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MICE: Muon ionization Cooling Experiment

For a complete introduction to MICE and an overview of all of the latest results see P.
Soler’s talk: MICE Results (Thu 11:50)

Why use muons?
@ muons are ~200 heavier than electrons thus the rate of emission of
synchrotron/bremsstrahlung radiation is lower allowing for more compact facilities
@ Could be used as a high quality beam for a Neutrino Factory

@ The p has a short lifetime 2.2 us - the only cooling technique which can be
employed is ionization cooling

Goals of MICE

@ Design, build, commission, and operate a section realistic cooling channel

@ Measure its performance in a variety of modes of operation and beam conditions

@ Measure material properties of potential absorbers (LiH and liquid hydrogen)
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The MICE Experiment: Step IV

lonization Cooling
The rate of change of normalised emittance due to ionization cooling is:

dep  en <%> $1(13.6MeV)? (1)
dz = BPE \ dz 2B3EmX
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Overview of models of multiple Coulomb scattering

@ The PDG recommends this formula, based on work by Lynch and
Dahl [1, 2] incorporating path length effects (accurate to ~11%)

72Nz
1-+0.0381In <52X0>] (2)
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@ The resulting distribution is non-Gaussian with the shape dependant
on the thickness of the absorber
@ Goal of MICE is to measure de,/dz to precision of 0.1%
e MUSCAT [3] showed poor agreement between GEANT simulations
and low Z material scattering data
@ MICE has taken scattering data for muons on a LiH target.
» LiH composition: 81% °Li, 4% "Li, 14% H (trace of C, O, and Ca)
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Overview of models of multiple Coulomb scattering

o GEANT4, full Legendre polynomial expansion & uses the Urban
scattering model [4] for most particles and the Wentzel /Coulomb
models for muons.

Moliere [5] calculation solves the scattering transport equation
describing the scattering distribution with a single variable x,, the
resulting distribution is non-Gaussian

@ ELMS covering both energy loss and multiple scattering based on
electromagnetic first principles, was developed by Allison and Holmes
[6, 7] and shows good agreement with hydrogen data.

@ Cobb-Carlisle model [8, 9], samples directly from the Wentzel
single-scattering cross-section and simulates all collisions with nuclei
and electrons. Includes a cut-off for the nuclear cross-section and
separate contributions from the nuclear and atomic electron scattering
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Scattering Data

@ Field off data sets were collected in Upstream, Data
ISIS run periods 2015/03 and
2015/04

@ A momentum dependent multiple
scattering measurement is made

[ MICE preliminary
[ LiH, March 2016, MAUS v2.5 N

dYdz
o

@ Measure empty channel scattering

> Convolved with physics model
of scattering in absorber —
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Selection

x10% TOF Between Stations 1 and 0

E MICE preliminary 172 MeVic
QO LiH. March 2016, MAUS v2.5
[ 200 Mevic

240 MeVic

MICE preliminary M 72 Mevic
LiH, March 2016, MAUS v2.5
1 200 Mevic

240 MeVic
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Procedure
@ Require an US track. If a DS track not extant, statistics set to
overflow values.
@ Analysis done in 200 ps TOF bins, as shown in TOF plot

@ Require projection of US tracks to appear, when 12 mrad radial angle
is added, within central 140 mm radius of DS plane 1 projected

v
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Momentum Correction

A correction must be applied to the P as reconstructed by the TOF to
account for the additional path length and energy loss in the channel

£ 350,

Corrected P upstream vs MC Truth

£ 350,

Corrected P downstream vs MC Truth
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@ The exact P at
the centre of the
absorber can be
described by an
analytic
expression which
is the second
order expansion
of the Taylor
series in p/mc

@ Caveat is
constant energy
loss is assumed in
derivation
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Scattering Data

@ Define projection angles

(v x B i A— - yrmee
0, = atan( P2S (¥ x pus) (3) o L
¥ % pusllpps| £
& oot
and 0.01]
GX — atan st . (pl{\s X (5} X pUS) e 500 Agxoéadia"%)‘s
lpus % (¥ % pus)llpps| e .
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@ A simple cross check is that £
62 + 0}2, ~ 02.,,, where the Ozt is
defined as:

Pus - PDs
(5

cos 6 =
T 1 pus||pos|
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Tracker Acceptance
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@ Match track upstream and downstream
@ TOF selection
@ Calculate angle 6 as described in slide 9
@ Downstream acceptance is defined
No. of tracks in 6 bin MC Truth that are reconstructed 6
No. of tracks in 8 bin MC Truth (6)
@ Correction done on bin-by-bin basis dividing by measured acceptance
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Physics Model & Scattering Prediction

Three different physics models are used to make the scattering prediction,
GEANT4, Carlisle-Cobb & Moliere, these are convolved with the empty
channel data
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Deconvolution of Raw Scattering Data

@ Use an iterative algorithm from

RooUnfold [10] that uses the [ =
Bayesian conditional probability %104 g

to characterize the response of %10,2 f—gf#~“’"~'°-§,‘f%w

the reconstructed scattering £ f?‘ i,
angle to the true scattering 107y ff ﬁ*fw ‘
angle w i J . |

4 1 Il
10006 -004 002 0 002 004 006
A8, (radians) __

@ Right: example output from
this algorithm

Bayes Theorem
P(E;|Ci)Po(Ci)
=1 P(E;|C)Po(C1)

P(CilE;) =

e We want C; = A@?,bs the deflection angle in the absorber material.
o We measure E; = AQ¥aker the deflection angle measured at the first

tracker plane
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Systematics

@ A study of the systematics is in progress

@ The results remain preliminary

@ Several sources have been considered

>

vV vy vy VY VY

Material thickness uncertainties
Alignment uncertainties

TOF uncertainties

Fiducial volume uncertainties
Pion contamination

Definition of scattering angles
Channel acceptance

@ Further work is required to clarify the various contributions
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Results slide - deconvolution

Preliminary MICE result
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@ Measurement of scattering at each nominal momentum point
following the deconvolution procedure - final value is a Gaussian fit to

the central -40 to +40 mrad
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© as a Function of Momentum
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@ Scan across the entire momentum range and measure scattering in
both projections in each bin

o The fitted a is compared to , /%-(1+ 0.038In%-)
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Conclusions

@ MICE has measured multiple Coulomb scattering of p with
140 < P < 240 MeV /c off lithium hydride

@ Data has been compared to popular simulation packages such as
GEANT4 and other relevant models such as Moliere and Carlisle-Cobb

A study of the systematics is in progress, a MICE publication is
currently being prepared

Future work will include a measurement of multiple Coulomb
scattering off liquid hydrogen, measurement with magnetic field in the
cooling channel and energy loss measurement
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Scattering Data

Scattering Angle Definitions

@ In the top diagram both the solid
vectors are in the plane of the square y
i.e. the plain of the board. The y-axis
is coming out of the board

@ If both the up- and downstream
vectors were in the same plane then
the subtraction of the simple
projected angle would be sufficient

@ The bottom figure is a side on view
of the top figure. If the up- and
downstream vectors are in two
different planes then a more
considered approach is required as
detailed in
http://www.ppe.gla.ac.uk/
~jnugent/Projected-angles.pdf
by John Cobb

vy
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