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1. Introduction to RaDIA'TELf;oIIaborafion

= Recent mﬁor acceflerator facilities have been limited in beam
power & operatlon time'by target and wmd.ow surV|vab|I|ty

= Plans for future high power, gigh intensity target facilities will
present even greater challenges

= To maximize the benefit of high power accelerators, these
challenges must be addressed in time to provide critical input

to multi-MW target facility. design, construction and operation
(LBNF/DUNE, J-PARC/Hyper-Kamiokande, ESS, MLF-2" TS...)

-
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Thermal Shock / Stress Waves '
©
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= Fast expansion of material surrounded by cooler material
creates a sudden local area of compressive stress

= Stress waves move through the target
= Plastic deformation, cracking, and fatigue can occur
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= Displacements in crystal lattice, expressed
as Displacements Per Atom (DPA)

+ Embrittlement/ Creep / Swelling

+ Fracture toughness reduction

+ Thermal/electrical conductivity reduction
@

Change of thermal expansion coefficient /
modulus of elasticity

Fatigue response
+ Accelerated corrosion

+ Void formation/ embrittlement caused by “*‘
Hydrogen/Helium gas production (expressed -
as atomic parts per million per DPA,
appm/DPA)

= Recent high-intensity proton target
facilities meet irradiation with a few to
several DPA

L

) ' (d)

Tungsten, 800MeV proton
irradiation at LANSE

° ~ o
+ Effects from low energy neutron irradiations (as afte.r compression to ~20%
strain at room temperature

fusion/fission reactor materials) do not equal S A Mal " lof Nudl
. . . . . . /4 t A4
effects from high energy proton irradiations Materials 343 (alzoo.::)uzr?is;-zoze.uc =
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s Periodic thermal stress wave caused by the intense
proton beam energy deposition = C.J.Densham’s talk

s 750kW operation will cause radiation damage of
~1DPA/ops-year, whereas significant irradiation
hardening and loss of ductility has been reported
with 0.1~0.3DPA (no higher DPA data exists )

s No known data exists on high cycle fatigue (>103
cycles) of irradiated titanium alloys

Beam Power Rep.cycle  POT /100 days
485kW (achieved) 2.5x 10"  2.48 sec 0.9 x 1021
750kW (proposed) 2.0 x 104 1.3 sec |1-_§_:(:1_6§ |
750kW [original plan] |-3_-3_-)£-1_-O_1-4I 2.1 sec 1.3 x 1021
1.3 MW (propose/d/ 3.2 x 10™ ’.:1__1_?3_;_52_ \ / 2.4 x 102
After 2.2 x 102! pot designed ~8M pulses/yr ~1DPA/yr
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Motivation .

= [0 replicate the High-Energy Physics target environment and
provide bulk samples for analysis, high energy, high fluence
and large volume proton irradiations are needed

= These runs, including Post-Irradiation Examination (PIE), are
expensive and can take a very long time

To promote these studies, international and
inter-facility cooperation are necessary

v Accurate targetry component lifetime prediction
v Design robust multi-MW targetry components
v' Develop new materials to extend lifetimes
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RabDI| AT E collaboration

diation amage n ccelerator arget nvironments

7.\ = Founded in 2012 by 5 institutions led by FNAL
Argonne and STFC to bring together the HEP/BES
: : accelerator target and nuclear fusion/fission
materials communities

2= Fermilab EIO%T
9 Science & Technology
Faci lL Council

Pacific Northwest

LA (4 Y\ '\ EUROPEAN

@ =i, 2 . In2017, 2" MoU revision has counted J-PARC

ok Ciemat 74 2 (KEK+JAEA) & CERN as official participants
R e Collaboration has now grown to
http://radiate.fnal.gov 13(14) Institutions, 70 members

Program manager Patrick G. Hurh(FNAL)

- @3z NRC m
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RaDIATE Program Overview I

High Power Proton Beam
Irradiation 88 '

| Specimen Preparation

2= Fermilab

Linac
Isotope
Producer

EUROPEAN
SPALLATION
SOURCE

Science & Technology
@ Facilities Council

BROOKHAAEN PIE

NATIONAL LABORATORY

—) HiRadMat

High-Radiation to Materials

Pacific Northwest
NATIONAL LABORATORY
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2. High Power Proton Irradiation at BLIP

®
and Post-Irradiation Examination (PIE) N\
= Brookhaven Linac Isotope Producer 181MeV rastered beam with
(BLIP) facility to produce medical 165uA peak current
isotope w 116 MeV primary proton 7x10" plcm?-s
beams (3 cm dia. footprint) 8weeks

s Linac capable to deliver protons up to
200 MeV - operate at higher energies
iIn tandem with RaDIATE material
targets upstream

= 15t phase irradiation (2017)

¢ 1.76 x 102" POT in 22d@146pA average

= 2" phase irradiation(Jan-Mar 2018)

+ 2.81x 10" POT in 33d@158uA average

| RaDIATE ! Isotope
[ . f

Example: Accumulated Damage on Titanium:

1.5 DPA at peak (MARS-NRT)
Much more than existing data (~0.3DPA)
Close to that for future MW facility op.yr.
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Specimens and Capsules Assembly

Example: Titanium capsule (US-Ti)

Over 200 specimens
from 6 RaDIATE institutions

1. Beryllium in Ar [FNAL]
2. Graphite in vacuum

1G-430 /ZXF-5Q/GC20 [FNAL]
3/8. Silicon in vac.

