

Design and progress of the Central Detector of JUNO

Yuekun Heng On behalf of JUNO Collaboration Aug. , 2018 NuFact @ Virginia Tech

Outline

- JUNO physics and requirements on the detectors
- The central detector system
 - Structure design and progress
 - Liquid scintillator
 - PMT of 20" and 3"
 - Electronics readout
 - Calibration system
- Summary

Determine MH with Reactors Method from Petcov and Piai, Physics Letters B 553, 94-106 (2002) 1.4 Also refer to Near Site $P_{ee}(L/E) = 1 - P_{21} - P_{31} - P_{32}$ arXiv1210.8141 1.2 Far Site $P_{21} = \cos^4(\theta_{13}) \sin^2(2\theta_{12}) \sin^2(\Delta_{21})$ 1.0 $P_{31} = \cos^2(\theta_{12}) \overline{\sin^2(2\theta_{13})} \frac{\sin^2(\Delta_{31})}{\sin^2(\Delta_{31})}$ 0.8 Savannah River $P_{32} = \sin^2(\theta_{12}) \sin^2(2\theta_{13}) \sin^2(\Delta_{32})$ 0.6 Bugev Rovno 0.4 $P_{ee} = 1 - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 (\Delta_{21})$ Joesgen Krasnoyark 0.2 Palo Verde $-\sin^2 2\theta_{13} \sin^2 (|\Delta_{31}|)$ KamLAND Chooz 0.0 $-\sin^2\theta_{12}\sin^22\theta_{13}\sin^2(\Delta_{21})\cos(2|\Delta_{31}|)$ 10^{5} 10^{2} 104 10^{1} 10^{3} + NH Distance to Reactor (m) $\pm \frac{\sin^2 \theta_{12}}{2} \sin^2 2\theta_{13} \sin (2\Delta_{21}) \sin (2|\Delta_{31}|)$ - IH ----- Non oscillation $- \theta_{12}$ oscillation The big suppression is the "solar" Normal hierarchy Inverted hierarchy oscillation $\rightarrow \Delta m_{21}^2$, $\sin^2 \theta_{12}$ "Large" value of θ_{13} crucial

Nobs/Nexp

Arbitrary unit

0.6

0.5

0.4

0.3

0.2

0.1

10

15

20

25

30 L/E (km/MeV) The NH or IH can be distinguished if we have neutrinos' spectrum with much quantity and with good precision, for example 100k events and 3% resolution at 1 MeV.

Central detector: 20 ktons LS with 3% energy resolution @1 MeV

	KamLAND	BOREXINO	Daya Bay	JUNO
Target Mass	1 kt	300 t	20 t x 8	20 kt
PE Collection (PE/MeV)	250	500	160	1200
Photocathode Coverage	34%	34%	12%	75%
Energy Resolution	6%/√E	5%/√E	7.5%/√E	3%/√E
Energy Calibration	2%	1%	1.5%	<1%

- Increasing statistics of photoelectrons:
 - Photocathode coverage: ~ 75%,
 - PMT photon detection eff.: ~27%
 - LS attenuation length: >20 m
 - → abs. 60 m + Rayl. scatt. 30m
- Reduce the systematic error: good calibration

JUNO will be the largest liquid scintillator detector and with the best energy resolution in the world

Surface Building

Outline

- JUNO physics and requirements on the detectors
- The central detector system
 - Structure design and progress
 - Liquid scintillator
 - PMT of 20" and 3"
 - Electronics readout
 - Calibration system
 - Shielding and veto
- Summary

Option selection route

Calibration

JUNO Detectors

Liquid scintillator and Water Filling system

Central detector

- Steel structure
- Acrylic sphere +
- 20kt Liquid Scin
- ~18000 20" PMT
- ~25000 3" PMT

AS: Acrylic Sphere; SSS: Stainless Steel Structure

JUNO Detectors

- In the LS-Water filled configuration, total net buoyancy: ~3000 tons, counteracted by the connecting bars
- Forces in the connecting bars: Pulling < 9 tons (< 3.5 Mpa) / Pushing < 15 tons (< 3.0 Mpa)

220 Steel joints with spring disk

R&D about acrylic

How about the life time of acrylic?

- Strength reduce to ~70% for 20 years @ 5.5 Mpa
- Creep: over 100 years

Can the spherical panel be made?

- 3 companies made samples
- 2017.2 Donchamp won the bid.
- How about the max stress control on acrylic?
 - ≤ 3.5 Mpa, less than 5 Mpa in Daya Bay
- How strong the acrylic node need to be?
 - Max pulling load: ~ 8 tons
 - Break at load: ~100 tons
- How to control the radiation background and the quality of acrylic?
- How to make the bulk-polymerization on site?

