Details of the NOvA Oscillation Analyses

Erica Smith on behalf of the NOvA collaboration Indiana University August 16, 2018

NOvA

- Functionally identical near and far detectors
- 14mrad off-axis, resulting in narrow band beam peaked at 2 GeV
- Planes of cells are layered, alternating to provide 3D tracking

Neutrino mode: 8.85 x 10²⁰ POT Anti-neutrino mode: 6.9 x 10²⁰ POT

Physics Program

- v_{μ} disappearance
 - sin²(θ₂₃)
 - Δm₂₃²

- v_e appearance
 - Mass hierarchy
 - θ_{23} octant
 - CPV phase

- NC disappearance
 - Limits on Δm_{41}^{2} , θ_{34} , θ_{24}

- Cross sections with Near Detector
- Supernova
- Other exotic phenomena

how do we select what goes into this spectrum? how do we calculate this reco energy? how do we estimate backgrounds? 10⁵ ND Events/1 GeV FD Events/1 GeV ND data **Base Simulation Data-Driven Prediction** 20 True Energy (GeV) True Energy (GeV) ND Reco Energy (GeV) FD Reco Energy (GeV) 0 20 12 00 10⁻³ F/N Ratio $P(\nu_{\mu} \rightarrow \nu_{\mu})$ 10⁵ ND Events FD Events

how do we select what goes into this spectrum?

how do we calculate this reco energy?

how do we estimate backgrounds?

Event Selection

Selected Events from Near Detector Data

Convolutional Neural Networks

- Convolutional layers kernels are used to extract features and create feature maps
- Pooling layers feature maps are downsampled
- Fully connected layer correlates feature maps to labels

Signal Identification

- Signal identification done by our CVN (convolutional visual network)
 - Trained on 2D views of the event's calibrated hits
 - Information of each view is combined in the final layers of the network
 - An effective increase of 30% exposure from previous traditional reconstruction methods

Signal Identification

- Signal identification done by our CVN (convolutional visual network)
 - Trained on 2D views of the event's calibrated hits
 - Information of each view is combined in the final layers of the network
 - An effective increase of 30% exposure from previous traditional reconstruction methods

CVN Performance – Data/MC

- Separate training for neutrino and anti-neutrino beams to capture differences in kinematics, topologies
 - Wrong sign treated as signal in the training
 - Improved efficiency with a dedicated anti-neutrino network

CVN Performance – Data/MC

- Separate training for neutrino and anti-neutrino beams to capture differences in kinematics, topologies
 - Wrong sign treated as signal in the training
 - Improved efficiency with a dedicated anti-neutrino network

- Works at the Near Detector where there is a large statistics v_{μ} sample
- Allows us to focus on the effect of the hadronic shower on efficiency
- Data/MC agreement is within 3% for neutrino mode, 2% for anti-neutrino mode – covered by systematics

MRBrem

MRBrem

MRBrem

Selection efficiency is within 2% for both modes; covered by systematics.

Additional Selection - ν_{μ}

 Identify muon tracks with a traditional kNN: track length, dE/dx along track, scattering along track, track-only plane fraction 23

Energy Reconstruction

- Muon energy is calculated with a conversion from track length.
- Hadronic energy is the summed calorimetric energy of the non-muon hits, converted to true energy.
- Muon energy resolution (3%) is much better than hadronic energy resolution (30%).

 v_{μ} Energy

MC normalized: scaled +1.3% in neutrino mode, -0.5% in anti-neutrino mode

Improving Energy Resolution

- Oscillation sensitivity depends on spectrum shape
- Improve sensitivity by separating high and low resolution events
- Split energy spectrum into quartiles by hadronic energy fraction
 - Also puts the majority of the backgrounds in quartile 4 (improves NC systematic by a factor of 2-4)
 - Better extrapolation of cross sections

Improving Energy Resolution

Data

Area-normalized MC Shape-only systematics Wrong-sign

Neutron Response

New systematic introduced: scales the amount of deposited energy up for some neutrons

