20th International Workshop on Neutrinos from Accelerators – NuFACT 2018

Atmospheric neutrino results from Super-Kamiokande

C. Bronner Aug. 13th, 2018

Outline

Neutrino oscillation Open questions

Violation of CP symmetry in neutrino oscillations?

Degeneracies between those 3 questions

Atmospheric neutrinos Interest for oscillation measurements

- Large range of neutrino energies and propagation lengths
- Oscillations dominated by $v_{\mu} \rightarrow v_{\tau}$
- Large statistics allow to study subdominant effects

Atmospheric neutrinos Interest for oscillation measurements

5

Ability to study the open questions comes mainly from appearance channels $v_u \rightarrow v_e$ and $\overline{v}_u \rightarrow \overline{v}_e$

Super-Kamiokande experiment

50 kt (22.5 kt fiducial) water Cherenkov detector

41.4 m

- > 1000m overburden
- > Operational since 1996

Wide physics program:

- Atmospheric neutrinos
- Solar neutrinos
- Supernova neutrinos
- Proton decay
- Dark matter indirect detection
- > Good separation between μ^{\pm} and e^{\pm} (separate ν_{μ} and ν_{e} CC interactions)
 - \rightarrow Less than 1% mis-PID at 1 GeV
- No magnetic field: cannot separate v and v on an event by event basis
- Only detects charged particles above Cerenkov threshold and photons

 → limitation for energy and directional reconstruction

39.3 m

Inner

detector

Outer

detector

Dataset

Oscillation analysis

- Maximum likelihood method
- Minimize χ^2 with respect to systematics for a grid of values of parameters to fit
- Minimization uses iterative matrix inversion method
- Binned χ^2 assuming Poisson statistics in each bin

Oscillation parameters

- > $\sin^2(\theta_{13}) = 0.0219 \pm 0.0012$ (reactor)
- > $\sin^2(\theta_{12}) = 0.304 \pm 0.014$
 - (solar+Kamland)
- > $\Delta m_{21}^2 = (7.53 \pm 0.18) \times 10^{-5} \text{ eV}^2/\text{c}^4$
- (solar+Kamland) sin²(θ_{23}), $\Delta m^2_{32/31}$ and δ free

Effect of a 1σ variation of syst. i on nb of evts in bin n for SK period j

Predictions calculated separately for each SK period

- different detector configurations, water quality and performance
 - → different MC simulations
- Some systematic uncertainties depend of the SK period
- Expectation from each period summed to compute χ^2

Atmospheric neutrino results

× χ²(NH)-χ²(IH)=-4.33

P-value for this $\Delta \chi^2$ (true values of the parameters corresponding to the NH best fit point) is 0.027 for true IH

→ Preference for the normal hierarchy hypothesis

9

Analysis with external constraints

Motivations

- > Uncertainty on value of sin²(θ₂₃)
 → uncertainty for MH determination
 > Precise measurements of sin²(θ₂₃)
 and |Δm²₃₂| by LBL experiments
- \succ Both experiments have sensitivity to δ
- Combination can also break
 degeneracies in certain cases

- **NOT** a joint analysis between the 2 collaborations.
- Use SK tools to build a model of T2K and fit data based on publicly available information
- Uses T2K data and analysis from PRD 91, 072010 (2015) – not latest results
 (6.57e20 POT in v-mode, no v-mode data, no appearance CC1π sample, not using new reconstruction and fiducial volume)

Results with external constraints

× χ²(NH)-χ²(IH)=-5.27

P-value for this $\Delta \chi^2$ (true values of the parameters corresponding to the NH best fit point) is 0.023 for true IH

→ Slightly stronger preference for the normal hierarchy

Mass hierarchy Significance

Atmospheric parameters

- 90% CL contours for the normal hierarchy case
- Super-K atmospheric only measurement compatible with other experiments results
- In the analysis using T2K model, result dominated by T2K data

v_{τ} appearance

- > No primary v_{τ} atmospheric flux, but appear from oscillations
- > Expect to detect ~1 v_{τ} /year/kton in Super-K
- > Only upward going (need L>4100 km)
 - \rightarrow down going sample can be used as a control sample for background

ν_τ appearance Cross-section measurement

16

Future improvements Use tau NN for oscillation analysis

- Up/down asymmetric group of events with normalization uncertainties are major backgrounds for mass hierarchy
- CC v_{τ} cross-section has 25% uncertainty
- Can use NN output variable as an additional PDF variable for samples sensitive to the mass hierarchy

