A Few Words About Deep Learning **#BooNE**

- Primarily use convolutional neural networks (CNNs)
- CNNs have been developed primarily for image analysis; we apply them to MicroBooNE event displays
- I will discuss two uses: semantic segmentation and classification



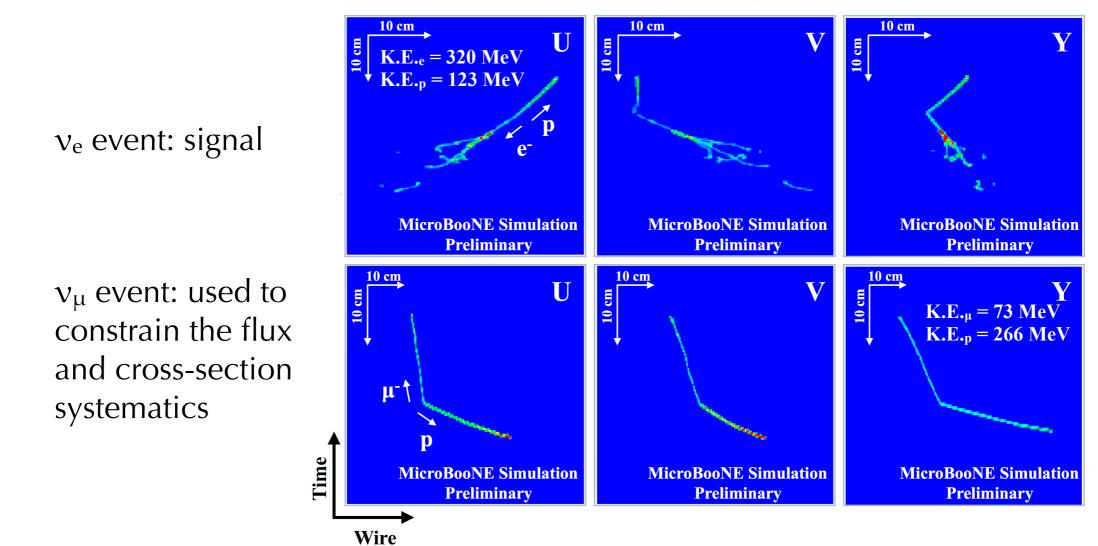
Example of semantic segmentation, from <u>"Conditional</u> <u>Random Fields as Recurrent NNs", ICCV (2015)</u>



Example of CNN classification, from <u>"ImageNet</u> <u>Classification with Deep CNNs", NIPS (2012)</u>

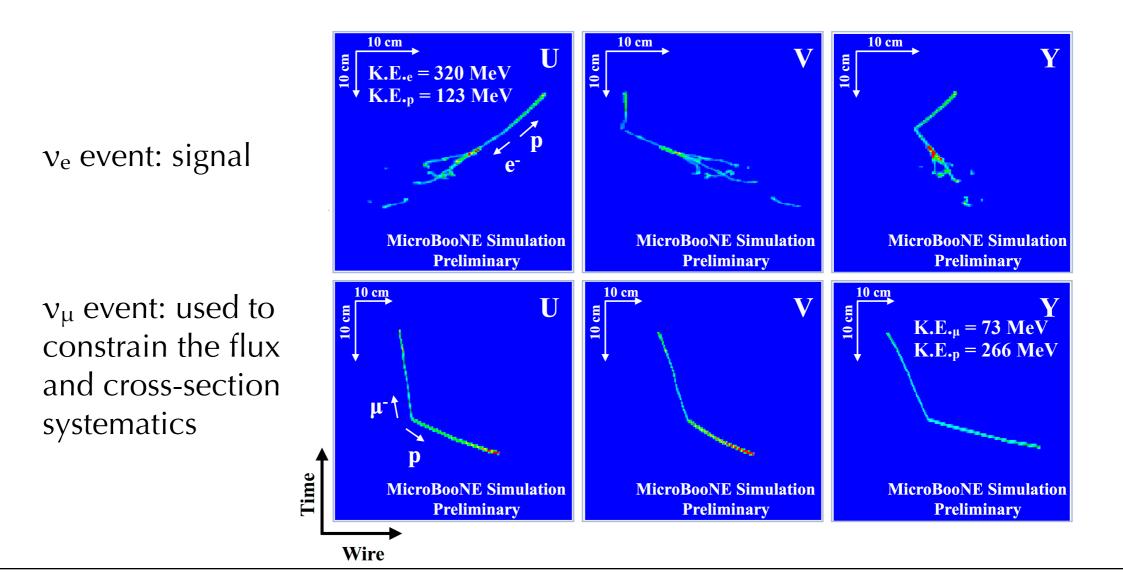
Definition of the Signal

- Define our signal to be charged current quasi-elastic events with one lepton and one proton (11-1p) topology
 - ▶ Lepton (electron or muon) with kinetic energy >35 MeV
 - One proton with kinetic energy >60 MeV (possibly others below that energy threshold)
- Intrinsic ν_e backgrounds are constrained by ν_μ events

