Fermilab Science

The Integrable Optics Test Accelerator

Ben Freemire (NIU) & Jeff Eldred (FNAL) NuFact 2018, Virginia Tech Thursday, 16 August, 2018 In partnership with:

Contents

- Introduction
- Fermilab Accelerator & Science Technology facility and Integrable Optics Test Accelerator
- Experimental Program Integrable Optics
- Experimental Program Space Charge Compensation using an Electron Column
- Status & Schedule
- Outlook

Present Hadron Machine Limitations

- Beam loss major contributor to machine operating limits
- 1 W/m loss accepted, independent of beam power
- Larger beam power means better control of losses
- We will use Fermilab as an example in this talk
- Upgrade plans call for larger bunch intensity & beam power
- 1.2 MW seems achievable using existing technology
- Innovative accelerator physics techniques
 enable 2+ MW operation

DUNE Physics Sensitivity & Staging

S. Söldner-Rembold, FNAL Users Meeting 2018

- DUNE needs 2.4 MW beam power to achieve physics goals
 - Allows for 5σ measurement of mass hierarchy, and 3-5σ measurement of CP violation for most values of δ_{CP}
- Relies on staged implementation of LBNF
 - Increase detector fiducial mass
 - Increase beam power 1.2 \rightarrow 2.4 MW

Fermilab Accelerator Complex of the Future

- To achieve 1.2 MW (PIP-II), NC linac must be replaced with SC linac
- To achieve 2+ MW (PIP-III), booster must be replaced
- 'Integrable' RCS is robust & costeffective solution

Integrable Optics Test Accelerator

- Fermilab Accelerator & Science Technology (FAST) facility home to the Integrable Optics Test Accelerator (IOTA)
- Storage ring for advanced beam physics research

- Accepts both electrons and protons
- Experimental program includes
 - Nonlinear Integrable Optics
 - Space Charge Compensation
 - Optical Stochastic Cooling

Nonlinear Integrable Optics

7 16/08/2018 B. Freemire & J. Eldred | Integrable Optics Test Accelerator | NuFact'18

Nonlinear Integrable Optics

- Strong nonlinear focusing can be beneficial to accelerator beams:
 - Decoherence suppresses beam halo formation
 - Landau damping mitigates collective instabilities
 - Steep Hamiltonian resistant to perturbations
- However, octupoles introduce fourth-order resonances which have to be carefully corrected or avoided
- For nonlinear integrable optics, the lattice optics are carefully tuned so that the nonlinear channel *does not introduce any resonances*
- There will be two integrals of motion for the two transverse degrees of freedom

🛟 Fermilab

Danilov-Nagaitsev Integral Design

Time-independent kick:

Nonlinear kick separable in elliptic coordinates:

V. Danilov, S. Nagaitsev "Nonlinear Lattices with One or Two Analytic Invariants" PRST-AB 2010

- Drift with matched beta functions and zero dispersion
- Followed by T insert with pi-integer phase advance
- Appropriate selection of potential in drift provides time-independent kick (avoid resonances)

‡ Fermilab

Simulation of Anti-Damper in the IOTA Lattice

• Emulate a collective instability with an anti-damper:

$$\frac{\Delta p}{p} = g \left\langle x \right\rangle$$

 Nonlinear element reduces max centroid oscillation by factor of 50 and reduces particle loss by factor of 100

General Lattice Strategy for Integrable Optics

- 1. Design for a standard FODO lattice with arcs and straights
- 2. Match beta in nonlinear insert with focusing triplet
- 3. Adjust FODO cell to eliminate dispersion in nonlinear insertion
- 4. Adjust phase-advance between nonlinear insertions to pi-integer
- Nonlinear Integrable Optics at cost of increased circumference

‡ Fermilab

Integrable RCS Design

Periodicity: 12 Circumference: 636 m Bend-radius rho: 15.4 m Max. beta x,y function: 28 m Max. dispersion function: 0.22 m

RF insertion length: 7.2 m, 4x 1.3 m NL insertion length: 12.7 m

Insert phase-advance: 0.3 Minimum c-value: 3 cm Beta at insert center: 5 m

Betatron tune: 21.6 Natural chromaticity: -79 Synchrotron tune: 0.08

Eldred, Valishev IPAC 2018

Transverse Beam Halo in iRCS Simulation

Stable for at least 5,000 revolutions, halo

Caveat: perfect lattice with no errors

strongly suppressed

High Intensity Simulation of iRCS

- Beam injected with 20% mismatch
- Laslett tune shift of 0.4, corresponding to 3.2e13 protons
- Horizontal Distribution over time Distribution of Cell Betatron Tune 4.0 0.72 3.5 2018 0.70 0.1% Halo 3.0 (units of σ_x) Valishev IPAC Qy (fractional) 2.5 0.68 2.0 0.66 1.5 × 1.0 Eldred, 0.64 0.5 0.0 100 200 300 400 500 0.88 0.94 0 0.86 0.90 0.92 Revolutions Qx (fractional)