Future improvements New event reconstruction algorithm

Future improvements Neutron tagging

Future improvements Neutron tagging with Gd

- Gd: large neutron capture crosssection
- Signal is easier to detect than for H capture
- Future **SK-Gd**: use capture on Gd by dissolving Gd in SK water
- Efficiency~80% at 0.1% Gd loading

Single 2.2 MeV γ

8 MeV γ cascade

Summary

- Super-K is sensitive to the mass hierarchy through a matter induced resonance in the muon to electron flavor oscillation probability and to the value of $\delta_{\rm CP}$ through the Sub-GeV electron like events
- The T2K data can be used to constrain the values of the oscillation parameters, particularly $\sin^2(\theta_{23})$, to increase MH sensitivity
- Using 328 kton-years of atmospheric data, the NH is favored by between 81.9% and 96.7% depending on true values of oscillation parameters, and between 91.9% and 94.5% with the addition of the T2K data
- Performed search for v_{τ} events appearing from oscillations. No v_{τ} appearance hypothesis excluded at 4.6 Measured flux averaged cross section of (0.94 ± 0.20)x 10⁻³⁸ cm², consistent with MC predictions within 1.5 σ

Additional slides

Phase of the oscillation depends on energy and difference of mass squared: Δm²_{ii}L/E

 $(\Delta m_{ij}^2 = m_i^2 - m_j^2)$

Neutrino oscillations Parameters

- $P(v_{\alpha} \rightarrow v_{\beta})$ depends on **6 parameters**:
- → 3 mixing angles θ_{12} , θ_{23} , θ_{13}
- → 2 independent mass splittings Δm_{ii}^2
- → 1 complex phase, the CP phase δ

- Observed both disappearance and appearance of neutrino flavors
- All mass splittings (Δm^2_{ij}) and mixing angles (θ_{ij}) measured to be non-zero
- Only δ still unknown (not well constrained by data)
- Sign of ∆m²_{32/31} unknown

Atmospheric neutrino oscillations Matter effects

25

Presence of a resonance driven by $\theta^{}_{13}$ induced matter effects between 2 and 10 GeV $_$

- Only for v in NH and \overline{v} in IH \rightarrow sensitivity to the mass hierarchy
- Size of the effect depends on $\sin^2(\theta_{23}) \rightarrow \text{sensitive to } \theta_{23}$ octant
- MH sensitivity increases with larger statistics, improved ability to separate interactions of v and \overline{v} and constraint on sin²(θ_{23})

Atmospheric neutrino oscillations Matter effects – muon neutrinos

Slightly more muon disappearance for neutrinos passing through the Earth's core

Atmospheric neutrino oscillations Delta CP

27

Value of δ_{CP} modifies the oscillation patterns in a complicated way

 Given neutrino flux and detector energy and angular resolution, sensitivity mainly comes from number of sub-GeV e-like events

• More v_e appearance events for δ ~220-240°, and less for δ ~40-45°

Analysis strategy Binning

Bin events in variables related to neutrino energy and propagation length: **visible** energy and **lepton** direction (1 ring) or generalized momentum direction (multi-ring)

Flux is approximatively up/down symmetric at high energy:

High energy down going neutrinos did not oscillate \rightarrow systematic cancellation for this region by using up/down symmetric binning

Analysis strategy Samples

CC ν_{τ} interactions disfavored at SK energies: mostly studying P($\nu_{\mu} \rightarrow \nu_{\mu}$), P($\nu_{e} \rightarrow \nu_{e}$), P($\nu_{\mu} \leftrightarrow \nu_{e}$) and corresponding oscillations for $\overline{\nu}$ \rightarrow **separate events between e-like and µ-like** based on PID of most energetic ring

Make **samples enriched in events of different neutrino energy regions, and interaction types** based on topology of the events, number of rings, Michel electrons and amount of visible energy

CCQE

CC RES

CC DIS/Multi-pi

Additional statistical separation between v_e -like and \overline{v}_e -like for Multi-GeV e-like events to increase sensitivity to the mass hierarchy

U

Monte Carlo simulation

Analysis based full MC simulation of neutrino interactions in the detector. Total MC statistics corresponds to 2000 years of atmospheric neutrino interactions

Neutrino interactions: **NEUT 5.3.6**

- CCQE: Llewellyn-Smith formalism with Smith-Moniz RFG and BBA05 form factors
- > 2p2h: model from Nieves et al.
- Resonant pion production: Rein-Sehgal model with form factors from Graczyk and Sobczyk
- DIS: quark parton model using GRV98 PDFs with low q2 corrections by Bodek and Yang. PYTHIA 5.72 for high W part, custom model below
- Specific model for v_{τ} interactions