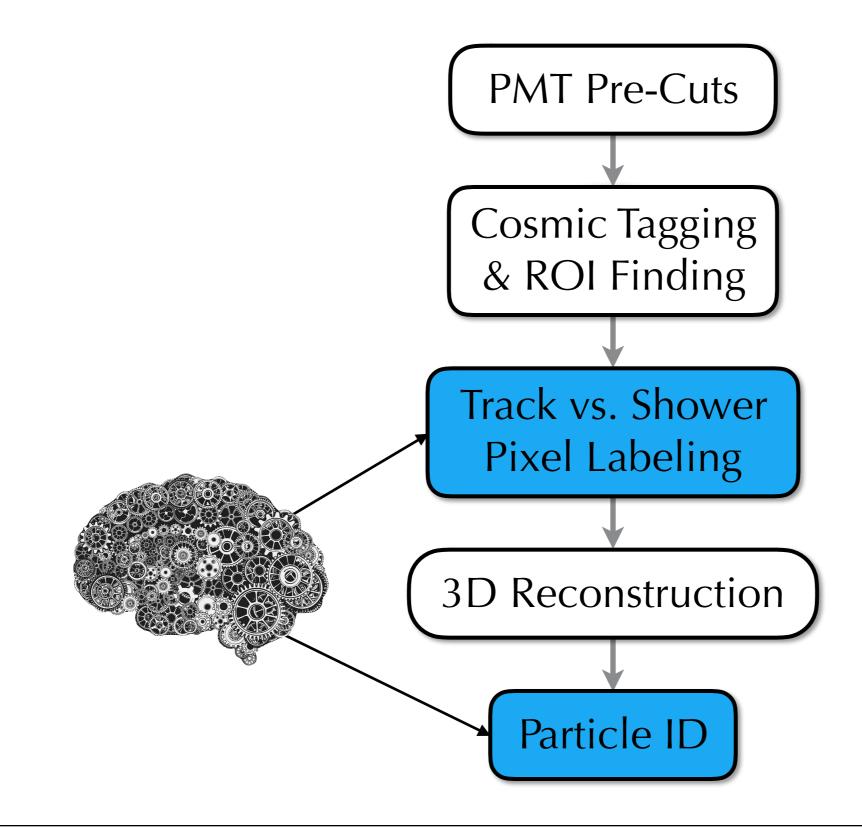


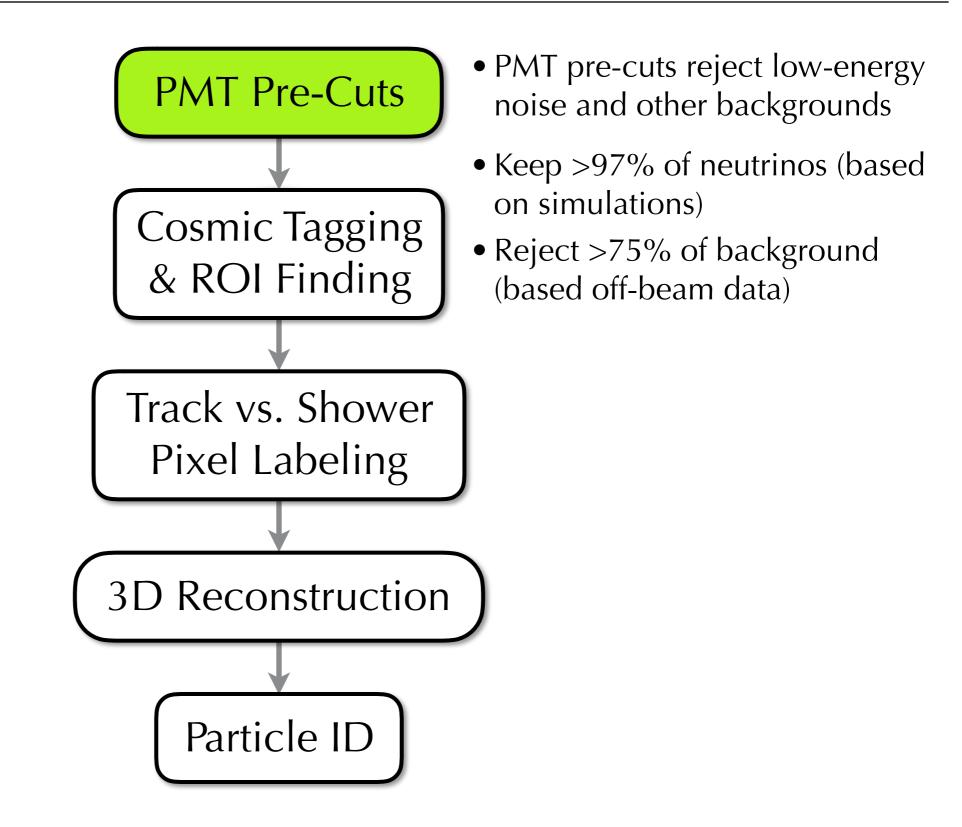
Definition of the Signal

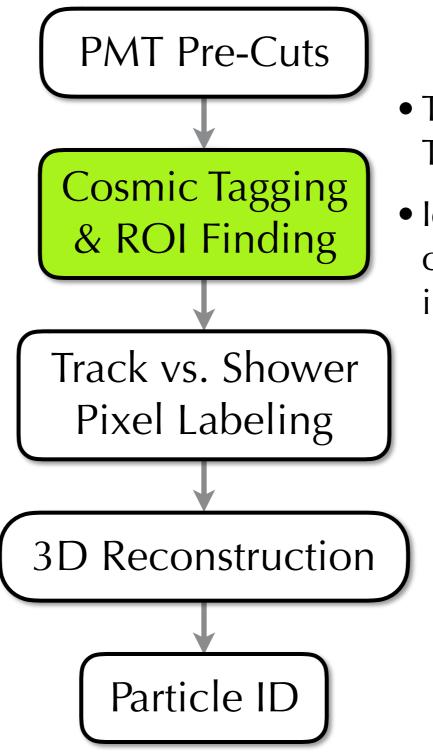
- We are able to observe many event topologies in MicroBooNE, but we choose this relatively simple one
- Requiring a proton in the event reduces backgrounds from cosmic rays and single-photon events



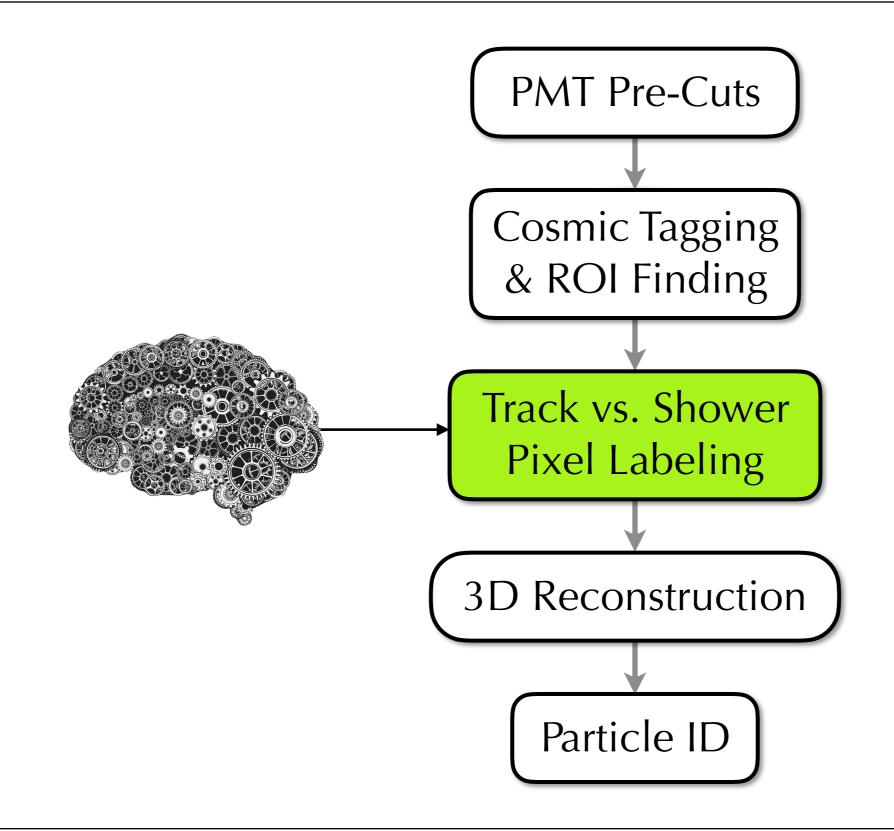
Overview of Reconstruction Chain **#BooNE**



