Atmospheric v Oscillation Physics with IceCube/DeepCore

Doug Cowen

🔭 AUSTRALIA University of Adelaide

BELGIUM

Université libre de Bruxelles Universiteit Gent Vrije Universiteit Brussel

🔶 CANADA

SNOLAB University of Alberta-Edmonton

DENMARK

University of Copenhagen

GERMANY

Deutsches Elektronen-Synchrotron ECAP, Universität Erlangen-Nürnberg Humboldt–Universität zu Berlin Ruhr-Universität Bochum **RWTH Aachen University** Technische Universität Dortmund Technische Universität München Universität Mainz Universität Wuppertal Westfälische Wilhelms-Universität Münster

THE ICECUBE COLLABORATION

JAPAN Chiba University

NEW ZEALAND University of Canterbury

EPUBLIC OF KOREA Sungkyunkwan University

SWEDEN Stockholms universitet Uppsala universitet

+ SWITZERLAND Université de Genève **WITED KINGDOM** University of Oxford

UNITED STATES

Clark Atlanta University Drexel University Georgia Institute of Technology Lawrence Berkeley National Lab Marguette University Massachusetts Institute of Technology Michigan State University Ohio State University Pennsylvania State University South Dakota School of Mines and Technology

Southern University and A&M College Stony Brook University University of Alabama University of Alaska Anchorage University of California, Berkeley University of California, Irvine University of California, Los Angeles University of Delaware University of Kansas University of Maryland University of Rochester

University of Texas at Arlington University of Wisconsin–Madison University of Wisconsin–River Falls **Yale University**

FUNDING AGENCIES

Fonds de la Recherche Scientifique (FRS-FNRS) Fonds Wetenschappelijk Onderzoek-Vlaanderen (FWO-Vlaanderen)

German Research Foundation (DFG) **Deutsches Elektronen-Synchrotron (DESY)**

Federal Ministry of Education and Research (BMBF) Japan Society for the Promotion of Science (JSPS) Knut and Alice Wallenberg Foundation Swedish Polar Research Secretariat

The Swedish Research Council (VR) University of Wisconsin Alumni Research Foundation (WARF) US National Science Foundation (NSF)

icecube.wisc.edu

12 Countries · 49 Institutions · >300 Scientists

- •Neutrino Oscillations at the 10 GeV scale
- •The IceCube/DeepCore Detector
- •Results:
 - Muon neutrino disappearance
 - Tau neutrino appearance
 - Neutrino Mass Ordering
- •Future plans

Atmospheric Neutrino Oscillations

- Atmospheric v's are observed over wide range of energies & pathlengths (∝ cosθ)
 - oscillations produce distinctive pattern in $(E_v, \cos\theta, \text{flavor})$ space
 - constrain systematics using events in "side band" regions where oscillations do not occur
 - large volume \Rightarrow high statistics
- For reference:
 - at L = d_E , P($\nu_\mu \rightarrow \nu_\mu$) = min. at E_{ν} ~ 25 GeV
 - see matter effects below $E_{\nu} \sim 10 \text{ GeV}$

The IceCube/DeepCore Detector

IceCube/DeepCore

- More densely instrumented region at bottom center
 - •DOMs 7m (~40m) apart vertically (horizontally)
- Below 2100m, high optical clarity
 - \sim 50m scattering length; \sim 150m absorption length
- Surrounding DOMs provide active down-going μ veto

Neutrino Oscillogram

Neutrino Oscillogram

D. Cowen/Penn State

General Features of IceCube Osc. Analyses

• Technique:

- Use IceCube modules surrounding DeepCore to veto down-going cosmic-ray muon bkgd.
- Require interaction vertex be contained in DeepCore...
 - ...and that muon endpoint be within ~100m of DeepCore edge
- Constrain systematics by using
 - •up- and down-going atm. v events
 - track-like and cascade-like atm. v events
- •Use 3 dimensions: (Ε, cosθ, PID)