Detector simulation: SKDetsim

- Based on GEANT3 (Fortran)
- NEUT cascade model used for re-interaction of pions in water ("secondary interactions")

Event selection FC Multi-GeV events

Additional selections for Fully Contained Multi-GeV (E_{vis} >1.33 GeV) to make samples enriched in v_e and \overline{v}_e events to increase MH sensitivity

Event selection FVFC multi-ring multi-GeV events - 1

First likelihood aims at removing NC and v_{μ}/\bar{v}_{μ} events which ended up in the MR e-like sample due to reduced PID performance for multi-ring events

Event selection FVFC multi-ring multi-GeV events - 2

Second likelihood is the real statistical separation between v_e and \overline{v}_e events

	Neutrino	Anti-neutrino
Nb of rings	More	Less
Nb of Michel e-	More	Less
Transverse momentum	Larger	smaller

	Efficiency (signal)	Purity
ν _e -like	52.9%	58.4%
$\bar{\nu}_{e}$ -like	71%	27.5%

34

Atmospheric neutrino results Contributions to the MH preference

35

Atmospheric neutrino results Search for matter effects

- > Test consistency of data with matter effect
- Use all changes compared to vacuum oscillations, not just hierarchy dependent ones
- > Introduce multiplicative parameter α which changes electron density
- > Best fit for α =1 and NH
- > Disfavors vacuum oscillation at $\Delta \chi^2 = 5.2$ (1.6 σ)

MC predictions

Sample	Energy bins	$\cos \theta_z$ bins	CC ν_e	CC $\bar{\nu_e}$	$\mathrm{CC}\;\nu_{\mu}+\bar{\nu_{\mu}}$	CC ν_{τ}	NC	Data	MC
Fully Contained	(FC) Sub-GeV								
e-like, Single-ring	<u>z</u>								
0 decay-e	5 e^{\pm} momentum	10 in [-1, 1]	0.717	0.248	0.002	0.000	0.033	10294	10266.1
1 decay-e	5 e^{\pm} momentum	single bin	0.805	0.019	0.108	0.001	0.067	1174	1150.7
μ -like, Single-ring	g								
0 decay-e	5 μ^{\pm} momentum	10 in [-1, 1]	0.041	0.013	0.759	0.001	0.186	2843	2824.3
1 decay-e	5 μ^{\pm} momentum	10 in [-1, 1]	0.001	0.000	0.972	0.000	0.027	8011	8008.7
2 decay-e	5 μ^{\pm} momentum	single bin	0.000	0.000	0.979	0.001	0.020	687	687.0
π^0 -like									
Single-ring	5 e^{\pm} momentum	single bin	0.096	0.033	0.015	0.000	0.856	578	571.8
Two-ring	5 π^0 momentum	single bin	0.067	0.025	0.011	0.000	0.897	1720	1728.4
Multi-ring		-	0.294	0.047	0.342	0.000	0.318	(1682)	(1624.2)
Fully Contained	(FC) Multi-GeV								
Single-ring									
ν_e -like	4 e^{\pm} momentum	10 in [-1, 1]	0.621	0.090	0.100	0.033	0.156	705	671.3
$\bar{\nu}_e$ -like	4 e^{\pm} momentum	10 in $[-1, 1]$	0.546	0.372	0.009	0.010	0.063	2142	2193.7
µ-like	$2 \mu^{\pm}$ momentum	10 in [-1, 1]	0.003	0.001	0.992	0.002	0.002	2565	2573.8
Multi-ring									
ν_e -like	3 visible energy	10 in [-1, 1]	0.557	0.102	0.117	0.040	0.184	907	915.5
$\bar{\nu}_e$ -like	3 visible energy	10 in [-1, 1]	0.531	0.270	0.041	0.022	0.136	745	773.8
µ-like	4 visible energy	10 in [-1, 1]	0.027	0.004	0.913	0.005	0.051	2310	2294.0
Other	4 visible energy	10 in [-1, 1]	0.275	0.029	0.348	0.049	0.299	1808	1772.6
Partially Contain	ed (PC)								
Stopping	2 visible energy	10 in [-1, 1]	0.084	0.032	0.829	0.010	0.045	566	570.0
Through-going	4 visible energy	10 in [-1, 1]	0.006	0.003	0.978	0.007	0.006	2801	2889.9
Upward-going M	uons (Up-µ)								
Stopping	3 visible energy	10 in $[-1, 0]$	0.008	0.003	0.986	0.000	0.003	1456.4	1448.9
Through-going	0,	r > 1							
Non-showering	single bin	10 in $[-1, 0]$	0.002	0.001	0.996	0.000	0.001	5035.3	4900.4
Showering	single bin	10 in [-1,0]	0.001	0.000	0.998	0.000	0.001	1231.0	1305.0