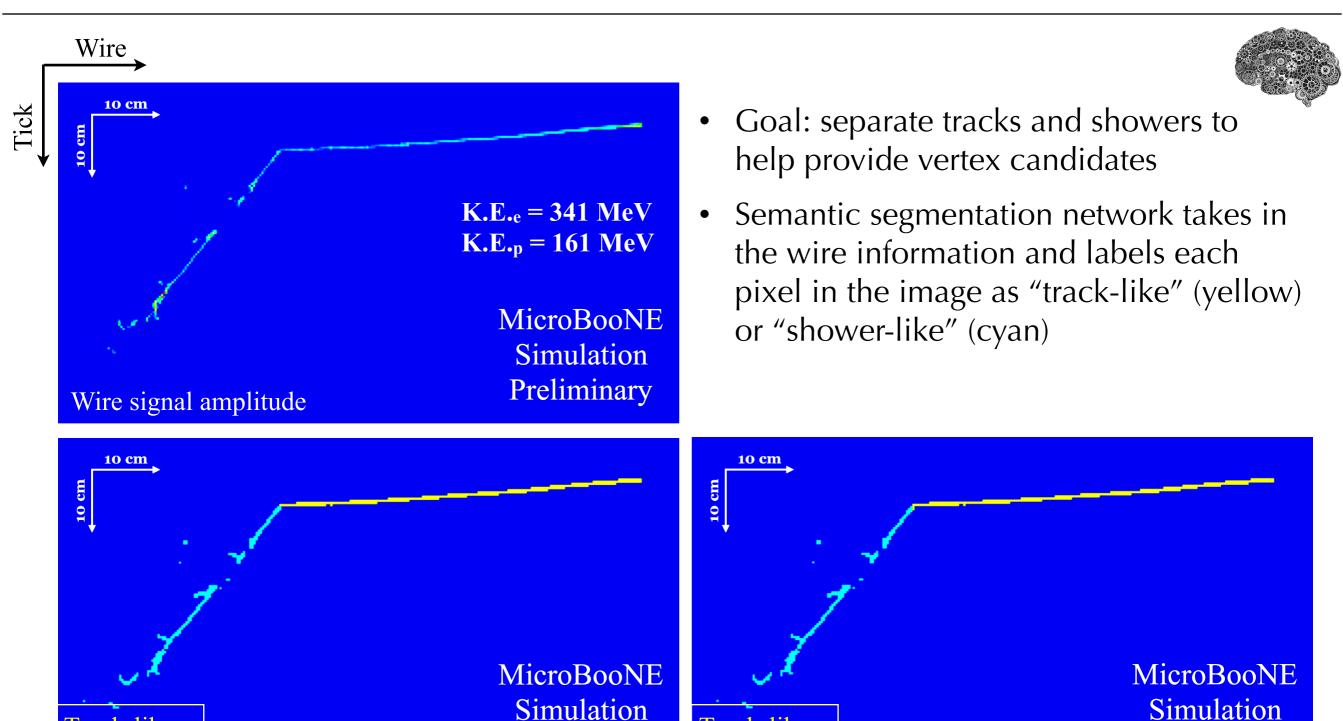




- Tag tracks that cross the TPC boundary
- Identify clusters of contained charge consistent with the in-time flash



Track vs. Shower Pixel Labeling



Preliminary

Truth label

Track-like

Shower-like

L. Yates | NuFACT 2018

Track-like

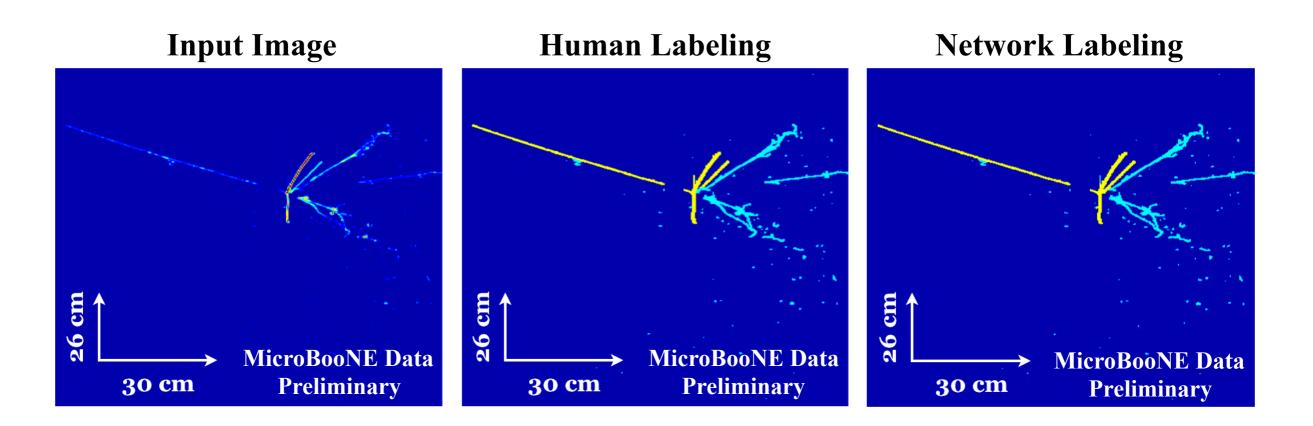
Shower-like

Preliminary

Network output

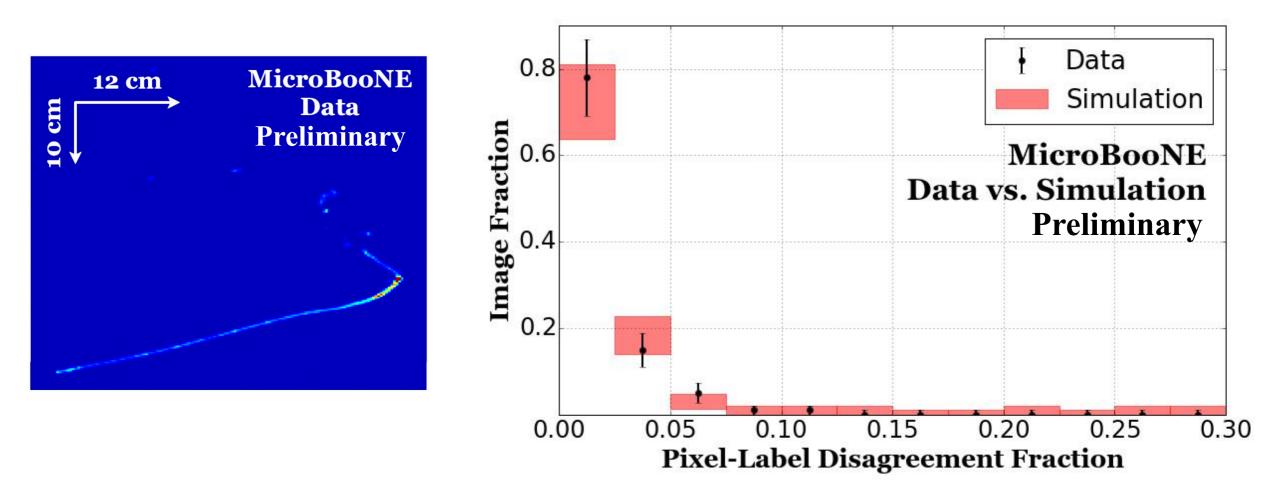
Performance on Data

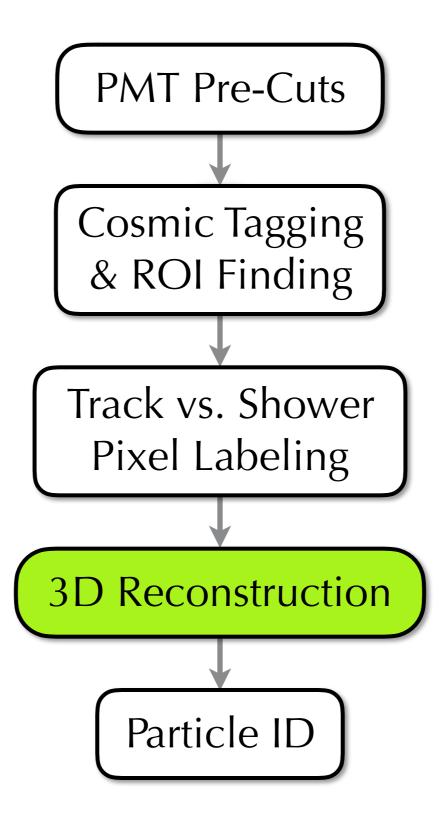
- Network shows very good performance on data, in spite of being trained on simulation
- Example: v_{μ} charged current π^0 event
 - Outgoing muon and hadrons identified as track-like (yellow)
 - Showers resulting from π^0 decay identified as shower-like (cyan)



