MicroBooNE Search for

Low-Energy Excess Using
Deep Learning Algorithms

Lauren Yates

Massachusetts Institute of Technology
On Behalf of the MicroBooNE Collaboration

NuFACT 2018

T A
S
— X S
5 )
S 5
)
\ STATE SO% »

L. Yates | NuFACT 2018



MiniBooNE Low-Energy Excess =~ nBooNE
e S I P 1o ot ST | e
o = : ; —me
a5 F £/ v, fromK - —99% CL
alE== 1 ZO misid ] ol —3cCL B
L + E dirt_>NY i & _:__.iilgl\l;lENZ :
other — ?)?:élgAL
4 ,__i_: _______ CB:ZQtslt:ri.t Syst. Error _: ~ 90% CL
[ ] b
2 I f_ ______ E :
L i __________ —: 10_? LSNDQO%CL (
-------- i ! D LSND 99% CL \\
02 04 06 08 1 12 14 3.0 porzbennl vl b,
ESE (GeV) 10 107 g sin?20
* MiniBooNE sees a 4.50 ve-like excess rXiv:1805.12028 [hep-ex]
e This result is in tension with global 3+1 model fit
* MiniBooNE * MicroBooNE
» Mineral oil Cherenkov detector » Same beam and similar baseline
» Significant fraction of the » LArTPC detector technology gives
background from y/e~ mis-ID better /e~ separation power
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https://arxiv.org/abs/1805.12028
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e Micro Booster Neutrino Experiment

85 tonne Liquid Argon Time Projection
Chamber (active mass)

¢ | ocated in the Fermilab Booster Neutrino Beam
®* v,—>Ve appearance experiment

* >95% detector uptime

* 9.6x1020 POT on tape to date
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The MicroBooNE Detector

“Design and Construction of the MicroBooNE Detector” Anode planes:
IINST 12, PO2017 (2017)
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http://iopscience.iop.org/article/10.1088/1748-0221/12/02/P02017

Understanding the Detector nBooNE

—=

e Detailed understanding of our detector is key to our physics goals
and to R&D efforts for future LArTPC detectors

* Developed novel techniques for noise filtering and signal processing

“Noise Characterization and Filtering in the MicroBooNE “lonization Electron Signal Processing in Single Phase LArTPCs”
Liquid Argon TPC”, JINST 12, PO8003 (2017) Parts | & Il, JINST 13, PO7006 (2018) & JINST 13, PO7007 (2018)
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http://iopscience.iop.org/article/10.1088/1748-0221/13/07/P07006
http://iopscience.iop.org/article/10.1088/1748-0221/13/07/P07007
http://iopscience.iop.org/article/10.1088/1748-0221/12/08/P08003

A Few Words About Deep Learning MBooNE _

e Primarily use convolutional neural networks (CNNs)

e CNNs have been developed primarily for image analysis; we
apply them to MicroBooNE event displays

e | will discuss two uses: semantic segmentation and classification

Truth Labels Network Labels

Input Image

B-ground Aeroplane Bicycle Bird Boat Bus

Car Cat Chair Cow Dinging-table Horse

Motorbike ' Person | Potted-Plant

Example of semantic segmentation, from “Conditional

TV /Monitor

Sheep Sofa Train

Random Fields as Recurrent NNs”, ICCV (2015)

container ship

motor scooter

container ship

motor scooter

)

lifeboat
amphibian
fireboat

drilling platform

go-kart

moped

bumper car
golfcart

snow leopard
Egyptian cat

Example of CNN classification, from “ImageNet

Classification with Deep CNNs”, NIPS (2012)
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https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
https://arxiv.org/abs/1502.03240
https://arxiv.org/abs/1502.03240
https://arxiv.org/abs/1502.03240

Definition of the Signal nBooNE

—=

e Define our signal to be charged current quasi-elastic events with
one lepton and one proton (11-1p) topology

» Lepton (electron or muon) with kinetic energy >35 MeV
» One proton with kinetic energy >60 MeV (possibly others below that energy threshold)

