New Results from RENO

Jee-Seung Jang for the RENO Collaboration GIST, Korea

> NuFact 2018 Blacksburg, Virginia, Aug. 13-18, 2018

RENO Collaboration

Reactor Experiment for Neutrino Oscillation

(8 institutions and 30 physicists)

- Chonnam National University
- Dongshin University
- GIST
- KAIST
- Kyungpook National University
- Seoul National University
- Seoyeong University
- Sungkyunkwan University

- Total cost : \$10M
- Start of project : 2006
- The first experiment running with both near & far detectors from Aug. 2011

RENO Experimental Set-up

Detection of Anti-neutrino

New RENO Results

■ Precise measurement of |∆m_{ee}² | and θ₁₃ using ~2200 days of data (Aug. 2011 – Feb 2018)

"Measurement of Reactor Antineutrino Oscillation Amplitude and Frequency at RENO" → submitted to PRL (arXiv:1806.00248)

■ Fuel-composition dependent reactor antineutrino yield → "Fuel-composition dependent reactor antineutrino yield and spectrum at RENO" → submitted to PRL (arXiv: 1806.00574)

Measurement of absolute reactor neutrino flux and spectrum

Independent measurement of |Δm_{ee}² | and θ₁₃ with delayed n-H signals

Measurement of $|\Delta m_{ee}^2|$ and θ_{13}

Spectral shape of observed and expected IBD prompt signal

Clear excess at 5 MeV

Spectral shape of Far / Near

Energy-dependent disappearance of reactor antineutrinos

Allow regions for θ_{13} and $|\Delta m^2_{ee}|$

Survival probability of reactor antineutrinos

Clear L/E-dependent disappearance of reactor antineutrinos

Comparison of θ_{13} and $|\Delta m^2_{ee}|$

Fuel composition dependent anti-neutrino yield

Evolution of Fuel Isotope Fraction

Fission fraction data of each reactor core, is provided by the Hanbit nuclear power plant and average fission fraction of 6 reactors is used for this study.

Average fission fraction f_{235} : f_{239} : f_{238} : f_{241} = 0.573 : 0.299 : 0.073 : 0.055

Fuel-Composition Dependent Reactor Neutrino Yield

No fuel-dependent variation of IBD yield per fission is ruled out with 6.7 σ $_{\rm 14}$

Best-fit result of IBD yields per fission of ²³⁵U (²³⁹Pu)

²³⁵U: 3.5σ deficit relative to Huber-Mueller (H-M) prediction ²³⁹Pu: 1.2σ deficit ¹⁵

Fuel composition dependent 5 MeV excess

IBD Yield Variation of 5 MeV Excess Region

Weak indication of enhanced yield in 5 MeV excess region due to ²³⁵U isotope fraction increase....¹⁷

Correlation of 5 MeV excess with ²³⁵U isotope fraction

 2.6σ indication of 5 MeV excess coming from ²³⁵U fuel 18 isotope fission

Absolute reactor neutrino flux and spectrum

Measurement of Absolute Reactor Neutrino Flux

Cross section calculation

- Fayans 85 formalism
- $\tau_n = 880.2 \text{ s} \text{ (PDG2017)}$

Data / Prediction, RENO 2200 days at near detector

0.924 +- 0.018 (for Huber + Mueller model) 0.966 +- 0.019 (for ILL + Vogel model)

Deficit of observed reactor neutrino fluxes relative to the prediction (Huber + Mueller model) indicates an overestimated flux or possible oscillation to sterile neutrinos ²⁰

Unfolded Reactor Antineutrino Spectrum

* MC is normalized to data in the region excluding $3.6 < E_p < 6.6$ MeV

Unfolding using iterative method in *RooUnfold*

IBD events with delayed neutron captured by Hydrogen

n-H IBD Analysis

Motivation:

- 1. Independent measurement of θ_{13} and $|\Delta m_{ee}^2|$.
- 2. Consistency and systematic check on reactor neutrinos.

θ_{13} Measurement with n-H

 $\sin^2 2\theta_{13} = 0.085 \pm 0.008 (\text{stat.}) \pm 0.012 (\text{syst.})$

θ_{13} and $|\Delta m^2_{ee}|$ Measurement with n-H

25

Summary

- More precise measurement of $| \Delta m_{ee}^{\ 2} |$ and θ_{13} using 2200 days of data

 $\sin^2 2\theta_{13} = 0.0896 \pm 0.0048 (\text{stat.}) \pm 0.0047 (\text{syst.})$ $\pm 0.0047 (\text{syst.})$

±0.0068 7.6 % precision

 $|\triangle m_{ee}^2| = 2.68 \pm 0.12 (\text{stat.}) \pm 0.07 (\text{syst.}) (\times 10^{-3} \text{ eV}^2)$ ± 0.14 5.2 % precision

- Fuel composition dependent reactor antineutrino yield : No fuel dependent IBD yield is ruled out at 6.7 σ
- First hint for correlation between 5 MeV excess and ²³⁵U fission fraction
- Measured absolute reactor neutrino flux : R= 0.924±0.018 (H-M)
- Measurement of $|\Delta m_{ee}^2|$ and θ_{13} using n-H IBD analysis
- additional 2~3 years of data taking under consideration to improve Δm_{ee}^2 accuracy and the fuel dependent IBD yield.

Backup

RENO Data-taking Status

Measured Spectra of IBD Prompt Signal

Clear excess at 5 MeV

Near Live time = 1807.88 days # of IBD candidate = 850,666 # of background = 17,233 (2.0 %) Far Live time = 2193.04 days # of IBD candidate = 103,212 # of background = 4,879 (4.8 %)

Backgrounds

- Accidental coincidence between prompt and delayed signals
- Fast neutrons produced by muons, from surrounding rocks and inside detector (n scattering : prompt, n capture : delayed)
- ⁹Li/⁸He β -n followers produced by cosmic muon spallation

Correlation of 5 MeV Excess with Reactor Power