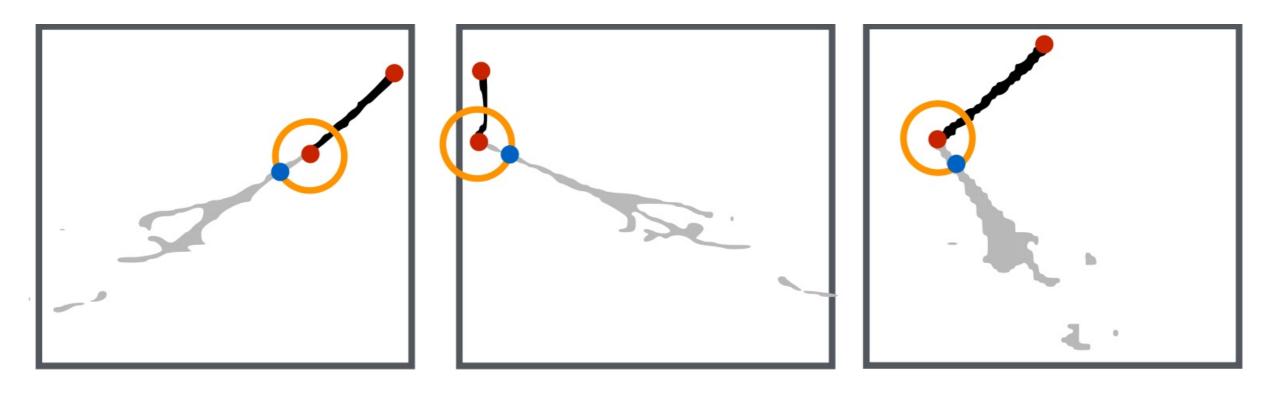
Performance on Data

- To quantify network's performance, look at level of disagreement in pixel labels between human and network over many images
 - ▶ In this case, looking at Michel electron events
- Disagreement is generally below 2.5% of non-empty pixels
- Level of agreement is consistent between data and simulation





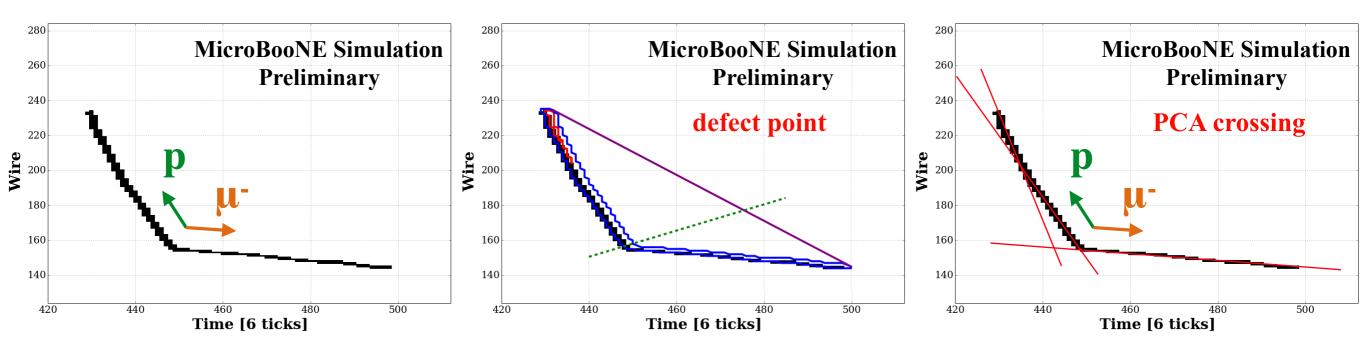
Vertex Reconstruction



If both track-like and shower-like pixels are found (e.g., a v_e event):

- For each plane: find endpoint of track where shower is attached
- Correlate these endpoints across planes to identify 3D region
- Scan 3D space around the candidate vertex
- Add a vertex at the 3D point that best matches where the track and shower meet across all three planes

Vertex Reconstruction



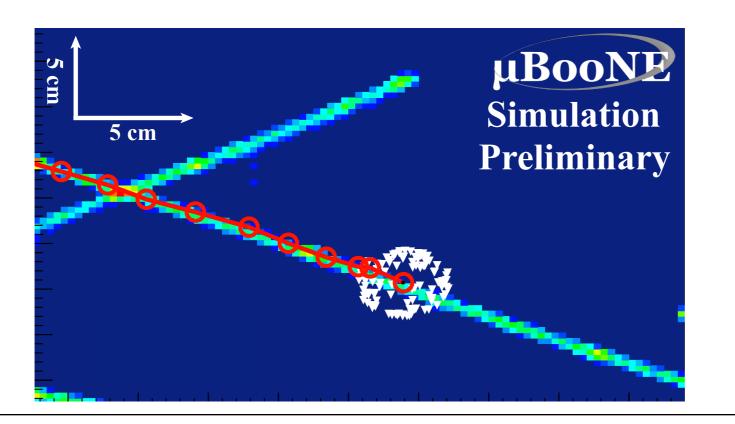
If there are only track-like pixels (e.g., ν_{μ} normalization sample):

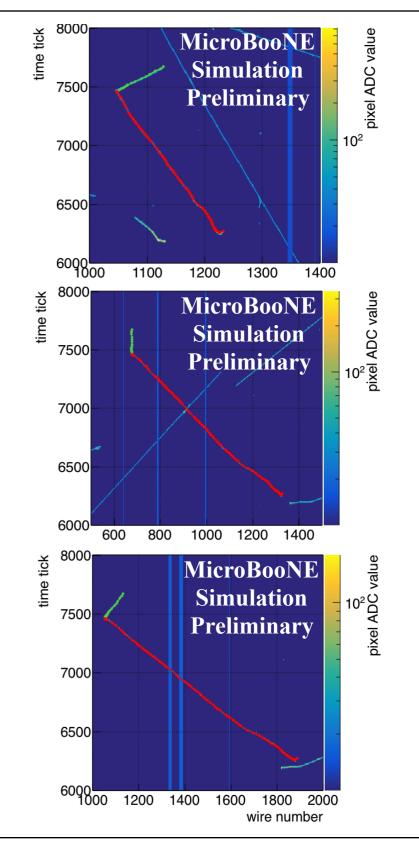
- For each plane: create 2D vertex seeds at any kink points
- Scan space around each seed to find the best vertex point
- Combine information from all three planes
- If the best vertices from each plane are 3D-consistent, add a vertex at that 3D point

L. Yates | NuFACT 2018

Track Reconstruction

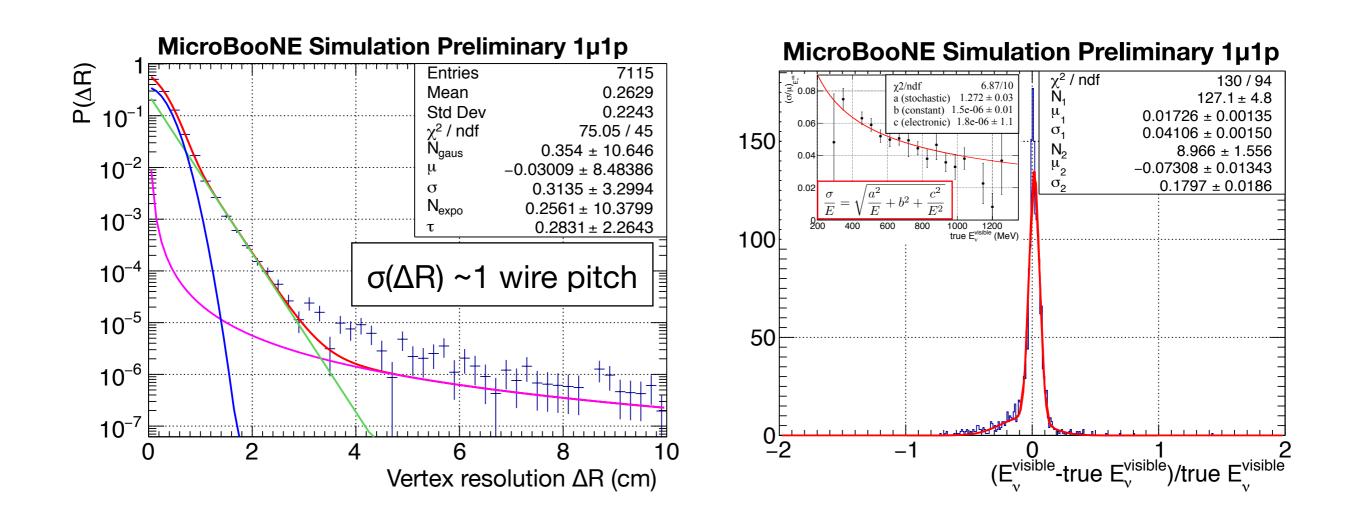
- Track reconstruction algorithm starts from the previously identified 3D vertex point
- Proceeds by stochastic search of nearby 3D space, with preference for continuing in forwards direction
- Once end of track is reached, mask pixels from that track and iterate search from vertex
- Self-diagnostic tool to identify failures

