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Muon lonization Cooling Experiment

@ Demonstration of ionization cooling in a setting relevant to
muon accelerators

e measure performance in various modes of operation and
beam conditions, thereby investigating the limits and
practicality of cooling

e study aspects critical to performance (multiple scattering,
energy loss, emittance evolution)

o validate design & simulation tools

@ Concept

Track each muon before & after cooling hardware

Can form virtual beams in offline software

Designed for measuring relative change in emittance to 1%
Accelerator R&D in the form of a particle physics
experiment
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Muon lonization Cooling Experiment

@ Demonstration of ionization cooling in a setting relevant to
muon accelerators

e measure performance in various modes of operation and
beam conditions, thereby investigating the limits and
practicality of cooling

e study aspects critical to performance (multiple scattering,
energy loss, phase space evolution)

e validate design & simulation tools

@ Concept

Track each muon before & after cooling hardware

Can form virtual beams in offline software

Designed for measuring relative change in emittance to 1%
Accelerator R&D in the form of a particle physics
experiment
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Analysis status

@ Full suite of tools with detailed material and field
distributions

@ Excellent agreement for beam profiles
(upstream/downstream), transmission, optical functions
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Analysis status

@ Full suite of tools with detailed material and field
distributions

@ Excellent agreement for beam profiles
(upstream/downstream), transmission, optical functions
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Analysis status

@ Full suite of tools with detailed material and field
distributions

@ Excellent agreement for beam profiles
(upstream/downstream), transmission, optical functions
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Measuring beam cooling

@ Transverse normalized emittance commonly used to
characterize phase space volume

e works well for Gaussian beam through linear optics with no
losses

e not as useful in the presence of nonlinear effects and
limited transmission (eg. scraped beam)

n%
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Measuring beam cooling

@ Transverse normalized emittance commonly used to
characterize phase space volume
e works well for Gaussian beam through linear optics with no
losses
e not as useful in the presence of nonlinear effects and
limited transmission (eg. scraped beam)
@ lonization cooling demonstration in MICE
e strong coupling between transverse dimensions in
solenoidal focusing
e high precision required for detailed comparison in a wide
range of beam and optics parameters
e including cases with limited transmission
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Measuring beam cooling

@ Transverse normalized emittance commonly used to
characterize phase space volume
e works well for Gaussian beam through linear optics with no
losses
e not as useful in the presence of nonlinear effects and
limited transmission (eg. scraped beam)
@ lonization cooling demonstration in MICE
e strong coupling between transverse dimensions in
solenoidal focusing
e high precision required for detailed comparison in a wide
range of beam and optics parameters
e including cases with limited transmission

@ Use quantities that are robust and relevant
e transverse amplitude

@ subemittance, fractional emittance
e phase space density, core volume
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Normalized RMS transverse 4D emittance ¢

1
€| = 7|Z‘1/4

m,c
defined through phase space covariance matrix *

Oxx Oxpx Oxy Oxpy,
g g g g
== UJI:;X Usgpx ai}xfy a;x)py » oap = ((a—(a))(b— (b))
x y
Opyx Opypx  Opyy  Opypy

corresponds to volume V of 4D rms ellipsoid and indicates an
average phase space density
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Evolution of RMS emittance

@ solenoid mode optics, LiH absorber, 6-mm 140-MeV/c
input beam

@ limited transmission + betatron motion
= large apparent cooling at downstream tracker plane

@ rms emittance is a poor indicator in this case
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Transverse single-particle amplitude

Defined as
Ar=c u'xu @ Associated with phase space
volume similar to rms ellipsoid
(emittance)

@ Provides density estimate at every

vV = (X,Px, Y, Py) sample point

for centered phase
space coordinates

1A
p(Vi) = po exp [_Zeﬂ

u=v-—(v)

Da

V' = mnAy

/ @ Allows identification of
low A, < high p core
Q - high A, < low p tail

@ Highest amplitude particles can be
removed iteratively to prevent bias
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Amplitude reconstruction example [simulation]

@ 6-mm 140-MeV/c input beam, solenoid mode optics
@ Last (most downstream) measurement plane
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Poincaré sections [data] (upstream)
6-mm 140-MeV/c beam — flip mode — LiH
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Poincaré sections [data] (downstream)

6-mm 140-MeV/c beam — flip mode — LiH
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Subemittance

@ For a parent beam of n particles, select a fraction « from
the core

@ a-amplitude A, is the largest amplitude in the a-sample
A, = €| at a=9% for Gaussian beam in 4D

@ 9% is the 1-0 volume fraction in 4D

@ a-subemittance e, is defined as the rms emittance of the
a-sample
€y <€

@ If an identical fraction « is selected upstream and

downstream
ANA, ANe, A€

Aa en €1 ’
for Gaussian core with full transmission W
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Subemittance evolution

6-mm 140-MeV/c beam — flip mode — LiH
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Fractional emittance

@ The a-fractional emittance ¢, is defined as the phase
space volume occupied by the core fraction « of the parent
beam.