328 kton-year, $sin^2(\theta_{23})=0.5$, $\Delta m^2_{32}=2.4e-3$

Atmospheric neutrino results Data/MC comparisons

Flux systematics

Systematic error			Fit value (%)	σ (%)
Flux normalization	$E_{\nu} < 1 \text{ GeV}^{a}_{\cdot}$		14.3	25
	$E_{\nu} > 1 \text{ GeV}^{b}$		7.8	15
$(\nu_{\mu} + \bar{\nu}_{\mu})/(\nu_{e} + \bar{\nu}_{e})$	$E_{\nu} < 1 \text{ GeV}$		0.08	2
	$1 < E_{\nu} < 10 \text{ GeV}$		-1.1	3
	$E_{\nu} > 10 \text{ GeV}^{c}$		1.6	5
$\bar{\nu}_e/\nu_e$	$E_{\nu} < 1 \text{ GeV}$		1.6	5
	$1 < E_{\nu} < 10 \text{ GeV}$		3.3	5
	$E_{\nu} > 10 \text{ GeV}^{d}$		-1.6	8
$\bar{\nu}_{\mu}/\nu_{\mu}$	$E_{\nu} < 1 \text{ GeV}$		0.24	2
	$1 < E_{\nu} < 10 \text{ GeV}$		2.9	6
	$E_{\nu} > 10 \text{ GeV}^{e}$		-2.9	15
Up/down ratio	<400 MeV	e-like	-0.026	0.1
		µ-like	-0.078	0.3
		0-decay μ -like	-0.286	1.1
	>400 MeV	e-like	-0.208	0.8
		µ-like	-0.130	0.5
		0-decay μ -like	-0.442	1.7
	Multi-GeV	e-like	-0.182	0.7
		µ-like	-0.052	0.2
	Multi-ring Sub-GeV	e-like	-0.104	0.4
		µ-like	-0.052	0.2
	Multi-ring Multi-GeV	e-like	-0.078	0.3
		µ-like	-0.052	0.2
	PC	-	-0.052	0.2
Horizontal/vertical ratio	<400 MeV	e-like	0.018	0.1
		µ-like	0.018	0.1
		0-decay μ -like	0.054	0.3
	>400 MeV	e-like	0.252	1.4
		µ-like	0.341	1.9
		0-decay μ -like	0.252	1.4
	Multi-GeV	e-like	0.576	3.2
		µ-like	0.414	2.3
	Multi-ring Sub-GeV	e-like	0.252	1.4
	_	µ-like	0.234	1.3
	Multi-ring Multi-GeV	e-like	0.504	2.8
	-	µ-like	0.270	1.5
	PC	-	0.306	1.7
K/π ratio in flux calculation ^f			-9.3	10
Neutrino path length			-2.13	10
Sample-by-sample	FC Multi-GeV		-6.6	5
	$PC + Stopping UP-\mu$		0.22	5
Matter effects			0.52	6.8

Interaction and oscillation systematics

Systematic error		Fit value (%)	σ (%)
M_A in QE		-0.69	10
Single π Production, Axial Coupling		-4.4	10
Single π Production, C_{A5}		-3.1	10
Single π Production, BKG		-8.7	10
CCQE cross section ^a		6.7	10
CCQE $\bar{\nu}/\nu$ ratio ^a		9.2	10
CCQE μ/e ratio ^a		0.67	10
DIS cross section		-4.4	5
DIS model comparisons ^b		3.0	10
DIS Q^2 distribution (high W) ^c		8.2	10
DIS Q^2 distribution (low W) ^c		-5.8	10
Coherent π production		-10.0	100
NC/CC		12.1	20
ν_{τ} cross section		-13.8	25
Single π production, π^0/π^{\pm}		-20.3	40
Single π production, $\bar{\nu}_i / \nu_i$ (i = e, μ) ^d		-11.0	10
NC fraction from hadron simulation		-0.47	10
π^+ decay uncertainty Sub-GeV 1-ring	e-like 0-decay	-0.17	0.6
	μ -like 0-decay	-0.22	0.8
	e-like 1-decay	1.1	4.1
	μ -like 1-decay	0.25	0.9
	μ -like 2-decay	1.60	5.7
Final state and secondary interactions ^e		-0.2	10
Meson exchange current ^r		-1.8	10
Δm^2_{21} [29]		0.022	2.4
$\sin^2(\theta_{12})$ [29]		0.32	4.6
$\sin^2(\theta_{13})$ [29]		0.11	5.4

