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Emittance and Amplitude
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Defining Emittance

The volume of phase-space occupied by an
ensemble of particles.

In MICE we focus on the 4-dimensional,
transverse, normalised, RMS emittance,
ε⊥, which corresponds to the central 1-
sigma of a Gaussian distribution in x, px,
y, py space.

Calculated from the covariance matrix of
the ensemble Σ, and the muon mass, m.

ε⊥ = |Σ|
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First measurement of emittance of the MICE Beam

• Time-of-flight counters used for primary
event selection,

• Upstream spectrometer used for
emittance reconstruction,

• Single-track events with a muonic time of
flight and a good reconstruction,

• Analyse beam in 8 MeV/c momentum
bins, twice the momentum uncertainty,

• Statistical and systematic errors evaluated
from all correlations in covariance matrix.
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Defining Amplitude

[mm]A
0 10 20 30 40 50 60

#
 M

u
o

n
s

0

100

200

300

400

500

Analysing emittance evolution on a muon-
by-muon basis.

The Single Particle Amplitude defined as
the scalar distance in phase-space of a
particle (with vector v) from the centre of
the ensemble (with covariance matrix Σ).

A⊥ = ε⊥vᵀΣ−1v
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Amplitude and Emittance
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[simulation]MICE
ISIS Cycle 2016/04

Run setting 1.2_6mm

MAUS v2.9.1

x-px Phase space, coloured by the
individual particle amplitudes.

• Can see the effects of filamentation,

• Core of the beam has a different
orientation to the tails,

• Ionisation cooling primarily affects the
core of the beam,

• Filamented tails are unlikely to be
transmitted in a real cooling channel.

Amplitude distributions can be used to
analyse the migration of particles in the core
of the beam.MICE
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The Cooling Equation

This was the equation driving the development of the MICE Experiment.

Rate of change
of emittance

Cooling Term Heating Term= +-

(Mean Energy Loss)
(Multiple Coulomb

Scattering)

We needed material with large radiation lengths (X0) and high mean energy loss
(〈dE/dx〉), variable emittance (ε⊥) and variable beta function (β⊥).

MICE

8



The MICE Experiment
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The Analyses

The MICE Experiment is finalising the results from our key measurements:

1. Precision measurements of muon phase space, with comparisons to simulation,

2. Studies of multiple coulomb scattering and energy loss through LH2 and LiH,

3. The first measurement of phase space evolution through LH2 and LiH absorbers,

4. Studies of non-parametric phase space evolution,

This is an exciting time us - what you see today is only a snapshot!

MICE
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The Experiment

7th February 2015
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The Experiment
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Beam Selection and Cuts
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Beam Selection

Selecting the beam entering the cooling channel
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Upstream Cuts

Selecting the beam which is well reconstructed and contained within the fiducial
volume.
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Downstream Cuts

Selecting the beam which is well reconstructed and contained within the fiducial
volume.
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Comparison with Simulation
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Reconstruction and Analysis
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Analysis Process

1. Combine raw data from all runs with the same configuration,

2. Perform detector-level reconstruction: track fitting, spacepoint identification, etc.

3. Use global tracking routines to extrapolate tracks between detectors, ensure only
one muon was present within the apparatus,

4. Apply cuts to select events with muonic properties,

5. Perform emittance and amplitude reconstruction.

MICE
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The Data
I will show data from a single magnetic configuration (out of ≈16 recorded).

• Recorded during ISIS User Runs 2017/02 & 2017/03,

• Nominal beam emittances of 6 mm and 10 mm,

• Mean total momentum of 140 MeV/c,

• Absorber Settings:
1. “No Absorber” Empty volume with single set of vacuum windows,
2. Liquid Hydrogen Absorber (“LH2”) 21 litre Al flask,
3. Lithium Hydride Absorber (“LiH”) Disk ∼ 65mm thick.

From simulation we expect both 6 mm and 10 mm beams to demonstrate emittance
reduction.

MICE
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Comparison of Single Particle Amplitudes - 6 mm
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Comparison of Single Particle Amplitudes - 10 mm
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Cumulative Distributions
In amplitude-space we are actually looking for a subtle effect, so consider the ratio of

the cumulative distributions. i.e. define:

RN
Amp =

N∑
n=1

Ampdown
n

N∑
n=1

Ampup
n

This highlights the effect of muons migrating from high amplitudes to lower
amplitudes.

When RAmp > 1 We have cooling!

MICE
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Comparison of Cumulative Amplitude Distributions
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Conclusions

1. We have successfully demonstrated that Low-Z materials cause particles to
migrate from higher to lower amplitudes - Ionisation Cooling Works!

2. The last impediment of a neutrino factory has been removed,

3. We have a simulation that accurately represents the behaviour of the beam,

4. Demonstrated high purity, high efficiency, and high precision in all measurements,

5. A good understanding of the statistical and systematic sources of uncertainty.

And this is just the tip of the iceberg!
We’re now engaging in a systematic study of ionisation cooling.
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