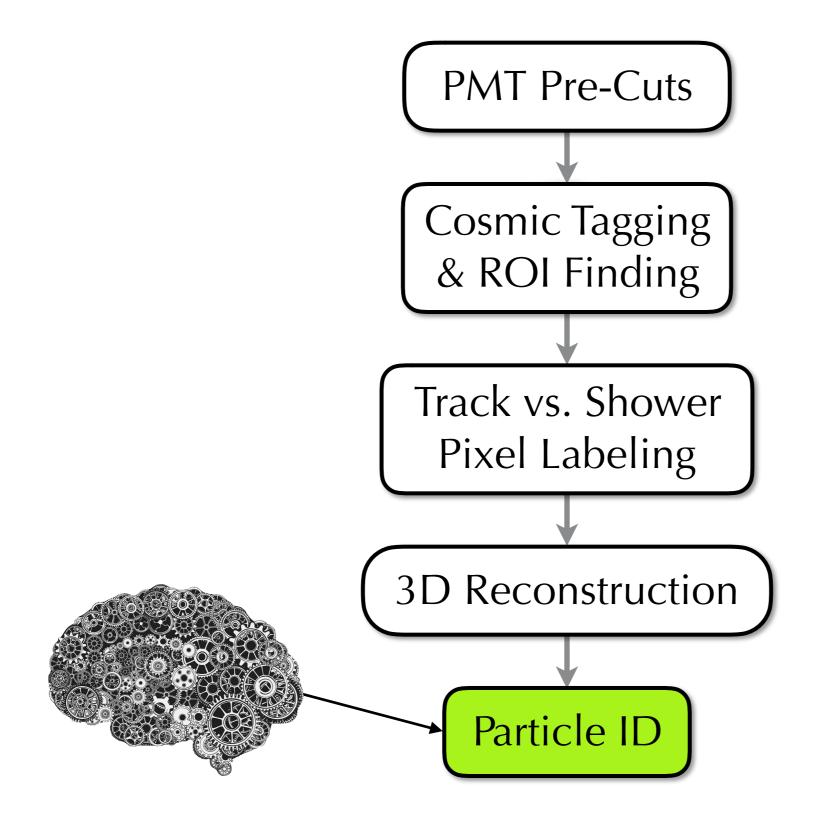




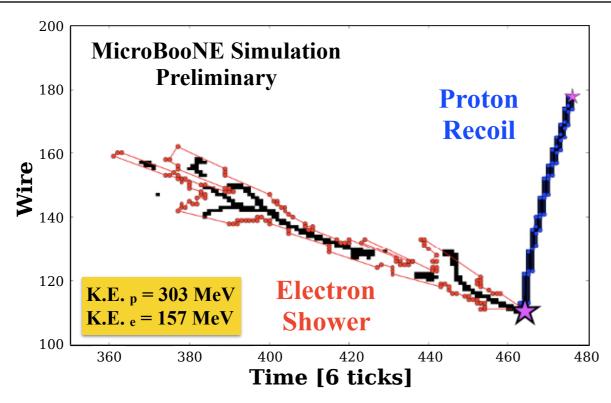
Reconstruction Performance

- μBooNE
- Vertex spatial resolution is 0.3cm, equivalent to wire spacing
- \bullet Length-based energy based on reconstructed tracks achieves 4% resolution for 1µ1p events





Single Particle Identification



Particle	Correct ID	
e-	$77.8 \pm 0.7\%$	
γ	$83.4 \pm 0.6\%$	
μ^{-}	$89.7 \pm 0.5\%$	
π^-	$71.0 \pm 0.7\%$	
р	$91.2 \pm 0.5\%$	

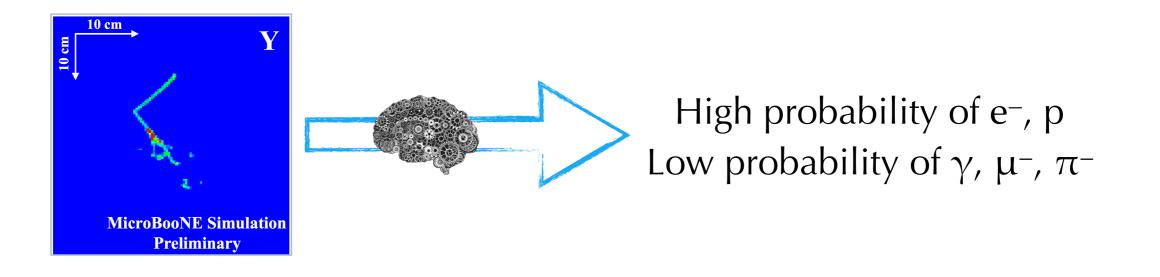
uBoo

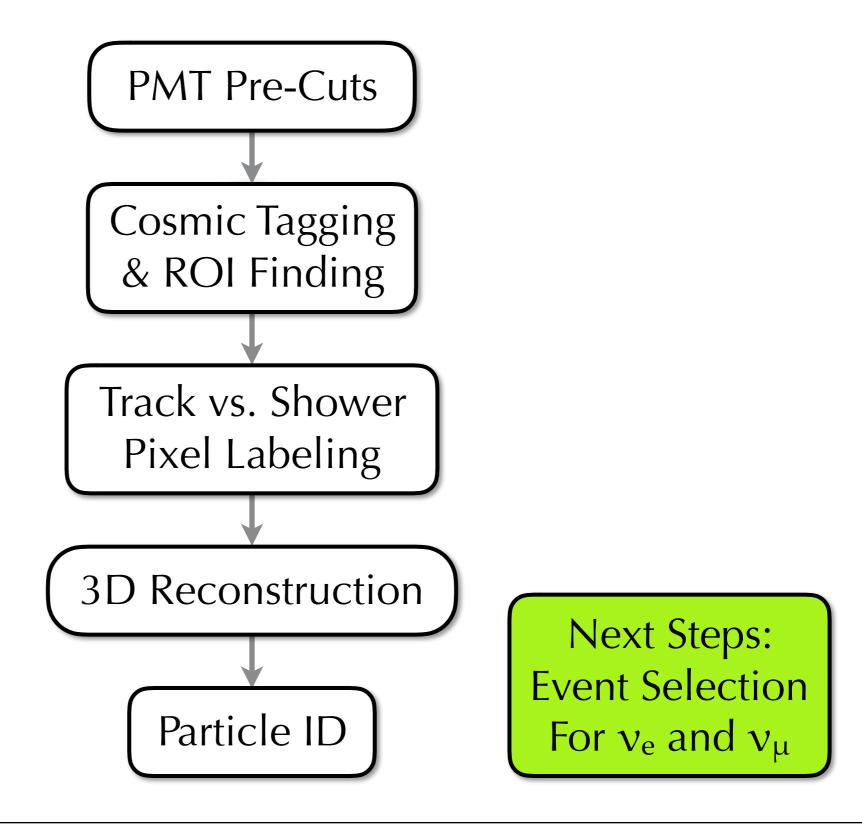
"Convolutional Neural Networks Applied to Neutrino Events in a LArTPC" JINST 12, P03011 (2017)

