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NOvA
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Neutrino mode: 8.85 x 1020 POT
Anti-neutrino mode: 6.9 x 1020 POT

• Functionally identical 
near and far detectors

• 14mrad off-axis, resulting 
in narrow band beam 
peaked at 2 GeV

• Planes of cells are 
layered, alternating to 
provide 3D tracking



Physics Program
• νe appearance 

• Mass hierarchy
• θ23 octant
• CPV phase
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• νμ disappearance 
• sin2(θ23)

• Δm23
2

• Cross sections with Near 
Detector

• Supernova

• Other exotic phenomena

• NC disappearance
• Limits on Δm41

2, 
θ34, θ24
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how do we select what goes into this spectrum?

Event Selection



Selected Events from Near Detector Data
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Convolutional Neural Networks

• Convolutional layers – kernels are used to extract features and create 
feature maps

• Pooling layers – feature maps are downsampled

• Fully connected layer – correlates feature maps to labels

11



Signal Identification

12

track vertex
shower

• Signal identification done by our 
CVN (convolutional visual 
network)

• Trained on 2D views of the 
event’s calibrated hits

• Information of each view is 
combined in the final layers 
of the network

• An effective increase of 30% 
exposure from previous 
traditional reconstruction 
methods
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CVN Performance – Data/MC
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Data
Total Simulation
Systematics
Wrong-sign

Data
Total Simulation
Systematics
Wrong-sign

• Separate training for neutrino and anti-neutrino beams to capture differences in kinematics, 
topologies
• Wrong sign treated as signal in the training
• Improved efficiency with a dedicated anti-neutrino network



CVN Performance – Data/MC
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Muon Removed Events
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Muon Removed Events



Muon Removed Events
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Muon Removed Events

• Works at the Near Detector where there is a large statistics νμ sample
• Allows us to focus on the effect of the hadronic shower on efficiency
• Data/MC agreement is within 3% for neutrino mode, 2% for anti-neutrino 

mode – covered by systematics 19



MRBrem
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MRBrem

21



MRBrem
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Neutrino Beam Anti-neutrino Beam

Selection efficiency is within 2% for both modes; covered by systematics.



Additional Selection - νμ

• CVN selects muon events but not the muon

• Identify muon tracks with a traditional kNN: track length, dE/dx 
along track, scattering along track, track-only plane fraction 2323
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how do we calculate this reco energy?

Energy Reconstruction



Energy Estimation - νμ

• Muon energy is calculated with a conversion 
from track length.

• Hadronic energy is the summed calorimetric 
energy of the non-muon hits, converted to 
true energy.

• Muon energy resolution (3%) is much better 
than hadronic energy resolution (30%).
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Eν = Eµ + Ehad



νμ Energy

MC normalized: scaled +1.3% in neutrino mode, -0.5% in anti-neutrino 
mode
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Improving Energy Resolution

• Oscillation sensitivity depends on spectrum shape

• Improve sensitivity by separating high and low resolution events

• Split energy spectrum into quartiles by hadronic energy fraction
• Also puts the majority of the backgrounds in quartile 4 (improves NC systematic by a factor of 2-4) 
• Better extrapolation of cross sections 27



Improving Energy Resolution

Data/MC shape agrees well per quantile
28

Data/MC 
+2.8%

Data/MC 
-0.7%

Data/MC 
+1.6%

Data/MC 
-1.4%

Data/MC 
+7.9%

Data/MC 
+2.5%

Data/MC 
-5.3%

Data/MC 
-11.6%

Data

Area-normalized MC

Shape-only systematics

Wrong-sign

Quartile 1
Best Resolution ~6%

Quartile 4
Worst Resolution ~12%



Neutron Response
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• Anti-neutrino data has 
increased importance of 
understanding neutron 
response

• In selected samples, 
neutrons show softer 
spectrum than simulated

νl l+

p

W

νl l-

n

W

p n

New systematic introduced: scales the amount of deposited energy up for some neutrons
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• Anti-neutrino data has 
increased importance of 
understanding neutron 
response

• In selected samples, 
neutrons show softer 
spectrum than simulated
New systematic introduced: scales the amount of deposited energy up for some neutrons



Impact of Neutron Response
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Shifts mean energy by 1% in anti-neutrino mode, 0.5% in neutrino mode
Negligible impact on selection efficiency 
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Eν = EEM + Ehad

• Detector response is different for 
EM energy and hadronic energy

• To take this into account we 
separate the EM and hadronic 
depositions

Energy Estimation - νe



Particle Identification
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Energy Estimation - νe
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● Electromagnetic energy is the 
summed calorimetric energy for CVN-
selected showers.