General Features of IceCube Osc. Analyses

- Analysis highlights:
 - Background rejection: $\sim 10^8$
 - Resolutions
 - • ν_{μ} CC @ 20 GeV (tracks): $\sigma(\theta_{zen}, E)_{trk} = (\sim 20^{\circ}, \sim 40\%)$
 - • v_x @ 20 GeV (cascades): $\sigma(\theta_{zen}, E)_{cscd} = (\sim 25^{\circ}, \sim 35\%)$
 - Main nuisance params (of ~dozen total)
 - Detector effects:
 - relative module optical sensitivity
 - ice properties
 - Oscillation parameter uncertainties
 - Flux uncertainties

ν_{μ} Disappearance: Analysis

Full list of systematics in backup slides.

Change has impact across up/down/trk/cscd events; impact in oscillation regime can be disentangled thereby.

Correlation Coefficients

ν_{μ} Disappearance: Results

- 15,138 track; 26,461 cascade
- Estimate 5.2% atm μ background

$$\sin^2 \theta_{23} = 0.51^{+0.07}_{-0.09}$$
$$\Delta m_{32}^2 = 2.31^{+0.11}_{-0.13} \times 10^{-3} \,\text{eV}^2$$

ν_{τ} Appearance & PMNS Unitarity

- Testing PMNS unitarity: We have a ways to go before we can reach CKM levels of precision
 - $\bullet \tau$ sector constraints are ~order of magnitude weaker than for e, μ sectors
 - Significant deviation from unitarity could be indicator of new physics
 - • $\nu_{\mu} \rightarrow \nu_{\tau}$ probes combination of $|U_{\mu3}|^{2}$ and $|U_{\tau3}|^{2}$

v_{τ} Appearance: Previous Results

OPERA:

- Best exclusion of $no-v_{\tau}$ appearance at >5 σ
- Constrained v_{τ} normalization*: 1.1 –0.4 +0.5 (68% CL)

Super-K:

- Excluded no- v_{τ} appearance at >4.6 σ
- Best constraint on ν_τ norm: 1.47±0.32 (68% CL, CC-only)

https://arxiv.org/abs/1711.09436

ν_{τ} Appearance with IceCube

- Osc. max. at $E_v \sim 25$ GeV is in DeepCore's sweet spot
- Technique similar to that for v_{μ} disappearance:
 - Veto; containment; up/down & track/ cascade events; measure across three dimensions (E, cosθ, PID)

- Two quasi-independent analyses (same underlying dataset, different event selections)
 - Main (" \mathcal{A} ") analysis:
 - Higher statistics, more background, estimate background from MC
 - Confirmatory (" ${\mathcal B}$ ") analysis:
 - Lower statistics, higher purity, estimate background from data

ν_{μ} Disappearance

v_{τ} Appearance

	Analys	is \mathcal{A}	Analysis \mathcal{B}		
Type	Events	$\pm 1\sigma$	Events	$\pm 1\sigma$	
$\nu_e + \bar{\nu}_e$ CC	13462	29	9545	23	
$\nu_e + \bar{\nu}_e$ NC	1096	9	923	8	
$\nu_{\mu} + \bar{\nu}_{\mu} \mathrm{CC}$	35706	48	23852	39	
$\nu_{\mu} + \bar{\nu}_{\mu}$ NC	4463	19	3368	17	
$\nu_{\tau} + \bar{\nu}_{\tau} \ CC$	1804	9	934	5	
$\nu_{\tau} + \bar{\nu}_{\tau}$ NC	556	3	445	4	
Atmospheric μ	5022	167	1889	45	
Noise Triggers	93	27	< 9	2	
total (best fit)	62203	180	40959	68	
observed	62112	249	40902	202	