Neutron Response

New systematic introduced: scales the amount of deposited energy up for some neutrons

Impact of Neutron Response

Shifts mean energy by 1% in anti-neutrino mode, 0.5% in neutrino mode Negligible impact on selection efficiency

Particle Identification

Energy Estimation - v_e

- Electromagnetic energy is the summed calorimetric energy for CVNselected showers.
- Hadronic energy is the total calorimetric energy minus EM shower energy.
- Neutrino energy is calculated as the following:

$$E_{\nu e} = A^* E_{EM} + B^* E_{HAD} + C^* E_{EM}^2 + D^* E_{HAD}^2$$

Weighted Average True v E

Near Detector v_e

All beam v_{e} – nothing from appearance

```
Energy Resolution - v<sub>e</sub>
```


- events are weighted by a function that flattens the true energy spectrum implicit in the simulation
- this minimizes bias between 1-4 GeV

```
Energy Resolution - v_e
```


Optimizing Binning

- Oscillation sensitivity depends on separating v_e signal from background
- PID binning separates sample by purity
- Energy binning separates appeared ν_{e} from beam ν_{e}

Core Event – High CVN bin

Peripheral Event

40

Near Detector Decomposition

how do we estimate backgrounds?

Near Detector v_e Spectra

- To constrain backgrounds we use two data-driven techniques for the neutrino beam
- For the anti-neutrino beam we scale all components proportionally but plan to implement the data-driven techniques in future analyses.

NOvA Preliminary

- Use contained v_{μ} data to constrain pion flux
- Higher energy uncontained events constrain kaon flux

v_e Decomposition

10³ Events / 8.03×10²⁰ POT

- CC/NC ratio determined by number of observed Michel electrons
 - •

+ ND data -NC

$v_{\rm e}\, Background$ at the Far Detector

- 14.7 15.4 total v_e background, 4.7 5.7 total \overline{v}_e background
 - Wrong sign depends on oscillation parameters

Cosmic Rejection

- Far Detector is on the surface 11 billion cosmic rays / day
- 10⁷ rejection power needed after timing cuts
- v_u sample uses BDT based on:
 - Track length and direction, distance from top/sides, fraction of hits in muon, CVN
- v_e does this in two steps
 - Core sample: require contained, beam-directed events, away from the top of the detector
 - Peripheral sample: events failing core selection can pass a BDT + tight CVN cut

 v_{μ} at the Far Detector

- - Observe 58 events, expect 15 background events
- Anti-neutrino beam
 - Observe 18 events, expect 5.3 background events
- > $4\sigma \ \overline{v}_e$ appearance

Summary

- New challenges in anti-neutrino mode!
- Can't cover it all see:
 - Neutrino Physics with Deep Learning on NOvA F. Psihas, poster 206
 - The NOvA Test Beam Program A. Sutton, poster 205
 - NOvA Cross Section Results M. Judah, WG2 71
 - NOvA Cross Section Model / Oscillation Needs J. Wolcott, WG2 134
 - Sterile Neutrinos search via NC dis at NOvA M. Wallbank, WG1+5 190
 - Results and Prospects from NOvA J. Bian, plenary III 12

Backups

Optimizing Analysis Binning - v_e

• FOM² = $\sum_{i}^{bins} \frac{s_i^2}{s_i + b_i + c_i}$ \rightarrow proportional to effective exposure gain

- 11% WS fraction in \overline{v}_{μ} events becomes WS background in \overline{v}_{e} events
- ~10% systematic uncertainty on WS from flux and cross-section
 - Does not include uncertainties from detector effects
- Confirmed using data-driven check of WS contamination
 - 11% WS in \overline{v}_{μ} sample checked using neutron captures in neutrino and anti-neutrino beams

- Detector calibration will be improved by test beam program
- Neutrino cross-sections
- Muon energy scale
- Neutron uncertainty