Reduction and background systematics

		SK-I		SK-II		SK-III		SK-IV	
Systematic Error		Fit Value	σ	Fit Value	σ	Fit Value	σ	Fit Value	σ
FC reduction		-0.009	0.2	0.005	0.2	0.066	0.8	0.68	1.3
PC reduction		0.016	2.4	-3.43	4.8	-0.012	0.5	-0.78	1
FC/PC separation		-0.10	0.6	0.077	0.5	-0.13	0.9	0.0004	0.02
PC stopping/through-going separation (bottom)		-15.8	23	-2.4	13	-0.32	12	-1.5	6.8
PC stopping/through-going separation (barrel)		3.8	7	-5.7	9.4	-13.9	29	-0.40	8.5
PC stopping/through-going	separation (top)	8.5	46	-3.0	19	-12.6	87	-24.1	40
Non- ν background	Sub-GeV μ -like	0.010	0.1	0.065	0.4	0.105	0.5	-0.011	0.02
-	Multi-GeV μ -like	0.040	0.4	0.065	0.4	0.105	0.5	-0.011	0.02
	Sub-GeV 1-ring	0.010	0.1	0.049	0.3	0.084	0.4	-0.052	0.09
	0-decay μ -like								
	PC	0.020	0.2	0.115	0.7	0.381	1.8	-0.282	0.49

(Table continued)