 v_{τ} App. w/IceCube

 $\mathcal{A} = main$ $\mathcal{B} = confirmatory$

ν_{τ} Appearance with IceCube

3000

 ν_{τ}^{CC}

 ν_{μ}^{CC}

 v_{e}^{CC}

 μ_{Atmo}

v_{τ} Appearance with IceCube: Result

Neutrino Mass Ordering (NMO)

irXiv:1401.2046v2

Inverted hierarchy

 Δm_{sol}^2

 Δm^2_{atm}

- Normal hierarchy •Use 3 yrs of m^2 IceCube data Δm_{atm}^2 $\nu_{\rm c}$ (~43k events) ν_{μ} in proof-of- Δm_{sol}^2 principle measurement of NMO
- Msmt. relies on matter effects on earth-crossing v at $E_{\nu} \sim 5 \text{GeV}$
 - Near energy threshold of DeepCore
- •Analysis using " \mathcal{A} " dataset prefers NO over IO at p = 15% and in first octant (close to maximal mixing)
 - Consistent with expected sensitivity

Future Plans

- In process of analyzing ~6 years of data, roughly doubling dataset
- Exploring several ways to improve our low-energy reconstruction

Conclusions

- IceCube/DeepCore have produced very competitive, fundamental neutrino oscillation measurements, and will continue to do so
- \bullet Large-volume v detectors are the best known way to improve the measurement of v_{τ} appearance
 - Will eventually produce world-leading measurement, especially with IceCube Upgrade
- The future is bright!

ν_{τ} Appearance with IceCube

- Check for consistency via measurement of ν_{μ} disappearance using dataset ${\cal A}$

Low- E_{ν} Sterile ν Search

Simulated expected signal • Sterile v could distort $\Delta m_{41}^2 = 1.0 \text{ eV}^2$ $\sin^2 \theta_{24} = 0.12$ $sin^2 \theta_{14} = 0.00$ $\cos(\theta_{zen})_{reco}$ $cos(\theta_{zen})$ vs E_{ν} space between 10-100 GeV Reconstructed energy [GeV Ereco (GeV) • No 0.30SK (2015), 90 % C.L. SK (2015), 99 % C.L. IceCube (2016), 90 % C.L. distortion IceCube (2016), 99 % C.L IceCube preliminary seen. Set limits: || $0.00 \text{ U}_{\tau 4}^2$ 0.00 10^{-3} 10^{-2} 10^{-} $|\mathbf{U}_{\mu4}|^2 = \sin^2\theta_{24} \cdot \cos^2\theta_{14}$

ν_{μ} Disappearance: Systematics

D. Cowen/Penn State

ν_{μ} Disappearance: Systematics

		Best fit				
Parameters	Priors	NO	ΙΟ			
Flux and cross-section parameters						
Neutrino event rate [% of nominal]	No prior	85	85			
$\Delta \gamma$ (spectral index)	0.00 ± 0.10	-0.02	-0.02			
M_A (resonance) [GeV]	1.12 ± 0.22	0.92	0.93			
$\nu_e + \bar{\nu}_e$ relative normalization [%]	100 ± 20	125	125			
NC relative normalization [%]	100 ± 20	106	106			
Hadronic flux, energy dependent $[\sigma]$	0.00 ± 1.00	-0.56	-0.59			
Hadronic flux, zenith dependent $[\sigma]$	0.00 ± 1.00	-0.55	-0.57			
Detector para	ameters					
Overall optical efficiency [%]	100 ± 10	102	102			
Relative optical efficiency, lateral $[\sigma]$	0.0 ± 1.0	0.2	0.2			
Relative optical efficiency, head-on [a.u.]	No prior	-0.72	-0.66			
Backgrou	und					
Atm. μ contamination [% of sample]	No prior	5.5	5.6			

