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MiniBooNE Low-Energy Excess
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• MiniBooNE 
‣ Mineral oil Cherenkov detector 

‣ Significant fraction of the 
background from γ/e− mis-ID 

• MicroBooNE 
‣ Same beam and similar baseline 

‣ LArTPC detector technology gives 
better γ/e− separation power

• MiniBooNE sees a 4.5σ νe-like excess  
• This result is in tension with global 3+1 model fit

arXiv:1805.12028 [hep-ex]

https://arxiv.org/abs/1805.12028
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The MicroBooNE Experiment

• Micro Booster Neutrino Experiment 

• 85 tonne Liquid Argon Time Projection 
Chamber (active mass) 

• Located in the Fermilab Booster Neutrino Beam 

•νμ→νe appearance experiment 

• >95% detector uptime 

• 9.6×1020 POT on tape to date
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The MicroBooNE Detector
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“Design and Construction of the MicroBooNE Detector”  
JINST 12, P02017 (2017)
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http://iopscience.iop.org/article/10.1088/1748-0221/12/02/P02017
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Understanding the Detector
•Detailed understanding of our detector is key to our physics goals 

and to R&D efforts for future LArTPC detectors 

•Developed novel techniques for noise filtering and signal processing
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“Ionization Electron Signal Processing in Single Phase LArTPCs” 
Parts I & II, JINST 13, P07006 (2018) & JINST 13, P07007 (2018)

“Noise Characterization and Filtering in the MicroBooNE 
Liquid Argon TPC”, JINST 12, P08003 (2017)

raw waveform, 
induction plane

after noise 
removal 

after 1D 
deconvolution

after 2D 
deconvolution

MicroBooNE

http://iopscience.iop.org/article/10.1088/1748-0221/13/07/P07006
http://iopscience.iop.org/article/10.1088/1748-0221/13/07/P07007
http://iopscience.iop.org/article/10.1088/1748-0221/12/08/P08003
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A Few Words About Deep Learning
• Primarily use convolutional neural networks (CNNs) 

• CNNs have been developed primarily for image analysis; we 
apply them to MicroBooNE event displays 

• I will discuss two uses: semantic segmentation and classification
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Example of CNN classification, from “ImageNet 
Classification with Deep CNNs”, NIPS (2012)

Example of semantic segmentation, from “Conditional 
Random Fields as Recurrent NNs”, ICCV (2015)

Input Image Truth Labels Network Labels

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
https://arxiv.org/abs/1502.03240
https://arxiv.org/abs/1502.03240
https://arxiv.org/abs/1502.03240


L. Yates︱NuFACT 2018

Definition of the Signal
• Define our signal to be charged current quasi-elastic events with 

one lepton and one proton (1l-1p) topology 
‣ Lepton (electron or muon) with kinetic energy >35 MeV 

‣ One proton with kinetic energy >60 MeV (possibly others below that energy threshold) 

• Intrinsic νe backgrounds are constrained by νμ events
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νe event: signal

νμ event: used to 
constrain the flux 
and cross-section 
systematics

K.E.e = 320 MeV 
K.E.p = 123 MeV

K.E.µ = 73 MeV 
K.E.p = 266 MeV
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Definition of the Signal
• We are able to observe many event topologies in MicroBooNE, 

but we choose this relatively simple one 
• Requiring a proton in the event reduces backgrounds from 

cosmic rays and single-photon events
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νe event: signal

νμ event: used to 
constrain the flux 
and cross-section 
systematics

K.E.e = 320 MeV 
K.E.p = 123 MeV

K.E.µ = 73 MeV 
K.E.p = 266 MeV
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Overview of Reconstruction Chain
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PMT Pre-Cuts

Particle ID

Track vs. Shower 
Pixel Labeling

Cosmic Tagging 
& ROI Finding

3D Reconstruction
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Reconstruction Chain
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• PMT pre-cuts reject low-energy 
noise and other backgrounds 

• Keep >97% of neutrinos (based 
on simulations) 

• Reject >75% of background 
(based off-beam data)

PMT Pre-Cuts

Particle ID

Track vs. Shower 
Pixel Labeling

Cosmic Tagging 
& ROI Finding

3D Reconstruction
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Reconstruction Chain
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•Tag tracks that cross the 
TPC boundary 

• Identify clusters of contained 
charge consistent with the 
in-time flash

PMT Pre-Cuts

Particle ID

Track vs. Shower 
Pixel Labeling

Cosmic Tagging 
& ROI Finding

3D Reconstruction
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Reconstruction Chain
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Track vs. Shower 
Pixel Labeling
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Track vs. Shower Pixel Labeling
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Truth label
Track-like 
Shower-like Network output

Track-like 
Shower-like

• Goal: separate tracks and showers to 
help provide vertex candidates 

• Semantic segmentation network takes in 
the wire information and labels each 
pixel in the image as “track-like” (yellow) 
or “shower-like” (cyan)