* Intrinsic ve backgrounds are constrained by v, events

10 cm

K.E.. = 320 MeV U

K.E, =123 MeV s
-~ .-:-*}/I')
Ve event: signal =

i

-

MicroBooNE Simulation MicroBooNE Simulation MicroBooNE Simulation
Preliminary Preliminary Preliminary

v, event: used to

. K.E..=73 MeV

constrain the flux \ \ K.E., =266 MeV
and cross-section N '
. 1 \
systematics | ——
E MicroBooNE Simulation MicroBooNE Simulation MicroBooNE Simulation
= Preliminary Preliminary Preliminary
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Definition of the Signal

uBooNF
T~

e \We are able to observe many event topologies in MicroBooNE,
but we choose this relatively simple one

e Requiring a proton in the event reduces backgrounds from
cosmic rays and single-photon events

Ve event: signal

v, event: used to
constrain the flux
and cross-section
systematics

Time

10 cm

K.E.. =320 MeV U

K.E, =123 MeV s

MicroBooNE Simulation
Preliminary

MicroBooNE Simulation
Preliminary

MicroBooNE Simulation
Preliminary

MicroBooNE Simulation
Preliminary

MicroBooNE Simulation
Preliminary
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Overview of Reconstruction Chain @

PMT Pre-Cuts

" Cosmic Tagging
& ROI Finding

3D Reconstruction
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Reconstruction Chain

uBoONE _
T~

( PMT Pre-Cuts)

( R
Cosmic Tagging

& ROI Finding
- : J

i Track vs. Shower
Pixel Labeling

.

~

.

e PMT pre-cuts reject low-energy
noise and other backgrounds

e Keep >97% of neutrinos (based
on simulations)

e Reject >75% of background
(based off-beam data)

(BD Reconstruction)

( Particle IDJ
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Reconstruction Chain

uBooNE _
T~

( PMT Pre—Cuts)

g . N
Cosmic Tagging

& ROI Finding
\ , _

i Track vs. Shower
Pixel Labeling

.
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.

e Tag tracks that cross the
TPC boundary

e [dentify clusters of contained
charge consistent with the
in-time flash

(BD Reconstruction)

( Particle IDJ
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Reconstruction Chain

uBoo
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Track vs. Shower Pixel Labeling uBoo

Wire

Tick

Track-like
Shower-like

Truth label

K.E.. = 341 MeV
K.E., = 161 MeV

MicroBooNE
Simulation
Preliminary

MicroBooNE
Simulation
Preliminary

« (Goal: separate tracks and showers to
help provide vertex candidates

« Semantic segmentation network takes in
the wire information and labels each
pixel in the image as “track-like” (yellow)
or “shower-like” (cyan)

MicroBooNE

Track-like slnll.uklthn
Shower-like Network output reliminary
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Performance on Data L@

e Network shows very good performance on data, in spite of being
trained on simulation

* Example: v, charged current 0 event
» Outgoing muon and hadrons identified as track-like (yellow)

» Showers resulting from 7° decay identified as shower-like (cyan)

Input Image Human Labeling Network Labeling

I—» MicroBooNE Data L» MicroBooNE Data

3ocm Preliminary 30cm Preliminary

I—» MicroBooNE Data

30 cm Preliminary
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Performance on Data

uBoo

e
—C

e To quantify network’s performance, look at level of disagreement
in pixel labels between human and network over many images

» In this case, looking at Michel electron events

e Disagreement is generally below 2.5% of non-empty pixels

e L evel of agreement is consistent between data and simulation

MicroBooNE
Data

Preliminary

0.8 { Data
- Simulation
o
.2 0.6 MicroBooNE |
§ Data vs. Simulation
% 0.4l Preliminary |
o0
=
E
0.2 [
. i ' L] 1 L] | 3 1 o 1 o i P i = 1 Fs | Fs :
0.00 0.0 0.10 0.1 0.2 0.2 0.30

Pixel-Label Disagreement Fraction
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Reconstruction Chain

nBoo
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Vertex Reconstruction nBooNE _

If both track-like and shower-like pixels are found (e.g., a ve event):
e For each plane: find endpoint of track where shower is attached
e Correlate these endpoints across planes to identify 3D region

e Scan 3D space around the candidate vertex

e Add a vertex at the 3D point that best matches where the track
and shower meet across all three planes
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Vertex Reconstruction

uBoo
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If there are only track-like pixels (e.g., vy normalization sample):

e For each plane: create 2D vertex seeds at any kink points

e Scan space around each seed to find the best vertex point

e Combine information from al

e |f the best vertices from each
vertex at that 3D point

three planes

hlane are 3D-consistent, add a
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Track Reconstruction uBooNE

<
- - s MicroBooNE [ElEE

e Track reconstruction algorithm starts from the : g
. . . (o . = = T — 1 2
previously identified 3D vertex point Preliminary |Ei