- Previous work on particle identification for single-particle clusters
 - After 3D vertex reconstruction, clustered pixels attributed to each single track or shower coming out of the vertex
 - Fed individual particle clusters into a CNN trained to do single-particle identification (HighRes GoogLeNet architecture)
- Achieved $e^{-/\gamma}$ separation comparable to MicroBooNE design goals

Multi-PID Network

- Currently developing multiple-particle identification network
 - Removes the need to cluster particles coming out of the vertex
 - Provides the network with more context that it can use to make particle identification decisions
- Given an image, network provides the probability that the image contains each of the particles of interest: e⁻, γ , μ^- , π^- , p
- Builds on previous single-particle identification network uses much of the same architecture, just changing last few layers



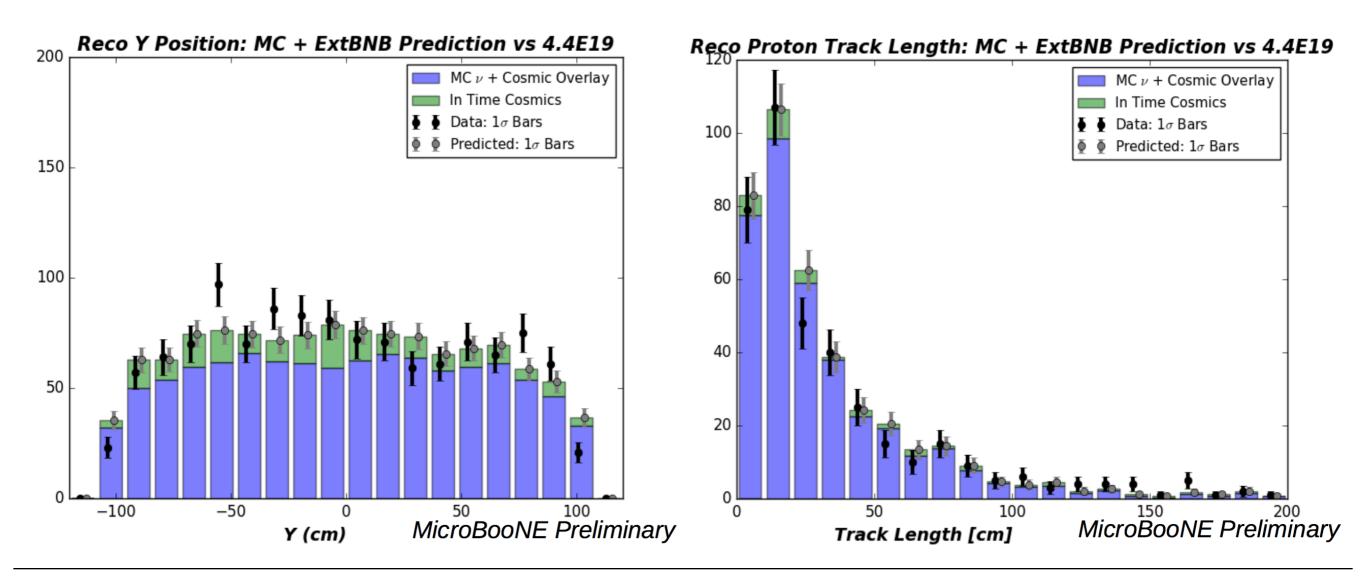


Neutrino Candidate Selection

- After we have reconstructed our events, need to select neutrino candidates for both ν_e and ν_μ
- Still have significant background from cosmic rays and from nonsignal neutrino interactions, so selection must reject these
- \bullet Focus on the ν_{μ} selection
 - Exactly two 3D reconstructed tracks
 - Vertex inside the fiducial volume, >10cm from TPC boundary
 - Candidate must pass two likelihood cuts: one designed for cosmic rejection, other for neutrino background rejection
 - Likelihoods considers ionization difference between tracks, how close event is to TPC boundary, track angles relative to drift direction, track angles relative to beam direction

ν_{μ} Selection Performance

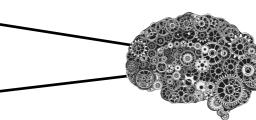
- Very successful at rejection cosmics, such that remaining backgrounds are dominated by neutrino events that do not meet signal definition
- Have achieved 18% efficiency, 47% purity for $1\mu1p$
- Optimized for low energy reconstruction relevant to MiniBooNE excess



Summary

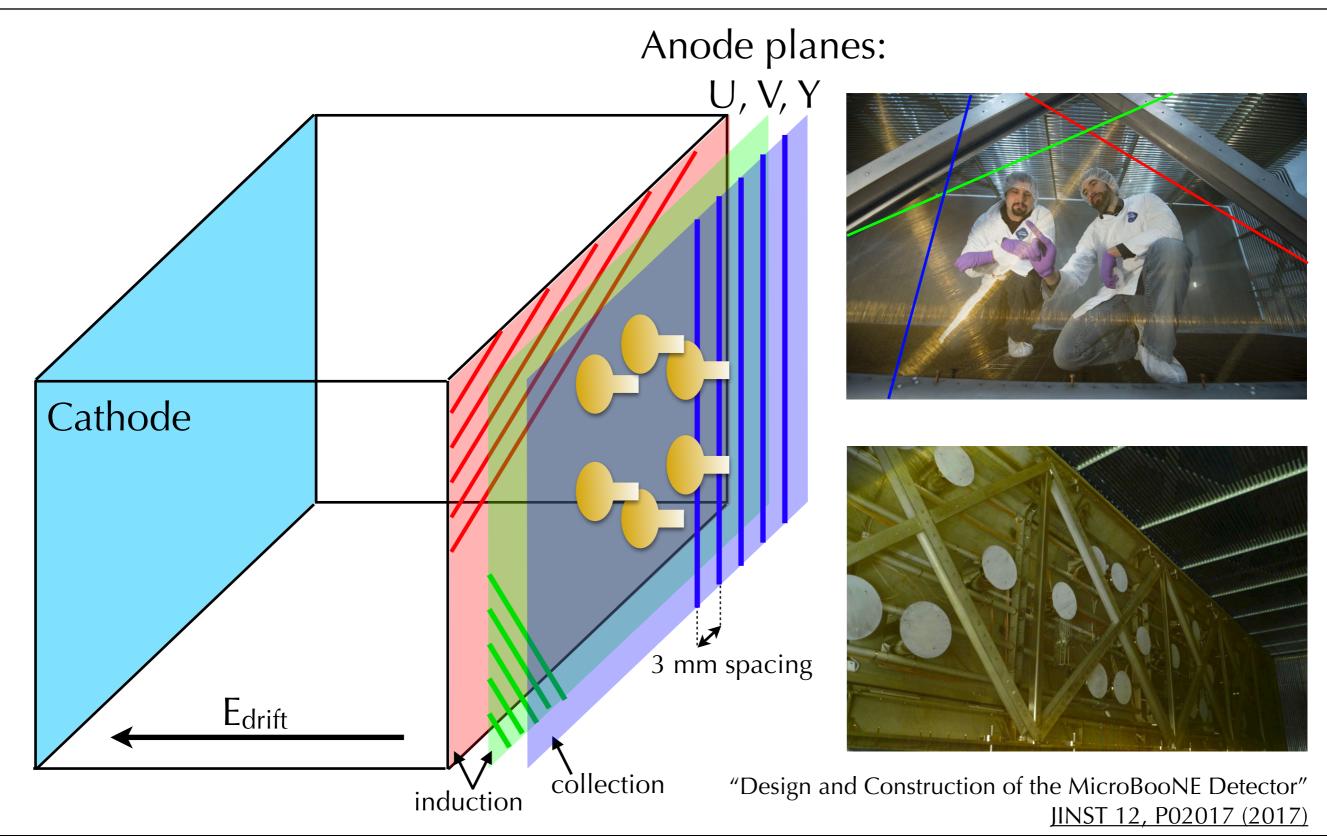
- Making progress towards an analysis that can probe MiniBooNE lowenergy excess anomaly in MicroBooNE
- Fully automated reconstruction chain for low-energy neutrino events, which includes traditional and deep learning algorithms
 - Reject cosmic backgrounds
 - Find the neutrino interaction within the event
 - Label pixels as tracks or showers
 - Reconstruct event in 3D
 - Identify particle species
 - Select v_e and v_μ events
- Currently refining event selection algorithms and pursuing studies of flux, cross-section, and detector systematic uncertainties
- MicroBooNE is doing important development work for future LArTPC detector experiments