Wire signal amplitude

K.E.e = 341 MeV 
K.E.p = 161 MeV

Ti
ck

Wire
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Performance on Data
• Network shows very good performance on data, in spite of being 

trained on simulation 

• Example: νμ charged current π0 event 

‣ Outgoing muon and hadrons identified as track-like (yellow) 

‣ Showers resulting from π0 decay identified as shower-like (cyan)
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MicroBooNE Data  
Preliminary

MicroBooNE Data  
Preliminary

MicroBooNE Data  
Preliminary

Input Image Human Labeling Network Labeling
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Performance on Data
• To quantify network’s performance, look at level of disagreement 

in pixel labels between human and network over many images 

‣ In this case, looking at Michel electron events 

• Disagreement is generally below 2.5% of non-empty pixels 

• Level of agreement is consistent between data and simulation
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Preliminary

Preliminary
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Reconstruction Chain
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PMT Pre-Cuts

Particle ID

Track vs. Shower 
Pixel Labeling

Cosmic Tagging 
& ROI Finding

3D Reconstruction
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Vertex Reconstruction

If both track-like and shower-like pixels are found (e.g., a νe event): 
• For each plane: find endpoint of track where shower is attached 
• Correlate these endpoints across planes to identify 3D region 
• Scan 3D space around the candidate vertex 
• Add a vertex at the 3D point that best matches where the track 

and shower meet across all three planes
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Vertex Reconstruction
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Preliminary
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HIP
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MIP

U UFigure 27: MIP (blue) and HIP (red) contours are found in the example 1µ1P event. The HIP
contour clusters a collection of proton pixels which have a high pixel intensity. The
single MIP contour encloses all pixels in this track image as they are all above the 20
ADC threshold.

is farthest away from the corresponding hull side is called the “defect point” and is a location
where the cluster is potentially bending and changing direction. The algorithm iteratively
breaks down all clusters into linear segments until no defects remain.

U

p µ

HIP

U

MIP

U U

Figure 28: The convex hull is computed for the MIP contour (blue). A defect is found on one of
the convex hull edges (purple). A line (green) is drawn perpendicular from the hull edge
through the defect point, the kink location, and crosses through the MIP contour. The
line divides the contour into two unique sets.

The collection of defect points are the first set vertex seeds. An example of the convex hull,
and defect line is shown in Fig 28 and the resulting set of broken, linear clusters is shown in
Fig 29. The second vertex seed is found using a principle component analysis (PCA) which
fits the clusters to a straight line hypothesis. The PCA is a linear approximation which
minimizes the perpendicular distance between the data (the pixel points), and the estimate
(the line). A PCA is calculated for each broken cluster separately. Since all clusters have
been broken into linear segments by removing defects a linear approximation is suitable. The
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If there are only track-like pixels (e.g., νμ normalization sample): 
• For each plane: create 2D vertex seeds at any kink points 
• Scan space around each seed to find the best vertex point 
• Combine information from all three planes 
• If the best vertices from each plane are 3D-consistent, add a 

vertex at that 3D point 
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Track Reconstruction
• Track reconstruction algorithm starts from the 

previously identified 3D vertex point 

• Proceeds by stochastic search of nearby 3D space, 
with preference for continuing in forwards direction 

• Once end of track is reached, mask pixels from that 
track and iterate search from vertex 

• Self-diagnostic tool to identify failures
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Reconstruction Performance
• Vertex spatial resolution is 0.3cm, equivalent to wire spacing 

• Length-based energy based on reconstructed tracks achieves 4% 
resolution for 1μ1p events
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Reconstruction Chain
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PMT Pre-Cuts

Particle ID

Track vs. Shower 
Pixel Labeling

Cosmic Tagging 
& ROI Finding

3D Reconstruction
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Single Particle Identification

• Previous work on particle identification for single-particle clusters 

‣ After 3D vertex reconstruction, clustered pixels attributed to each single 
track or shower coming out of the vertex 

‣ Fed individual particle clusters into a CNN trained to do single-particle 
identification (HighRes GoogLeNet architecture) 

• Achieved e−/γ separation comparable to MicroBooNE design goals
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“Convolutional Neural Networks Applied to Neutrino Events 
in a LArTPC” JINST 12, P03011 (2017)

http://iopscience.iop.org/article/10.1088/1748-0221/12/03/P03011/
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Multi-PID Network
• Currently developing multiple-particle identification network 

‣ Removes the need to cluster particles coming out of the vertex 

‣ Provides the network with more context that it can use to make particle 
identification decisions 

• Given an image, network provides the probability that the image 
contains each of the particles of interest: e−, γ, μ−, π−, p 

• Builds on previous single-particle identification network — uses 
much of the same architecture, just changing last few layers
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High probability of e−, p 
Low probability of γ, μ−, π−
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Reconstruction Chain
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Next Steps: 
Event Selection 
For νe and νμ