Thermoforming the spherical panel: 3m x 8m x 120mm

Test for bulk-polymerization

Load test of node: break at 100 tons 14

- A new production lines special for JUNO are finished
- A constant temperature workshop is being made for acrylic panels machining and pre-assembly

1:12 scaling CD prototype

Manufacturing and assembly and test

Tests to be done

- Verify the FEM calculation
- Check the spring effects
- Check the temperature load
- Test the monitor system
- Test the filling/overflow system

Adjusting steel structure

Small prototype of acrylic sphere manufacturing

Pre-assembly

Lifting test

Small prototype and steel cylinder for testing 16

Low radiation BG for acrylic and steel

Low radiation background requirements:

Parts	Mass (t)	²³⁸ U	²³² Th	⁴⁰ K	⁶⁰ Co	Singles (Hz)
Acrylic	600	1 ppt	1 ppt	1 ppt		0.39
Node stainless steel	23.6	0.1 ppb	2 ppb	0.05 ppb	2 mBq/kg	1.9
Shell stainless steel	583.79	1 ppb	5 ppb	0.2 ppb	20mBq/kg	0.02
Connection bar	67.18	0.1 ppb	2 ppb	0.05 ppb	2 mBq/kg	0.28

- Process control for low radiation background
 - Filter in MMA material
 - Special reaction kettle/pipe

In the clean room class 10000 with the radon < 100 Bq/m³, totally exposed time: less than 10 days

- Moulding: pure water/clean room
- Thermoforming: film or placket to shield the dust and radon
- Bonding: filled with clean air or N₂ —
- Shield Rn: plastic film on the surface of the acrylic
- Clean the inner surfaces of the acrylic sphere: air cushion to support
- Filling: first to fill pure water then replace with LS / LS tank covered with pure N_2

The samples for acrylic has met the 1 ppt requirements for U/Th/K.

First batch of stainless steel with low background

 the first batch of raw materials for the CD steel structure: ~330 ton, smelting and low radioactive background testing were completed, and the test results met the technical requirements;

All iron water converter stainless steel smelting process

Hot rolling steel slab

		Radioactive background requirements for steel structure	Sample1 A2802246	Sample2 A2802245
	²³⁸ U	1 ppb (12.4mBq) /kg	6.14±1.69 mBq/ kg	< 8.3 mBq/kg
23	²³² Th	5 ppb (20mBq) /kg	< 2.68 mBq/kg	< 8 mBq/kg
	⁴⁰ K	0.2 ppb (51.36mBq) /kg	< 16.10 mBq/kg	< 20 mBq/kg
	⁶⁰ Co	20 mBq/kg	< 0.83 mBq/kg	< 1.1 mBq/kg

Stainless steel sample for background testing

Liquid Scintillator

- Use one of Daya Bay detectors through replacing the target LS of 20 tons by the produced LS from the pilot plant to test and check:
 - Optimize the recipe
 - Reduce radioactive background
 - Increase the transparency
- Distillation system
- Steam stripping system
- Water extraction
- Ultra-pure nitrogen

LAB storage tank

Al₂O₃ column

•

•

2015

from NNVT

Hamamatsu

20000 20" PMT

2 MCPs to replace Dynodes

				[6
Characteristics	unit	MCP-PMT (NNVT)	R12860 (Hamamatsu)	
Detection Efficiency (QE*CE*area)	%	27%, > 24%	27%, > 24%	
P/V of SPE		3.5, > 2.8	3, > 2.5	
TTS on the top point	ns	~12, < 15	2.7, < 3.5	
Rise time/ Fall time	ns	R~2, F~12	R~5, F~9	
Anode Dark Count	Hz	20K, < 30K	10K, < 50K	rubber ring
After Pulse Rate	%	1, <2	10, < 15	contact with g
		238U:50	238U:400	
Radioactivity of glass	ppb	232Th:50	232Th:400	
		40K: 20	40K: 40	

Batch test of 20" PMT

20" PMT Arrived ~10000

20" PMT inspection

Holder to support weight of drawers during loading

Container: ~ **30 PMTs to be tested simultaneously**

25000 3" PMT

- Work together with the 20-in PMT to provide a double calorimeter system
 - Energy measurement via "photon counting", better control of systematics
 - Muon tracking, supernova detection ...
 - Increase the dynamic range.
 - Increase photon statistics by ~2.5%
- 25000 3-inch PMTs, contracted to HZC (China), which has produced ~6000 3-inch PMTs