Thank you!

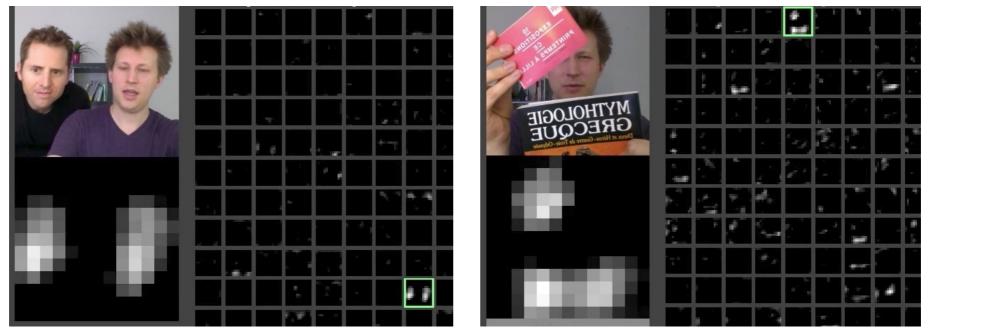


Backup Slides

The MicroBooNE Detector



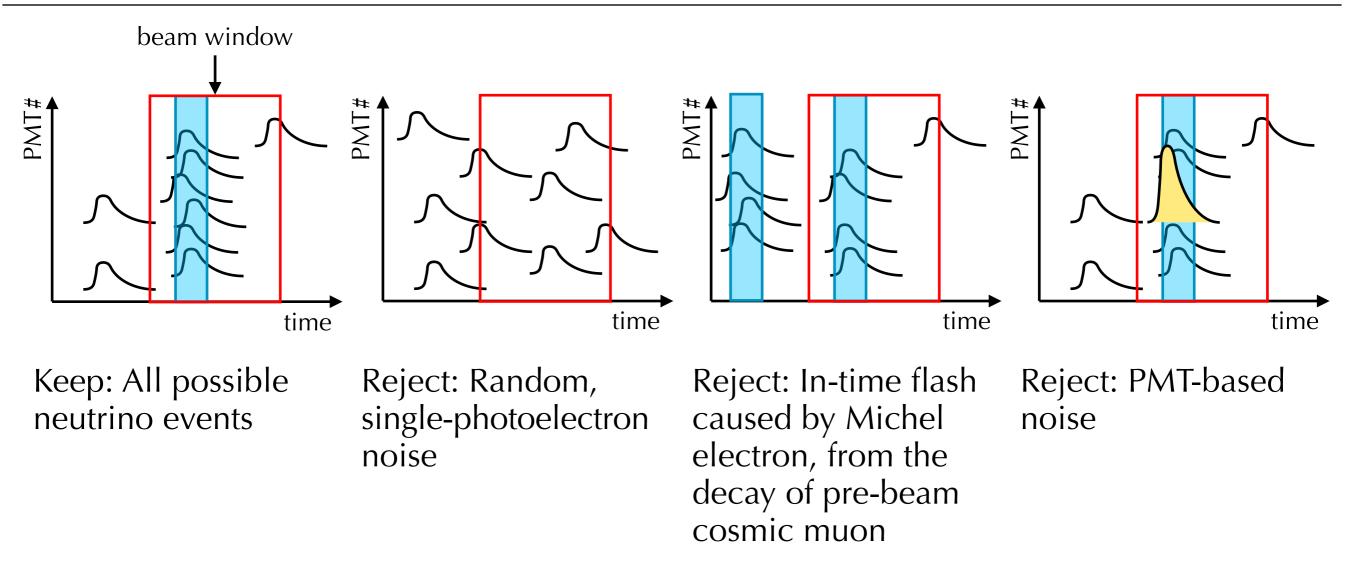
A Few Words About Deep Learning **#BooNE**



https://www.youtube.com/watch?v=AgkflQ4IGaM

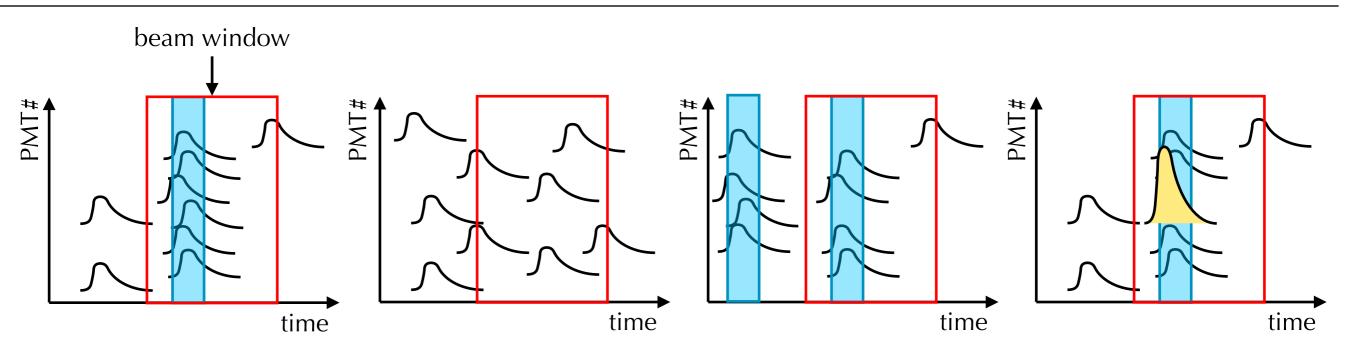
- Convolutional neutral networks have several important properties
 - "Neurons" scan over the image looking at a limited set of pixels at each point
 - They "learn" local, translationally invariant features
 - Each layer of neurons builds on the features found by the previous ones to reach increasing levels of complexity/abstraction
- In the above, the black-and-white boxes show the "activation" of neurons in response to the images; the neuron highlighted on the right responds to faces, while the one on the left responds to text