ν_{τ} Appearance: Systematics

		Analysis \mathcal{A}		Analysis \mathcal{B}	
Parameter	Prior	Best fit	Best fit	Best fit	Best fit
		(CC+NC)	(CC)	(CC+NC)	(CC)
Neutrino Flux:					
ν_e/ν_μ Ratio	1.0 ± 0.05	1.03	1.03	1.03	1.03
ν_e Up/Hor. Flux Ratio (σ)	0.0 ± 1.0	-0.19	-0.18	-0.25	-0.24
$\nu/\bar{\nu}$ Ratio (σ)	0.0 ± 1.0	-0.42	-0.33	0.01	0.04
$\nu \Delta \gamma$ (Spectral Index)	0.0 ± 0.1	0.03	0.03	-0.05	-0.04
Effective Livetime (years)	-	2.21	2.24	2.45	2.46
a					
Cross-section:	0.00 ± 0.248	1.05	1.05	0.00	0.00
M_A (Quasi-Elastic) (GeV)	$0.99_{-0.149}^{+0.149}$	1.05	1.05	0.88	0.88
M_A (Resonance) (GeV)	1.12 ± 0.22	1.00	0.99	0.85	0.85
NC Normalization	1.0 ± 0.2	1.05	1.06	1.25	1.26
Oscillation					
θ_{12} (°)	85 ± 0.21	_	_	8.5	8.5
θ_{23} (°)	-	49.8	50.2	46.1	45.9
$\Delta m_{22}^2 (10^{-3} \text{eV}^2)$	_	2.60	2.63	2.38	2.34
		2.00	2.00	2.00	2.01
Detector:					
Optical Eff., Overall (%)	100 ± 10	98.4	98.4	105	104
Optical Eff., Lateral (σ)	0.0 ± 1.0	0.49	0.48	-0.25	-0.27
Optical Eff., Head-on (a.u.)	-	-0.63	-0.64	-1.15	-1.22
Local Ice Model	-	-	-	0.02	0.07
Bulk Ice, Scattering (%)	100.0 ± 10	103.0	102.8	97.4	97.3
Bulk Ice, Absorption (%)	100.0 ± 10	101.5	101.7	102.1	101.9
Atmospheric Muons:		0.1	0.0	1.0	1.0
Atm. μ Fraction (%)	-	8.1	8.0	4.6	4.6
$\Delta \gamma_{\mu} \ (\mu \text{ Spectral Index}, \sigma)$	0 ± 1	0.15	0.15	-	-
Coincident $\nu + \mu$ Fraction	0 ± 0.1	0.01	0.01	-	-
Measurement					
ν_{τ} Appearance Rate	_	0.73	0.57	0.59	0.43
, inpromance itale		0.10	0.01	0.00	0.10

ν_{τ} Appearance: μ Background

Event distributions of atm. μ bkgd. for analysis \mathcal{A} from best-fit simulation.

Event distributions of atm. μ bkgd. for analysis \mathcal{B} from data sideband.

ν_{τ} Appearance & PMNS Unitarity

- Testing PMNS unitarity: We have a ways to go before we can reach CKM levels of precision
 - $\bullet \tau$ sector constraints are ~order of magnitude weaker than for e,µ sectors
 - Significant deviation from unitarity could be indicator of new physics
 - • $\nu_{\mu} \rightarrow \nu_{\tau}$ probes combination of $|U_{\mu3}|^{2}$ and $|U_{\tau3}|^{2}$

Park & Ross-Lonergan, 2015

Neutrino Cross Sections

• At the E_{ν} relevant for DeepCore and **PINGU**, cross section dominated by DIS

Neutrino Cross Section Systematics

- Performed full treatment of systematics through GENIE, varying over 10 separate parameters
 - Impact on final significance much smaller than that of oscillation parameter uncertainties
 - Largest impacts seen from m_A in CCQE and resonance interactions, and higher twist parameters in Bodek-Yang DIS model

Atmospheric Neutrinos

- Production
 mechanism
- •Wide variety of energies and baselines
- Lots of possible oscillation signatures