Calibration system

- The goal:
 - Overall energy resolution: ≤ 3%/VE
 - Energy scale uncertainty: <1%</p>
- Radioactive sources:
 - γ ⁴⁰K, ⁵⁴Mn, ⁶⁰Co, ¹³⁷Cs
 - e+: ²²Na, ⁶⁸Ge
 - n: ²⁴¹Am-Be, ²⁴¹Am- ¹³C or ²⁴¹Pu- ¹³C, ²⁵²Cf
- Four complementary calibration systems
 - 1-D: Automatic Calibration Unit (ACU) → for central axis scan,
 - **2-D**:
 - Cable Loop System (CLS) → scan vertical planes,
 - Guide Tube Calibration System (GTCS)
 → CD outer surface scan,
 - 3-D: Remotely Operated under-LS Vehicle (ROV) → full detector scan

Readout Electronics

1F3 scheme

- PMT: photomultiplier tubes
- HV: High Voltage units
- ADU: Analog to Digital Unit
- GCU: Global Control Unit
- CAT cable: Category 5e cable
- High reliability needed
- Severe constraints by power consumption

PMT signals' waveform are read out by FADC, which is near PMT and guarantee the quality of the analog signals.

Veto Detectors

- Cosmic muon flux
 - Overburden: ~700 m
 - Muon rate: 0.003Hz/m²
 - Average energy: 214 GeV
- Water Cherenkov Detector
 - ~4 m water shielding, Radon: <0.2 Bq/m³
 - ~2000 20"PMTs
 - 40 kton pure water, HDPE lining on pool
 - Similar technology as Daya Bay (99.8% efficiency)
- Compensation Coil for EMF shield
- Top muon tracker
 - Decommissioned OPERA plastic scintillator

Summary

- JUNO: Rich neutrino physics prospects
- The central detector: a massive LS detector with the precise energy resolution, breaking new ground in LS detection technology
 - The largest acrylic sphere ever constructed
 - 20 kton of highly transparent LS
 - 18000 20" PMT and 25000 3" PMT
 - 4 calibration subsystems

Thank you for your attention!

Updated list of JUNO member

Country	Institute	Country	Institute Country		Institute
Armenia	Yerevan Physics Institute	China	IMP-CAS	Germany	U. Mainz
Belgium	Universite libre de Bruxelles	China	SYSU	Germany	U. Tuebingen
Brazil	PUC	China	Tsinghua U.	Italy	INFN Catania
Brazil	UEL	China	UCAS	Italy	INFN di Frascati
Chile	PCUC	China	USTC	Italy	INFN-Ferrara
Chile	UTFSM	China	U. of South China	Italy	INFN-Milano
China	BISEE	China	Wu Yi U.	Italy	INFN-Milano Bicocca
China 🤺	Beijing Normal U.	China	Wuhan U.	Italy	INFN-Padova
China	CAGS	China	Xi'an JT U.	Italy	INFN-Perugia
China	ChongQing University	China	Xiamen University	Italy	INFN-Roma 3
China	CIAE	China	Zhengzhou U	Latvia	IECS
China	DGUT	China	NUDT	Pakistan	PINSTECH (PAEC)
China	ECUST	China	CUG-Beijing	Russia	INR Moscow
China	Guangxi U.	<u>China</u>	ECUT-Nanchang City	Russia	JINR
China	Harbin Institute of Technology	Czech	Charles U.	Russia	MSU
China	IHEP	Finland	University of Jyvaskyla	Slovakia	FMPICU
China	Jilin U.	France	APC Paris	Taiwan-China	National Chiao-Tung U.
China	Jinan U.	France	CENBG	Taiwan-China	National Taiwan U.
China	Nanjing U.	France	CPPM Marseille	Taiwan-China	National United U.
China	Nankai U.	France	IPHC Strasbourg	Thailand	NARIT
China	NCEPU	France	Subatech Nantes	Thailand	PPRLCU
China	Pekin U.	Germany	FZJ-ZEA	Thailand	SUT
China	Shandong U.	Germany	RWTH Aachen U.	USA	UMDI
China	Shanghai JT U.	Germany	TUM	USA	UMD2
China	IGG-Beijing	Germany	U. Hamburg	USA	UC Irvine
China	IGG-Wuhan	Germany	FZJ-IKP		

Members: 77

Observers: 3, University of Malaya University of Zagreb (Croatia) Yale University (USA)