Systematic ErrorFit Value σ Fit Value σ Fit Value σ Fit Value σ				SK-I		SK-I	I	SK-III		SK-IV	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Systematic Error			Fit Value	σ	Fit Value	σ	Fit Value	σ	Fit Value	σ
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Sub-GeV e-like		0.068	0.5	0.000	0.2	-0.004	0.2	-0.000	0.02
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		(flasher event) Multi GeV a like		0.014	0.1	0.000	0.2	0.014	0.7	0.000	0.08
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		(flasher event)		0.014	0.1	0.000	0.5	-0.014	0.7	-0.000	0.08
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Multi-GeV		3.6	13	-5.2	38	-1.0	27	2.6	18
		1-ring e-like									
$\begin{tabular}{ c $		Multi-GeV		3.7	12	3.8	11	0.75	11	0.34	12
Fiducial Volume -0.85 2 -0.11 2 0.22 2 -1.5 2 Ring separation $< 400 \text{ MeV}$ e -like 0.45 2.3 -107 1.3 0.80 2.3 0.96 1.6 1.6 μ -like 0.45 2.3 -107 1.3 0.80 2.3 0.96 1.6 1.6 μ -like 0.14 0.7 -1.91 2.3 1.04 3 1.79 3 -400 MeV e -like 0.078 0.4 -1.40 1.7 0.45 1.3 -0.60 1 μ -like 0.14 0.7 -0.576 0.7 0.28 0.6 -0.576 0.7 0.48 -0.58 0.3 1.7 -1.41 1.7 0.45 1.3 -0.60 1 μ -like -0.68 3.5 3.13 3.8 0.45 1.3 -0.60 1 μ -like -0.68 3.5 5.13 3.8 0.45 1.3 -0.60 1 μ -like -0.68 3.5 6.75 8.2 -0.90 2.6 1.37 2.3 Multi-ring Multi-GeV e -like -0.68 3.5 6.75 8.2 -0.90 2.6 1.37 2.3 Multi-ring Multi-GeV e -like -0.61 3.1 1.56 1.9 -0.38 1.1 0.54 0.9 Particle identification (1 ring) Sub-GeV e -like 0.039 0.23 0.227 0.66 0.053 0.26 -0.123 0.28 μ -like -0.030 0.18 -0.172 0.5 -0.060 0.3 0.19 0.097 0.22 Multi-GeV e -like 0.032 0.19 -0.089 0.26 -0.060 0.3 0.154 0.35 Particle identification (multi-ring) Sub-GeV e -like 0.032 0.19 -0.089 0.26 -0.060 0.3 0.154 0.35 Particle identification (multi-ring) Sub-GeV e -like -0.23 3.1 -3.44 6 3.49 9.5 -2.24 4.2 μ -like -0.023 0.19 -0.089 0.26 -0.060 0.3 0.154 0.35 Multi-GeV e -like 0.032 0.19 -0.089 0.26 -0.060 0.3 0.154 0.35 Multi-GeV e -like 0.023 3.1 -3.44 6 3.49 9.5 -2.24 4.2 μ -like -0.21 2.9 -2.24 3.8 -5.3 5.3 -2.3 3.0 Multi-ring Other -0.027 3.3 -0.90 0.28 0.066 2.4 0.08 2.1 Up/down asymmetry energy calibration 0003 0.4 -0.004 0.6 0.303 0.4 -0.120 0.6 Energy calibration 0003 0.4 -0.004 0.6 0.30 0.4 -0.120 0.6 Energy calibration $000 < P_{\mu} < 250$ MeV/c 1.7 9.2 9.8 14 0.76 4.9 3.44 3 Background subtraction for UP- μ Stopping -0.087 0.28 0.66 7.7 1.4 4.1 4.7 4.9 20 -6.7 17 Non-showering ⁴ -0.78 1.0 -0.120 0.6 0.24 0.66 0.30 0.4 -0.102 0.6 Energy calibration $00 < P_e < 250$ MeV/c 1.7 9.2 9.8 14 0.76 4.9 3.44 3 0.9		Multi-ring e-like									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Fiducial Volume			-0.85	2	-0.11	2	0.22	2	-1.5	2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ring separation	< 400 MeV	e-like	0.45	2.3	-1.07	1.3	0.80	2.3	0.96	1.6
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			μ -like	0.14	0.7	-1.91	2.3	1.04	3	1.79	3
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		> 400 MeV	e-like	0.078	0.4	-1.40	1.7	0.45	1.3	-0.60	1
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			μ -like	0.14	0.7	-0.576	0.7	0.208	0.6	-0.36	0.6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Multi-GeV	e-like	0.72	3.7	-2.14	2.6	0.45	1.3	-0.60	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Malti dan Salı Call	μ -like	0.33	1.7	-1.41	1.7	0.35	1	0.72	1.2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Multi-ring Sub-Gev	e-like	-0.68	3.5	5.15	3.8	0.45	1.3	1.14	1.9
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Multi ring Multi CoV	μ -like	-0.60	4.5	0.75	0.2	-0.90	2.0	1.57	2.5
Particle identification (1 ring) Sub-GeV Particle identification (1 ring) Sub-GeV Multi-GeV Particle identification (multi-ring) Sub-GeV Particle identification (multi-ring) Particle (multi-ring) Parti		Mulu-ring Mulu-Gev	e-like	-0.01	5.1 4 1	0.658	0.8	-0.58	2.1	-1.43	2.4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Particle identification (1 ring)	Sub GaV	μ -like	-0.80	4.1	0.038	0.6	-0.75	0.26	-1.45	0.29
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Fatucie Identification (1 mig)	Sub-Gev	e-like	-0.039	0.25	-0.172	0.00	-0.033	0.20	0.007	0.20
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Multi-GeV	<i>e</i> -like	0.032	0.10	0.082	0.24	0.062	0.12	-0 154	0.35
Particle identification (multi-ring) Sub-GeV Particle identification (multi-ring) Sub-GeV 1-ring π^0 selection (multi-ring) Sub-GeV 2-ring π^0 Sub-GeV 2-ring π^0 Sub-GeV 2-ring π^0 Sub-GeV		Mulu-Ocv	<i>u</i> -like	-0.032	0.19	-0.089	0.24	-0.060	0.31	0.154	0.35
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Particle identification (multi-ring)	Sub-GeV	<i>e</i> -like	-0.23	3.1	-3.44	6	3.49	9.5	-2.24	4.2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			u-like	0.049	0.66	1.38	2.5	-1.91	5.2	0.85	1.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Multi-GeV	e-like	0.48	6.5	5.57	9.7	-1.80	4.9	-1.76	3.3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			µ-like	-0.21	2.9	-2.24	3.9	0.99	2.7	0.85	1.6