-
o
N

e Proceeds by stochastic search of nearby 3D space,
with preference for continuing in forwards direction

e Once end of track is reached, mask pixels from that 100 1200 1300 1400
. MicroBooNE @
track and iterate search from vertex -

Simulation
Preliminary

time tick

2
pixel ADC value

e Self-diagnostic tool to identify failures

uBooNE

Simulation
Preliminary

600 800 1000 1200 1400

MicroBooNE
Simulation &
Preliminary &

time tick

2
pixel ADC value

60%00 1200 1400 1600 1800 2000
- wire number
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Reconstruction Performance nuBooNE

—=

* Vertex spatia

* Length-basec

resolution is 0.3cm, equivalent to wire spacing

energy based on reconstructed tracks achieves 4%
resolution for Tulp events
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Reconstruction Chain
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Single Particle Identification uBoo

200 ,
MicroBooNE Simulation
180 Preliminary Prot
roton
Recoil e 778 =+ 0.70/0
o 160 o
= 83.4 + 0.6%
2 Y
0 KE.,=303Mev  Electron IRt ~TN
K.E. . =157 MeV
W Shower T 71.0 £ 0.7%
360 380 400 420 440 460 480
Time [6 ticks] o
“Convolutional Neural Networks Applied to Neutrino Events p 91.2 £ 0.5 /O

in a LArTPC” JINST 12, PO3011 (2017)

* Previous work on particle identification for single-particle clusters

» After 3D vertex reconstruction, clustered pixels attributed to each single
track or shower coming out of the vertex

» Fed individual particle clusters into a CNN trained to do single-particle
identification (HighRes GooglLeNet architecture)

* Achieved e/y separation comparable to MicroBooNE design goals
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http://iopscience.iop.org/article/10.1088/1748-0221/12/03/P03011/

Multi-PID Network @@

e Currently developing multiple-particle identification network

» Removes the need to cluster particles coming out of the vertex

» Provides the network with more context that it can use to make particle
identification decisions

e Given an image, network provides the probability that the image
contains each of the particles of interest: e-, v, u-, 7, p

e Builds on previous single-particle identification network — uses
much of the same architecture, just changing last few layers

High probability of e-, p
Low probability of v, u-, 7

MicroBooNE Simulation
Preliminary
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Reconstruction Chain
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Next Steps:
Event Selection

For ve and v, )
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Neutrino Candidate Selection nBooNE _

—=

e After we have reconstructed our events, need to select neutrino
candidates for both ve and v

e Still have significant background from cosmic rays and from non-
signal neutrino interactions, so selection must reject these

* Focus on the vy selection
» Exactly two 3D reconstructed tracks
» Vertex inside the fiducial volume, >10cm from TPC boundary

» Candidate must pass two likelihood cuts: one designed for cosmic
rejection, other for neutrino background rejection

» Likelihoods considers ionization difference between tracks, how close
event is to TPC boundary, track angles relative to drift direction, track
angles relative to beam direction
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vy Selection Performance @

e Very successful at rejection cosmics, such that remaining backgrounds
are dominated by neutrino events that do not meet signal definition

* Have achieved 18% efficiency, 47% purity for Tulp

e Optimized for low energy reconstruction relevant to MiniBooNE excess

,00 R€co Y Position: MC + ExtBNB Prediction vs 4.4E19 Reco Proton Track Length: MC + ExtBNB Prediction vs 4.4E19
B MC v + Cosmic Overlay B MC v + Cosmic Overlay
@ In Time Cosmics m In Time Cosmics
$® § Data: 10 Bars 1001 $ & Data: 1o Bars

® & Predicted: 1- Bars ® & Predicted: 1o Bars
150 .

