

The Muon g-2 Beamline

Nathan S. Froemming NuFact18 17 Aug 2018

Background & Motivation

Muon Magnetic Anomaly: Theory vs. Experiment

2 2018-08-17 N. S. Froemming I NuFact18 I The Muon g-2 Beamline

Bottom Line

Successful commissioning and beamline optimizations

3 2018-08-17 N. S. Froemming | NuFact18 | The Muon g-2 Beamline

Successful Run 1: ~2X BNL statistics

Outline

- Experiment overview
- Optimization of the muon g-2 beamline
- Discovery of a problem
- Conclusion & path forward

Outline

- Experiment overview
- Optimization of the muon g-2 beamline
- Discovery of a problem
- Conclusion & path forward

Obtaining a polarized muon beam at Fermilab Muon Campus^[1]

[1] NuFact18, D. Stratakis, "Commissioning and first results of the Fermilab Muon Campus"

2018-08-17 N. S. Froemming | NuFact18 | The Muon g-2 Beamline 6

Focus on tuning beam into the muon g-2 storage ring

- M4/M5 beamline: Transport beam from Delivery Ring to Muon g-2
 - Vertical extraction from Delivery Ring occurs in two stages:
 - +4-ft into M4 beamline (Mu2e + g-2)
 - +6.2-ft into M5 beamline (g-2 only)
 - 27.1° horizontal triple-bend achromat
 - 90° FODO transport
 - M5 Final Focus into moun g-2 storage ring, zero dispersion (ring: Dx = 8.1m)
 - Injection properties dominated by narrow "inflector" aperture, discussed below

S (m)

Muons inside the storage ring

 $g_{\mu} = 2(1 + a_{\mu})$

rotates as angular frequency

TØ counter

- Thin scintillator detector installed at entrance of magnet
- Provides longitudinal beam profile

10 2018-08-17 N. S. Froemming I NuFact18 I The Muon g-2 Beamline

Superconducting inflector magnet

- Field-free corridor for injected beam
- 18(W)x56(H)mm²
- 1.7 m long

2018-08-17 N. S. Froemming | NuFact18 | The Muon g-2 Beamline 11

Superconducting inflector magnet

- Field-free corridor for injected beam
- 18(W)x56(H)mm²
- 1.7 m long

2018-08-17 N. S. Froemming | NuFact18 | The Muon g-2 Beamline 12

Fast pulsed kicker magnets

- Deflect momentum of injected beam radial outward by 10.8 mrad at 90°
- On/Off within $t < T_c = 149 \text{ ns}$

13 2018-08-17 N. S. Froemming I NuFact18 I The Muon g-2 Beamline

$P_0 = 3.094 \text{ GeV/c}$ $R_0 = 7.112 \text{ m}$ $B_0 = 1.4513 \text{ T}$ $T_c = 149.2 \text{ ns}$

Pulsed electric quadrupoles

 Provide vertical focusing in order to prevent beam from diverging out of storage ring

14 2018-08-17 N. S. Froemming | NuFact18 | The Muon g-2 Beamline

$P_0 = 3.094 \text{ GeV/c}$ $R_0 = 7.112 \text{ m}$ $B_0 = 1.4513 \text{ T}$ $T_c = 149.2 \text{ ns}$

Pulsed electric quadrupoles

 Provide vertical focusing in order to prevent beam from diverging out of storage ring Measure

$$\boldsymbol{\omega}_{a} = \boldsymbol{\omega}_{s} - \boldsymbol{\omega}_{c} = -\frac{q}{m} \begin{bmatrix} a_{\mu} \mathbf{B} - (a_{\mu} - \gamma) \\ \phi & \gamma \end{bmatrix}$$
Obtain

2018-08-17 N. S. Froemming | NuFact18 | The Muon g-2 Beamline 15

Observe decay positrons

Collect Billions Of Events

Extract a_µ

- Three pieces needed
 - 1. Muon beam
 - 2. Magnetic field
 - 3. Anomalous precession, ω_a

$$(m_{\mu}/m_{e}) = 206$$

 $(\mu_{e}/\mu_{p}) = -6$
 $(g_{e}/2) = -1$

Outline

- Experiment overview
- Optimization of the muon g-2 beamline
- Discovery of a problem
- Conclusion & path forward

Beam delivered to g-2 for Run1 (17 Nov 2017)

Fri 2017-11-17 20:28:33 First Evidence Of Beam To MC-1

New beam-tuning parameters for injection optimization

Muon g-2 Experiment (MC-1)

20 N. S. Froemming | NuFact18 | The Muon g-2 Beamline 2018-08-17

Fermilab Accelerator Controls Network (ACNET)