Multi-ring Other6.25.71.44.14.74.92.73.4Energy calibration -0.75 3.3 -0.90 2.80.062.40.082.1Up/down asymmetry energy calibration 0.26 0.60.240.60.741.3 -0.15 0.4UP- μ reductionStopping -0.091 0.7 -0.090 0.70.1620.70.0870.5Through-going geparation -0.065 0.5 -0.064 0.50.1150.50.0020.3UP- μ stopping/through-going geparation -0.043 0.9 -0.122 1.30.9572 -0.122 1.7Path length cut for through-going UP- μ -0.446 1.5 -0.826 2.30.9932.81.471.5Through-going UP- μ Stopping ^a -3.6 18 -3.6 141.4242.11.7Non-showering ^a -3.6 18 -3.6 141.4242.11.7Non-showering ^a -12.3 18 -15.7 140.124 -0.9 24 $\nu_e/\bar{\nu}_e$ Separation $100 < P_e < 250$ MeV/c 1.7 97.0100.986.35.24.6 $250 < P_e < 400$ MeV/c 1.7 99.8140.764.93.43 $400 < P_e < 630$ MeV/c 2.6 14 11.2 16 1.3 8.219.417 $1000 < P_e < 1330$ MeV/c 2.6 14 11.2 16	Multi-ring likelihood selection	Multi-ring e-like	$\bar{\nu}_e, \bar{\nu}_e$	-6.5	6.0	-1.3	3.8	-5.3	5.3	-2.3	3.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C C	Multi-ring Other		6.2	5.7	1.4	4.1	4.7	4.9	2.7	3.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Energy calibration	-		-0.75	3.3	-0.90	2.8	0.06	2.4	0.08	2.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Up/down asymmetry energy calib	ration		0.26	0.6	0.24	0.6	0.74	1.3	-0.15	0.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	UP- μ reduction	Stopping		-0.091	0.7	-0.090	0.7	0.162	0.7	0.087	0.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Through-going		-0.065	0.5	-0.064	0.5	0.115	0.5	0.052	0.3
Energy cut for stopping UP- μ Path length cut for through-going UP- μ showering separation Background subtraction for UP- μ Stopping ^a Non-showering ^a $v_e/\bar{\nu}_e$ Separation Sub-GeV 1-ring π^0 selection Sub-GeV 2-ring π^0 Sub-GeV 2-ring π^0 Su	UP- μ stopping/through-going sepa	aration		0.003	0.4	-0.004	0.6	0.030	0.4	-0.102	0.6
Path length cut for through-going UP- μ -0.4161.5-0.8262.30.9932.81.471.5Through-going UP- μ showering separation7.533.4-4.684.42.902.4-3.303Background subtraction for UP- μ Stopping ^a 10.016-3.121-4.920-6.717Non-showering ^a -3.618-3.6141.4242.117 $\nu_e/\bar{\nu}_e$ SeparationShowering ^a -12.318-15.7140.124-0.924 $\nu_e/\bar{\nu}_e$ Separation100 < $P_e < 250$ MeV/c1.797.0100.986.35.24.6Sub-GeV 1-ring π^0 selection100 < $P_e < 400$ MeV/c3.0167.7113.72414.813630 < $P_e < 1000$ MeV/c2.61411.2161.38.219.4171000 < $P_e < 1330$ MeV/c2.2126.89.81.71127.424Sub-GeV 2-ring π^0 -3.210-1.0100.9101.310Decay-e tagging-3.210-1.0100.9101.310	Energy cut for stopping UP- μ			-0.043	0.9	-0.122	1.3	0.957	2	-0.122	1.7
Through-going UP- μ showering separation Background subtraction for UP- μ Stopping ^a Non-showering ^a $\nu_e/\bar{\nu}_e$ Separation Sub-GeV 1-ring π^0 selection Sub-GeV 2-ring π^0 Sub-GeV 2-	Path length cut for through-going	UP-µ		-0.416	1.5	-0.826	2.3	0.993	2.8	1.47	1.5
Background subtraction for UP- μ Stopping ^a 10.0 16 -3.1 21 -4.9 20 -6.7 17 Non-showering ^a -3.6 18 -3.6 14 1.4 24 2.1 17 $\nu_e/\bar{\nu}_e$ Separation Showering ^a -12.3 18 -15.7 14 0.1 24 -0.9 24 -0.98 7.2 6.96 7.9 0.45 7.7 2.46 6.8 Sub-GeV 1-ring π^0 selection 100 < $P_e < 250$ MeV/c 1.7 9 7.0 10 0.98 6.3 5.2 4.6 $400 < P_e < 400$ MeV/c 1.7 9.2 9.8 14 0.76 4.9 3.4 3 $400 < P_e < 630$ MeV/c 3.0 16 7.7 11 3.7 24 14.8 13 $630 < P_e < 1000$ MeV/c 2.6 14 11.2 16 1.3 8.2 19.4 17 $1000 < P_e < 1330$ MeV/c 2.2 12 6.8 9.8 1.7 11 27.4 24 Sub-GeV 2-ring π^0 1.3 5.6 </td <td>Through-going UP-μ showering s</td> <td>eparation</td> <td></td> <td>7.53</td> <td>3.4</td> <td>-4.68</td> <td>4.4</td> <td>2.90</td> <td>2.4</td> <td>-3.30</td> <td>3</td>	Through-going UP- μ showering s	eparation		7.53	3.4	-4.68	4.4	2.90	2.4	-3.30	3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Background subtraction for UP- μ	Stopping*		10.0	16	-3.1	21	-4.9	20	-6.7	17
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Non-showering"		-3.6	18	-3.6	14	1.4	24	2.1	17
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(= C	Showering"		-12.3	18	-15.7	14	0.1	24	-0.9	24
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ν_e/ν_e Separation	100 . D		-0.98	7.2	6.96	7.9	0.45	7.7	2.46	6.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sub-GeV 1-ring π° selection	$100 < P_e < 250 \text{ MeV/c}$		1.7	9	7.0	10	0.98	0.3	5.2	4.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$L_{50} < r_e < 400 \text{ MeV/C}$		2.0	9.2	9.8 77	14	27	4.9	5.4 14 0	12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$400 < P_e < 050 \text{ MeV/C}$ 630 $< P_e < 1000 \text{ MeV/c}$		26	14	11.2	16	5./	24	14.8	17
Sub-GeV 2-ring π^0 1.3 5.6 -2.7 4.4 1.6 5.9 -0.72 5.6 Decay-e tagging -3.2 10 -1.0 10 0.9 10 1.3 10 Solar Activity -1.8 2.0 20.0 50 2.7 20 0.6 10		1000 < P < 1220 MeV/c		2.0	12	60	00	1.5	0.2	27.4	24
Sub-Gev 2-Ing x 1.5 5.0 -2.7 4.4 1.0 5.9 -0.72 5.0 Decay-e tagging -3.2 10 -1.0 10 0.9 10 1.3 10 Solar Activity -1.8 20 20.0 50 2.7 20 0.6 10	Sub-GeV 2-ring m ⁰	$1000 < r_e < 1550 \text{ MeV/C}$		13	56	_2 7	9.0 4.4	1./	50	_0.72	24 5.6
Solar Activity -3.2 10 -1.0 10 0.5 10 1.5 10 -1.0 10 0.7 20 0.6 10	Decay_e tagging			_3.2	10	-1.0	10	0.0	10	13	10
	Solar Activity			-1.8	20	20.0	50	27	20	0.6	10