PMT Pre-Cuts

Particle ID

Track vs. Shower 
Pixel Labeling

Cosmic Tagging 
& ROI Finding

3D Reconstruction
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Neutrino Candidate Selection
• After we have reconstructed our events, need to select neutrino 

candidates for both νe and νμ 
• Still have significant background from cosmic rays and from non-

signal neutrino interactions, so selection must reject these 

• Focus on the νμ selection 

‣ Exactly two 3D reconstructed tracks 

‣ Vertex inside the fiducial volume, >10cm from TPC boundary 

‣ Candidate must pass two likelihood cuts: one designed for cosmic 
rejection, other for neutrino background rejection 

‣ Likelihoods considers ionization difference between tracks, how close 
event is to TPC boundary, track angles relative to drift direction, track 
angles relative to beam direction
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νμ Selection Performance
•Very successful at rejection cosmics, such that remaining backgrounds 

are dominated by neutrino events that do not meet signal definition 

•Have achieved 18% efficiency, 47% purity for 1μ1p 

•Optimized for low energy reconstruction relevant to MiniBooNE excess
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Summary
• Making progress towards an analysis that can probe MiniBooNE low-

energy excess anomaly in MicroBooNE 

• Fully automated reconstruction chain for low-energy neutrino events, 
which includes traditional and deep learning algorithms 
‣ Reject cosmic backgrounds 
‣ Find the neutrino interaction within the event 
‣ Label pixels as tracks or showers 
‣ Reconstruct event in 3D 
‣ Identify particle species 
‣ Select νe and νμ events 

• Currently refining event selection algorithms and pursuing studies of 
flux, cross-section, and detector systematic uncertainties 

• MicroBooNE is doing important development work for future LArTPC 
detector experiments 

Thank you!
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The MicroBooNE Detector
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“Design and Construction of the MicroBooNE Detector”  
JINST 12, P02017 (2017)
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A Few Words About Deep Learning

• Convolutional neutral networks have several important properties 
‣ “Neurons” scan over the image looking at a limited set of pixels at each point 

‣ They “learn” local, translationally invariant features 

‣ Each layer of neurons builds on the features found by the previous ones to reach 
increasing levels of complexity/abstraction 

• In the above, the black-and-white boxes show the “activation” of 
neurons in response to the images; the neuron highlighted on the 
right responds to faces, while the one on the left responds to text
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https://www.youtube.com/watch?v=AgkfIQ4IGaM
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• Keep >96% of neutrinos (based on simulations) 
• Reject >75% of background (based on rejection of off-beam data)

PMT Pre-Cuts
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•Reject: Random, single-photoelectron noise (~200 kHz) 
‣ No time correlation between these single-photoelectron pulses 

‣ Require 20 photoelectrons in 93.75 ns — this becomes the definition of a “signal” 

•Reject: In-time flash caused by Michel electron, from decay of a cosmic muon 
‣ Require no signal for 2 µs before the beam window 

•Reject: PMT-based noise 
‣ Limit the total amount of the light collected by a single PMT to <60% of the total light 

•Keep >96% of neutrinos (based on simulations) 
•Reject >75% of background (based on rejection of off-beam data)

PMT Pre-Cuts
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Cosmic Pixel Tagging

• Cosmic and other background tracks cross the TPC boundary 

• Identify and tag these boundary crossing points 
‣ Top/bottom: crossings deposit charge on triplets of wires that meet at the boundary 

‣ Upsteam/downsteam: crossings deposit charge on the first/last wires on the Y plane 

‣ Anode/cathode: crossings have specific ΔT between PMT flash and wire signal 

• Connect end points by following the charge using 3D path finding
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Cosmic Pixel Tagging
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• Cosmic and other background tracks cross the TPC boundary 

• Identify and tag these boundary crossing points 
‣ Top/bottom: crossings deposit charge on triplets of wires that meet at the boundary 

‣ Upsteam/downsteam: crossings deposit charge on the first/last wires on the Y plane 

‣ Anode/cathode: crossings have specific ΔT between PMT flash and wire signal 

• Connect end points by following the charge using 3D path finding
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Cosmic Pixel Tagging
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min ΔT

max ΔT

• Cosmic and other background tracks cross the TPC boundary 

• Identify and tag these boundary crossing points 
‣ Top/bottom: crossings deposit charge on triplets of wires that meet at the boundary 

‣ Upsteam/downsteam: crossings deposit charge on the first/last wires on the Y plane 

‣ Anode/cathode: crossings have specific ΔT between PMT flash and wire signal 

• Connect end points by following the charge using 3D path finding
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Region-of-Interest Finding

After tagging cosmic tracks, draw 3D region-of-interest (ROI) box around untagged pixels
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νe  1e-1p 
K.E.e = 563 MeV 
K.E.p = 110 MeV 
ΔR = 0.33 cm

U Plane
V Plane
Y Plane