PB H60 Power Supply Paraw/NeuDPH-CLX23 (302)>			4
M60 G-2 Injection	Tuning SET	D/A A/D Com-U 🔶	gm_Tools•
- <ftp>+ #SA+ X-A/D</ftp>	X=TIME Y=D:ICABT ,E:G2D	CAY,E:G2TOB ,D:ICO2	5
COMMAND BL Eng-U	I = 0 $I = 0$, 0	, 0 , 0	_
-< 2>+ rSUP AUTO	F= 60 F= 44 , 400	, 400000 , 1	
n1 tgt n2 m	13 dr10 dr30 dr50 abt	n4 n5 EXPER	
! Upstream Beamlin	es		
M: TOR107	AP1 PQ9B Beam Toroid	.74200552 E	12
D:IC804	M2 804 ION CHAMBER	7,9806	E07
D:IC740	M3 740 ION CHAMBER	.0564 #	E07
D:IC209	DR 209 ION CHAMBER	.0846 #	E07
D:IC105	DR 105 ION CHAMBER	0 #	E07
D:ICABT	ABORT LINE ION CHAMBER	35.8422	E07
D:IC902	M4 902 ION CHAMBER	• *	E07
D:IC025	M5 025 ION CHAMBER	• *	E07
! M5 Final-Focus 0	luads		
-D:Q020	Q020 MEASURED I	171.8 171.2 A	mps
-D:Q021	Q021 MEASURED I	2.1 1.648 A	mps
-D:Q022	Q022 MEASURED I	328.5 328.4 A	mps
-D:Q023	Q023 MEASURED I	643.7 643.8 A	mps
-D:Q024	Q024 MEASURED I	790.5 790.4 A	mps
-D:Q025	Q025 MEASURED I	840 839.1 A	mps
! M5 Final-Focus 1	rims		
-D:VT018	Vert trim 018 - M5 line	-2.5 -2.495 A	mps
-D:V1023	Vert trim 023 - M5 line	-6 -5.995 A	mps
			_
-D:HT020	Horz tirm 020 - M5 -12.5	-17.1 #-17.07 A	mps .T
D:HT024	Horz trim 024 - M5 -10	-7.3 #-7.29 A	mps
I NC-1 Storage Sta		15500	
E:G2RN1D	g-2 RON ID	15500	
E:G2EVID	g-2 EVENT ID	91/8	
E:G2TOH	g-2 TO PHT H INTEGRAL	228946.27	
E:G210B	g-2 TO PHT B INTEGRAL	231281.83	
E:G20LST	g-2 HLL CLUSTERS	1847.125	
E: G2LNCH	g-2 LHUNCH	14.875	
E:02DCHY	g-2 e+ FRON HOUN DECHY	387.25	

 Muon g-2 Experiment (MC-1) Fermilab Accelerator Division

Two types of studies: (1) beam focusing, (2) beam steering

21 2018-08-17 N. S. Froemming | NuFact18 | The Muon g-2 Beamline

Beam-focusing studies

Quad studies: Beam focusing

22 2018-08-17 N. S. Froemming I NuFact18 | The Muon g-2 Beamline

Use new tuning variables in ACNET

Muon Storage vs. (Q024, Q025) Current, Inflector = 2777A (Readback)

RING

Beam steering studies

23 N. S. Froemming | NuFact18 | The Muon g-2 Beamline 2018-08-17

RING

Major problem at this point:

Only ~20% of design value observed for decay e+/fill!

24 2018-08-17 N. S. Froemming | NuFact18 | The Muon g-2 Beamline

Design more sophisticated studies

Muon Capture vs. Injection Beam Width/Focusing Parameters @M5end

25 2018-08-17 N. S. Froemming | NuFact18 | The Muon g-2 Beamline

Direct measurement of the beam Courant-Snyder parameters

Muon Capture vs. Injection Beam Width/Focusing Parameters @M5end

Develop multi-parameter tuning knobs (MULTs)

Muon Capture vs. Injection Beam Width/Focusing Parameters @M5end

Outline

- Experiment overview
- Optimization of the muon g-2 beamline
- Discovery of a problem
- Conclusion & path forward

The required kick $\Delta x'$ is provided by the kicker field strength

Strong indications from simulation the kickers are weak

Effects of kicker strength

The kick was increased, stored beam was DOUBLED

31 N. S. Froemming | NuFact18 | The Muon g-2 Beamline 2018-08-17

225e+/fill => 580 e+/fill

Conclusion

Successful commissioning and beamline optimizations

32 2018-08-17 N. S. Froemming I NuFact18 | The Muon g-2 Beamline

Successful Run 1: ~2X BNL statistics

Conclusion

- The g-2 experiment is now well on its way
- First publication expected within one year
- Kicker improvements this summer
- Quad reliability this summer
- Ionization cooling in upstream beamline = higher muon flux in g-2 ring
- 10X BNL next year
 10X BNL following year
- Stay tuned

Date 34

Measured g-2 ring kicker pulses