Tau samples compositions and branching ratios 43

Interaction Mode	non-tau-like	tau-like	All
$\mathrm{CC} \ \nu_e$	3071.0	1399.2	4470.2
$\rm CC \ u_{\mu}$	4231.9	783.4	5015.3
$\mathrm{CC} \ \nu_{ au}$	49.1	136.1	185.2
NC	291.8	548.3	840.1

TABLE I. The break down of interaction modes of both background and expected signal shown in number of events in simulation scaled to SK-I through SK-IV live time. By cutting the NN output at 0.5, each mode is separated into tau-like (NN>0.5) and non-tau-like (NN<0.5).

Decay mode	Branching ratio (%)	Tau-like fraction $(\%)$	Branching ratio \times Tau-like fraction (%)
$e^- \bar{\nu}_e \nu_{\tau}$	17.83	$67.3 {\pm} 2.2$	12.0 ± 0.4
$\mu^- ar{ u}_\mu u_ au$	17.41	$42.6 {\pm} 2.6$	$7.2{\pm}0.5$
$\pi^- u_{ au}$	10.83	84.7 ± 3.8	$9.2{\pm}0.4$
$\pi^-\pi^0 u_ au$	25.52	81.0 ± 2.1	20.7 ± 0.5
$3\pi\nu_{\tau}$	18.29	$88.7 {\pm} 2.5$	16.2 ± 0.5
others	10.12	90.5 ± 3.4	9.2 ± 0.3

TABLE II. Decay modes of tau leptons with branching ratio adapted from 37, along with the fraction of tau-like events and the product of branching ratio and tau-like ratio in each mode in the Super-K simulation.