● Hadronic energy is the total 
calorimetric energy minus EM shower 
energy.

● Neutrino energy is calculated as the 
following: 

E𝜈e = A*EEM + B*EHAD + C*EEM
2 + D*EHAD

2



Near Detector νe

All beam νe – nothing from appearance
35



Energy Resolution - νe
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• events are weighted by a function that flattens the true energy spectrum 
implicit in the simulation

• this minimizes bias between 1-4 GeV



Energy Resolution - νe
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Optimizing Binning

• Oscillation sensitivity depends on separating νe signal from background

• PID binning separates sample by purity

• Energy binning separates appeared νe from beam νe
38



Core Event – High CVN bin 
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Peripheral Event

40
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how do we estimate backgrounds?

Near Detector Decomposition



Near Detector νe Spectra
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• To constrain backgrounds we use two data-driven techniques for the neutrino beam
• For the anti-neutrino beam we scale all components proportionally but plan to implement the data-driven 

techniques in future analyses.



• νe and νμ have the same parents

• Lower energy from pion decay

• Higher energy from kaon decay

• Use contained νμ data to constrain pion flux

• Higher energy uncontained events constrain kaon flux
43

νe Decomposition



• CC/NC ratio determined by number of 
observed Michel electrons
• Done separately in each bin of PID and energy

44

νe Decomposition



νe Background at the Far Detector

• 14.7 – 15.4 total νe background, 4.7 – 5.7 total νe̅ background
• Wrong sign depends on oscillation parameters
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how do we select what goes into this spectrum?

Additional Far Detector Event Selection



Cosmic Rejection
• Far Detector is on the surface – 11 billion cosmic rays / day 

• 107 rejection power needed after timing cuts

• νμ sample uses BDT based on:
• Track length and direction, distance from top/sides, fraction of hits in muon, CVN

• νe does this in two steps
• Core sample: require contained, beam-directed events, away from the top of the detector
• Peripheral sample: events failing core selection can pass a BDT + tight CVN cut 

47Core Sample Peripheral Sample



νμ at the Far Detector
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Total Observed 113

Best fit prediction 121

Cosmic Bkgd. 2.1

Beam Bkgd. 1.2

Unoscillated 730

Total Observed 65

Best fit prediction 50

Cosmic Bkgd. 0.5

Beam Bkgd. 0.6

Unoscillated 266
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νμ at the Far Detector
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• Neutrino beam:

• Observe 58 events, expect 15 background events

• Anti-neutrino beam

• Observe 18 events, expect 5.3 background events

• > 4σ ν̅e appearance



Summary

• New challenges in anti-neutrino mode!

• Can’t cover it all – see:
• Neutrino Physics with Deep Learning on NOvA – F. Psihas, poster 206 

• The NOvA Test Beam Program – A. Sutton, poster 205

• NOvA Cross Section Results – M. Judah, WG2 71

• NOvA Cross Section Model / Oscillation Needs – J. Wolcott, WG2 134

• Sterile Neutrinos search via NC dis at NOvA – M. Wallbank, WG1+5 190

• Results and Prospects from NOvA - J. Bian, plenary III 12
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Thank you for your attention!
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Backups
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Optimizing Analysis Binning - νe

• FOM2 = σ𝑖
𝑏𝑖𝑛𝑠 𝑠𝑖

2

𝑠𝑖+𝑏𝑖+𝑐𝑖
→ proportional to effective exposure gain
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• 11% WS fraction in ν̅μ events becomes WS background in ν̅e events

• ~10% systematic uncertainty on WS from flux and cross-section
• Does not include uncertainties from detector effects

• Confirmed using data-driven check of WS contamination
• 11% WS in ν̅ μ sample checked using neutron captures in neutrino and anti-neutrino beams
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Systematics

• Detector calibration – will be 
improved by test beam program

• Neutrino cross-sections
• Muon energy scale
• Neutron uncertainty