100} l

50

100 | 0 50 100 150 200

=100 =50 0 50
Y (cm) MicroBooNE Preliminary Track Length [cm] MicroBooNE Preliminary

L. Yates | NuFACT 2018 26



summary nBooNFE

—=

* Making progress towards an analysis that can probe MiniBooNE [ow-
energy excess anomaly in MicroBooNE

e Fully automated reconstruction chain for low-energy neutrino events,
which includes traditional and deep learning algorithms

» Reject cosmic backgrounds
» Find the neutrino interaction within the event

» Label pixels as tracks or showers

» Reconstruct event in 3D
» ldentify particle species /

» Select ve and vy events

e Currently refining event selection algorithms and pursuing studies of
flux, cross-section, and detector systematic uncertainties

e MicroBooNE is doing important development work for future LArTPC
detector experiments

Thank you!
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Backup Slides

L. Yates — DPF — August 3, 2017
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The MicroBooNE Detector

Anode planes:
U, VY

Cathode

7

3 mm spacing

Edrift
E \

collection “Design and Construction of the MicroBooNE Detector”

induction JINST 12, P02017 (2017)
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http://iopscience.iop.org/article/10.1088/1748-0221/12/02/P02017

A Few Words About Deep Learning nBooNE _

e

ts://ww.voutbe.oom/watch?v:AqkfIQ4IGaM

e Convolutional neutral networks have several important properties

» “Neurons” scan over the image looking at a limited set of pixels at each point
» They “learn” local, translationally invariant features

» Each layer of neurons builds on the features found by the previous ones to reach
increasing levels of complexity/abstraction

e In the above, the black-and-white boxes show the “activation” of
neurons in response to the images; the neuron highlighted on the
right responds to faces, while the one on the left responds to text

L. Yates | NuFACT 2018 30



PMT Pre-Cuts uBooNE

beam window

—

Tt A T+ A A T+ A
N — -j-\ — ~—
JANGIE Ol N4 ~— Nd 7 ™~
time> time> time> time>
Keep: All possible Reject: Random, Reject: In-time flash  Reject: PMT-based
neutrino events single-photoelectron  caused by Michel noise
noise electron, from the

decay of pre-beam
CcOsmIiC muon

e Keep >96% of neutrinos (based on simulations)
e Reject >75% of background (based on rejection of off-beam data)
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PMT Pre-Cuts uBooNE

F
beam window
H A l T+ A A T+ A
S ) =1 AN N - N N 3 A I~
] A~ ~ ] P~ A N ﬁ%
- N— N— i
N SR s NG
time time time time

e Reject: Random, single-photoelectron noise (~200 kHz)

» No time correlation between these single-photoelectron pulses
» Require 20 photoelectrons in 93.75 ns — this becomes the definition of a “signal”

e Reject: In-time flash caused by Michel electron, from decay of a cosmic muon

» Require no signal for 2 ps before the beam window

e Reject: PMT-based noise
» Limit the total amount of the light collected by a single PMT to <60% of the total light

e Keep >96% of neutrinos (based on simulations)
* Reject >75% of background (based on rejection of off-beam data)
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Cosmic Pixel Tagging nBooNE _

/

e Cosmic ano

other bac

e [dentify and tag these

» Top/bottom: crossings deposit charge on triplets of wires that meet at the boundary

\/

kground tracks cross the TPC boundary

boundary crossing points

» Upsteam/downsteam: crossings deposit charge on the first/last wires on the Y plane

» Anode/cathode: crossings have specific AT between PMT flash and wire signal

* Connect end points by following the charge using 3D path finding

L. Yates | NuFACT 2018
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Cosmic Pixel Tagging nBooNE _

/

e Cosmic ano

other bac

e [dentify and tag these

» Top/bottom: crossings deposit charge on triplets of wires that meet at the boundary

kground tracks cross the TPC boundary

boundary crossing points

» Upsteam/downsteam: crossings deposit charge on the first/last wires on the Y plane

» Anode/cathode: crossings have specific AT between PMT flash and wire signal

* Connect end points by following the charge using 3D path finding
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Cosmic Pixel Tagging nBooNE _

max AT
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~
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~

e Cosmic and other background tracks cross the TPC boundary

e |dentify and tag these boundary crossing points

» Top/bottom: crossings deposit charge on triplets of wires that meet at the boundary
» Upsteam/downsteam: crossings deposit charge on the first/last wires on the Y plane
» Anode/cathode: crossings have specific AT between PMT flash and wire signal

* Connect end points by following the charge using 3D path finding

L. Yates | NuFACT 2018 35



Region-of-Interest Finding Boo

MicroBooNE Simulation :20 cm

Preliminary  / ve le-1p
'i | K.E.e =563 MeV
K.E.p = 110 MeV
AR =0.33 cm

Time Axis

8400
8100
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7500
7200
€600
6600
6300
6000
5700
5400
5100
4800
4500
4200
3600
3600
3300
3000
2700
2400

After tagging cosmic tracks, draw 3D region-of-interest (ROI) box around untagged pixels
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