PMT Pre-Cuts



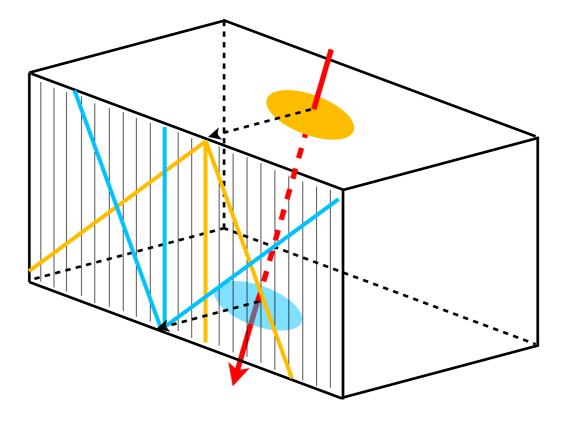
- Keep >96% of neutrinos (based on simulations)
- Reject >75% of background (based on rejection of off-beam data)

PMT Pre-Cuts



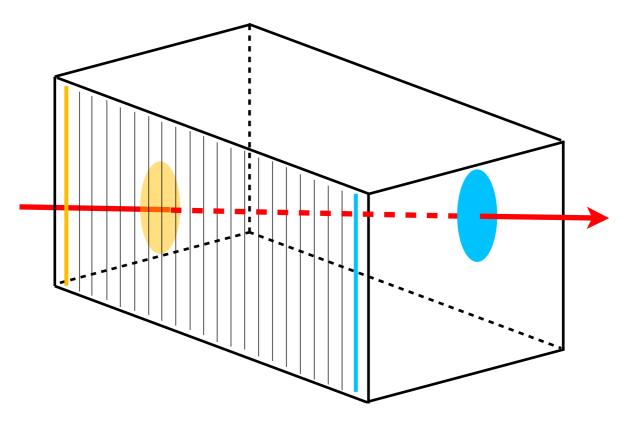
- Reject: Random, single-photoelectron noise (~200 kHz)
 - No time correlation between these single-photoelectron pulses
 - Require 20 photoelectrons in 93.75 ns this becomes the definition of a "signal"
- Reject: In-time flash caused by Michel electron, from decay of a cosmic muon
 - Require no signal for 2 µs before the beam window
- Reject: PMT-based noise
 - Limit the total amount of the light collected by a single PMT to <60% of the total light
- Keep >96% of neutrinos (based on simulations)
- Reject >75% of background (based on rejection of off-beam data)

Cosmic Pixel Tagging



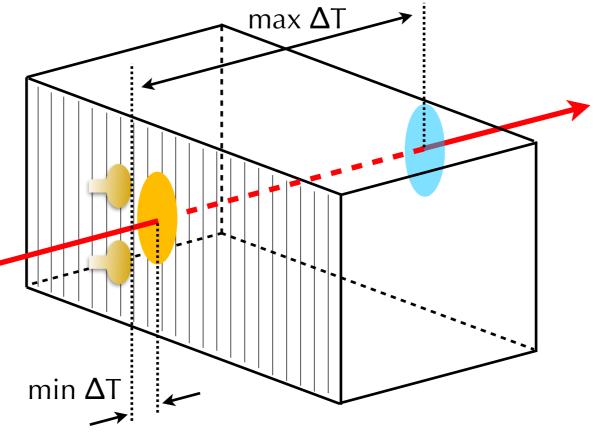
- Cosmic and other background tracks cross the TPC boundary
- Identify and tag these boundary crossing points
 - **Top/bottom**: crossings deposit charge on triplets of wires that meet at the boundary
 - Upsteam/downsteam: crossings deposit charge on the first/last wires on the Y plane
 - \bullet Anode/cathode: crossings have specific ΔT between PMT flash and wire signal
- Connect end points by following the charge using 3D path finding

Cosmic Pixel Tagging



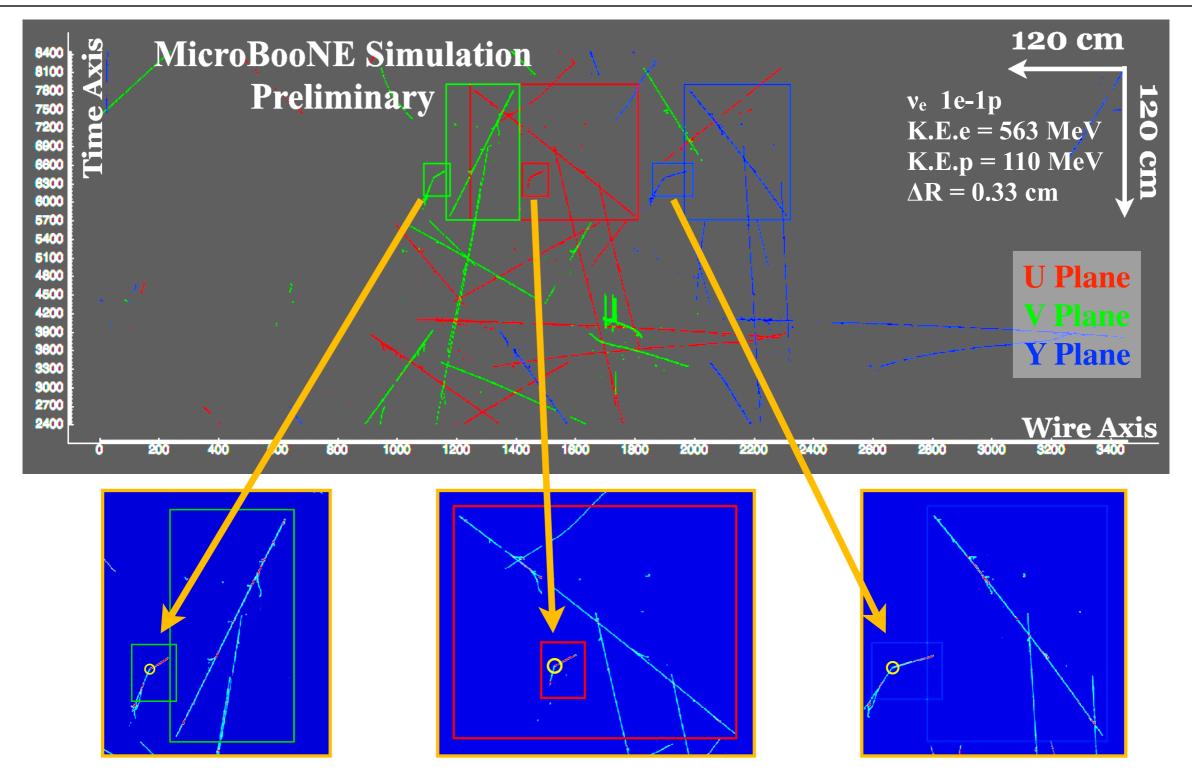
- Cosmic and other background tracks cross the TPC boundary
- Identify and tag these boundary crossing points
 - Top/bottom: crossings deposit charge on triplets of wires that meet at the boundary
 - Upsteam/downsteam: crossings deposit charge on the first/last wires on the Y plane
 - \blacktriangleright Anode/cathode: crossings have specific ΔT between PMT flash and wire signal
- Connect end points by following the charge using 3D path finding

Cosmic Pixel Tagging



- Cosmic and other background tracks cross the TPC boundary
- Identify and tag these boundary crossing points
 - Top/bottom: crossings deposit charge on triplets of wires that meet at the boundary
 - Upsteam/downsteam: crossings deposit charge on the first/last wires on the Y plane
 - Anode/cathode: crossings have specific Δ T between PMT flash and wire signal
- Connect end points by following the charge using 3D path finding

Region-of-Interest Finding



After tagging cosmic tracks, draw 3D region-of-interest (ROI) box around untagged pixels