@ Found by calculating the volume of the convex hull of the
a-sample (smallest convex set containing all the points)

@ Fora=9%
—1( mce,)?
ea—2 s €1

@ For small change

A A
5= w1 B
€1 €a

~ 20

n%
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Fractional (9%) emittance evolution

6-mm 140-MeV/c beam — flip mode — LiH
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Non-parametric density estimation

@ Amplitude based methods work well for Gaussian core,
small fraction of a nonlinear beam

@ Non-parametric density estimators can be used to extend
the analysis

@ Several methods considered including

e optimally binned histograms

o k-nearest neighbors (KNN)

o tessellation density estimators (TDEs)
o kernel density estimation (KDE)

@ kNN and KDE examples follow

n%
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k-Nearest neighbor algorithm

= 3 =
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Yagmur Torun

To find the density p(x) at a
point x in phase space, identify
nearby data points x;. Using
the distance Ry to the
kth-nearest point

k
p(X) = ViR

where V(Rx) is the volume of
the 4-ball with radius R

V =n2R}/2
Near optimal results for

k=+/n
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KNN density estimate [simulation]

@ 6-mm 140-MeV/c input beam, solenoid mode optics
@ Last (most downstream) tracker plane
@ reconstructed 4D density projected to (y, py) = (0,0)
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Poincaré sections [KNN + data] (upstream)

6-mm 140-MeV/c beam — solenoid mode — LiH
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Poincaré sections [KNN + data] (downstream)

6-mm 140-MeV/c beam — solenoid mode — LiH
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Contour levels

@ Given the cumulative distribution function F for the beam

@ find the density level p, (a-quantile, inverse of CDF) for the
contour that encloses core fraction « of the beam

pa = p(F~(ax))

@ The evolution of p, shows cooling (ratio independent of «
in any dimension for purely Gaussian input/output beams)

d
Plo

/pd

d
Pa

Plo

&€ «

@ Can also use the volume of phase space V, that has

P> Pa h\éf/
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(9%) Contour density evolution (kNN)

6-mm 140-MeV/c beam — LiH —flip
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(9%) Contour volume evolution (KNN)

6-mm 140-MeV/c beam — LiH —flip
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Kernel density estimation

Density estimate p at point x

n 7le=1
1 X — X . T
X) = — K 6 ."" © o Data Points
plx) = — ; (=)
= 8a
where K is called the kernel function IR
w2
/ K(x)dx =1
Arbitrary Coordinates [a.u.]
and h, the bandwidth parameter. For o ]

d-dimensional phase space, use
Gaussian kernel

p(X) Z exp [—;(x —x) T (x - x,-)]
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DE example
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KDE example
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Emittance exchange

@ Cooling mainly transverse in a linear channel
Energy loss Acceleration
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Emittance exchange

@ Cooling mainly transverse in a linear channel
Energy loss Acceleration

L H ...... @1@

@ Longitudinal cooling requires momentum-dependent
path-length through the energy absorbers

E— —_—
E—— —_—
_— —_—
_— —_—

n%
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Emittance exchange

@ Cooling mainly transverse in a linear channel
Energy loss Acceleration

@ Longitudinal cooling requires momentum-dependent
path-length through the energy absorbers

(GSe W

— —
R —— —
_— —
B —

@ Wedge shaped polyethylene absorber for demonstration of
(reverse) emittance exchange in MICE
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Reverse emittance exchange
6mm 140-MeV/c beam — polyethylene wedge

MICE [Simulation]
ISIS Cycle 2017/03

Run 1
MAUS v3.2.0

MICE Preliminary
ISIS Cycle 2017/03
Run 10534

MAUS v3.2.0

-50 0 50
x [mm]
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Reverse emittance exchange

6mm 140-MeV/c beam — polyethylene wedge

5 L + MICE [preliminary] '§ C MICE [preliminary]
8 4000~ 55 Cycle 201700 § 40001 155 Cpee 201703
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@ No RF — longitudinal
space is 1D (E)
e Longitudinal heating
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Reverse emittance exchange

6mm 140-MeV/c beam — polyethylene wedge
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@ Unique single-particle measurement capabilities, large
data sets and mature analysis tools of MICE allow detailed
studies of the beam phase space

o Amplitude based analysis used to avoid artifacts due to
nonlinear transport

e Core density/volume used for selecting the portion of the
beam that is transmitted

e Non-parametric density estimators substantially
independent of the underlying distribution

n%
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@ Unique single-particle measurement capabilities, large
data sets and mature analysis tools of MICE allow detailed
studies of the beam phase space

o Amplitude based analysis used to avoid artifacts due to
nonlinear transport

e Core density/volume used for selecting the portion of the
beam that is transmitted

e Non-parametric density estimators substantially
independent of the underlying distribution

@ Successful demonstration of ionization cooling in realistic
environment
e Techniques/results directly applicable to practical muon
accelerators
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@ Unique single-particle measurement capabilities, large
data sets and mature analysis tools of MICE allow detailed
studies of the beam phase space

o Amplitude based analysis used to avoid artifacts due to
nonlinear transport

e Core density/volume used for selecting the portion of the
beam that is transmitted

e Non-parametric density estimators substantially
independent of the underlying distribution

@ Successful demonstration of ionization cooling in realistic
environment
e Techniques/results directly applicable to practical muon
accelerators
@ Special thanks: lots of material from F. Drielsma
(U. Geneva) and T. A. Mohayai (lllinois Tech), soon-to-be
MICE Ph. D.s # 22, 23
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@ Unique single-particle measurement capabilities, large
data sets and mature analysis tools of MICE allow detailed
studies of the beam phase space

o Amplitude based analysis used to avoid artifacts due to
nonlinear transport

e Core density/volume used for selecting the portion of the
beam that is transmitted

e Non-parametric density estimators substantially
independent of the underlying distribution

@ Successful demonstration of ionization cooling in realistic
environment
e Techniques/results directly applicable to practical muon
accelerators
@ Special thanks: lots of material from F. Drielsma
(U. Geneva) and T. A. Mohayai (lllinois Tech), soon-to-be
MICE Ph. D.s # 22, 23 [previous 2 speakers were #17, 18] h-\’
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