•

Space Charge Compensation

16 16/08/2018 B. Freemire & J. Eldred | Integrable Optics Test Accelerator | NuFact'18

Space Charge Compensation

- Another way of mitigating beam loss is through space charge compensation
- Undesirable effects of Coulomb repulsion can be mitigated by making beam pass
 through plasma column of opposite charge with same charge distribution
 - Required total charge of plasma column decreases with increasing beam energy
- Concept successfully applied to transport high current, low energy proton and H⁻ beams in RFQs of linacs
- In circular machines, suppression of e-p instabilities can be achieved using a solenoidal magnetic field of sufficient strength

‡ Fermilab

Electron Lenses

- Electron Lenses successfully deployed at Fermilab (and Brookhaven and ...) to compensate space charge tuneshift
- External electron beam injected copropagating with beam for short region
- Transverse profiles must be carefully matched
- Electron gun provides electron beam
- Strong solenoid magnet confines electrons and suppresses instabilities
- Additional magnets needed for injection and extraction

Electron Columns

- Similar to Electron Lens
 - Electrons provide negative charge to compensate Coulomb repulsion
- Electrons produced by ionization of gas by beam in region of Column
- Electron transverse distribution matches beam intrinsically
- Electrodes at both ends provide longitudinal confinement

- Solenoid magnet confines electrons transversely
 - Strong enough to suppress e-p instability
 - Weak enough to allow plasma ions to escape
- Does not require electron gun, collector, or transport magnets
- Does require additional pumping to maintain vacuum in rest of ring

•

Electron Column Status

- Space charge compensation using an Electron Column planned for proton beam operation in IOTA
- Simulation studies underway to
 - Predict evolution of beam and Column
 - Optimize Column parameters
 - Gas density
 - Electric & magnetic field strength
- Two passes of the IOTA proton beam through Electron Column show space charge compensation
 - Some key plasma processes missing
 - Recombination
 - Particle collisions
- Inclusion of rest of IOTA lattice in simulation underway

Particle Distributions After First Pass

Northern Illinois University

- Transverse profile of plasma electrons at Column center and beam well matched after first pass
- Density of electrons approaching that of beam

Freemire, et al, IPAC 2018

Space Charge Compensation After First Pass

- To quantify effect of space charge compensation, simulations with ionization (SCC) and without ionization (no SCC) performed
- Significant reduction in radial electric field within beam radius observed

🛟 Fermilab

Particle Distributions After Second Pass

- Transverse distribution of electrons still closely matched to that of beam
- Density of electrons now greater than beam
- Ion density also surpasses beam density
 - Leads to reduction in space charge compensation

Space Charge Compensation After Second Pass

- Degree of space charge compensation similar to first pass
- Transverse slice shown at center of Column
- Plasma oscillations result in non-homogeneity of local density
- Compensation determined by average plasma distribution over length of Column

Fermilab

Status & Schedule

- Vacuum system for IOTA ring completed July 30th
- Cooldown of cryomodules underway
- Commissioning of electrons in IOTA imminent
- Experiments with electrons through 2019
- Shutdown to install RFQ for proton beam late 2019
- Experiments with protons ~2020

Outlook

- Accelerator R&D at IOTA could lead the way to more intense beams, both at Fermilab and abroad
- FAST/IOTA excellent opportunity for accelerator physics & engineering students
- Strong experimental program at IOTA including
 - Nonlinear integrable optics
 - Space charge compensation
 - Optical stochastic cooling

• We welcome collaborators interested in developing technology to enable the production of bright beams

Acknowledgements

- Thank you to all of the FAST/IOTA team, in particular Vladimir Shiltsev, Sasha Valishev, and Swapan Chattopadhyay
- The rest of the Electron Column group: Giulio Stancari, Chong Shik Park, Moses Chung, Chad Mitchell, and Gregg Penn
- This work is supported by the US DOE Office of HEP, and the General Accelerator Research and Development Program

Backup Slides

Electron Column Simulation / IOTA Parameters

Beam Parameters		Hardware Parameters	
Beam Species	Proton	Column Length	1 m
Beam Energy	2.5 MeV (p = 68.5 MeV/c)	Pipe Radius	2.54 cm
Beam Current	8 mA	Electrode Positions	0, 100 cm
Beam Pulse Length	1.77 µs	Electrode Strength	-5 V
Beam Distribution	KV (transverse), Step function (longitudinal)	Solenoid Field	0.1 T

Gas Parameters		Numerical Parameters		
Gas Species	Hydrogen	Particles Injected/Step	500	
Gas Density	1.65x10 ¹³ cm ⁻³ (5x10 ⁻⁴ torr)	Grid Spacing, x,y,z	0.5, 0.5, 1.0 cm	
Ionization Process	$p + 2H_2 \rightarrow p + e + H_3^+ + H$	Time Step	70 ps	
Ionization Cross Section	1.82x10 ⁻¹⁷ cm ²	Simulation Length	1.83 µs	
Plasma Electron Energy, Spread	45 eV, 19 eV	Number of Passes	2	