Si / Expanded graphite [CERN] grgs -P_gﬁ:_j\\; EL|

SiC-Coated Graphite [J-PARC] | oo TLaALD BV
4. Aluminum in He [ESS] | |
5/7/9. Titanium in He ‘_ | Mesoscale

Several Grades [J-PARC]
3 microstructures [FRIB]
Meso-scale fatigue foil [Oxford]

6. Heavy materials in vac.
TZM, Iridium, CuCrZr [CERN]
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Handling at PNNL PRL Laboratory ;i

e

Capluse shipment
in Type-A
container

Remote-handling
capsule opener

a0
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On-line Observations
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= Irradiation hardening effect

clearly identified
1200
Ti-6AIAV
1000 1
800
g
£
2 600 4
e
@
400 A — 0 dpa
=—0.1dpa
— 018 dpa
—0.24 dpa
200
D L] T T T L] T L]
0 1 2 3 4 5 B

Fig. 13. Irradiation effects on the stress—strain relation of Ti-6Al-4V.

Engineering Strain (%)

N.Simos et al., J.Nucl. Mat. 377 (2008) 41-51

14



Fatigue Testing at Fermilab & at UK .’

Macro-scale Fatigue Testing Meso-scale Fatique Testing
s Gr23 A&STA, Gr2, 15-3Ti

Need to operate near but not on
resonant frequency (c.20kHz) to
generate stress range

UNIVERSITY OF . - .

~
o
=)

1000 g ~ OXFORD
90 | Max Stress (MPa) vs cycles to failure = 600 =
900 - g
®
850 °
[ ] (<) =
800 + + = 500 g
750 AA n g 4 -
X 400 s 8 |
700 ® . ‘EU e S g §
650 A Batch 1(Break) ® 300
so0 @ :Batch 3(Break)
550 ®@:Batch 3(Run-out) Wood & Favor, Ti Alloys Handbook, MCIC-
+ : Literature HB-02, Battelle Columbus Lab, p 5-4:72-23 200
200 10* 10% 10% 107 108 10°
1.00E+05 1.00E+06 1.00E+07 1.00E+08
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3. Thermal Shock Study at HiRadMat Facility g

RaDIATE collaboration is now promoting HRMT43-BeGrid2:

s EXpose non-irradiated and irradiated material specimens at
BLIP to single high intensity beam pulses to compare thermal
shock response

+ lrradiated specimens will include Beryllium, Graphite, Silicon, Titanium,
SiC-coated Graphite, Glassy Carbon specimens from BLIP: First
/unique test with rad. damaged materials

s Follow-up of a past experiment (HRMT24-BeGrid1) to expose
Beryllium to even higher beam intensities than what was
achieved

s Explore novel materials
+ Electrospun nano-fiber mats & foam materials

s Measurement of dynamic thermomechanical response of
graphite slugs in an effort to benchmark numerical simulations

T.Ishida WG1 NuFact2018, Blacksburg, Virginia, USA, August 13, 2018 16



HiRadMat Facility at CERN i

CMS

| — —

North Area

2y,

HiRadMat
I

| e
Bé{m_hrhoniors

1

Beam Parameters

Beam energy 440 GeV

Max. bunch intensity 1.2x10M

No. of bunches 1-—288

Max. pulse intensity 3.5x 10" ppp
Max. pulse length 7.2 us
Gaussian beam size 10: 0.1 -2 mm
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BeGrid1 (HRMT24) completed in Sep. 2015 i

s Consisted of four specimen arrays of thin Beryllium discs and slugs
+ Various commercial grades (S200F, S200FH, PF60, S65F) and thicknesses
+ Real time measurements of temperature, strain and displacement

= PIE of thin disc specimen at the University of Oxford (2016-2017)

Experiment
chamber

Optical path Outer containment
. / box

BPKG/BTV Beam apertures

assembly

Inner containment
boxes

Vertical _ N
lift tower Lo

Rad-hard
HiRadMat camera
mobile table —
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BeGrid-1 Achievements T

= Real-time thermomechanical measurements
+ Instrumented Be slugs in downstream containment boxes
+ LDV for radial displacement measurements

+ Strain and temperature gages average bunch intensity: 1.3x10""
beam ox: 0.3 mm, cy: 0.25 mm

Circumferential strain Circumferential strain

10)(10’5 (Pulse1 Array3 24 bunches) 10 (Pulse 11 Array4 216 bunches)
40 mm, L: 30 mm § § — 5200F | i i i —— 5-200F
i —— S-200FH i | {  ——S-200FH
S I ;- ---------------- ;- ------- ——S65F 1 L S ——S65F ]
8 ,,,,,,,, i S
<o) 24b (3.1x107ppp) | : 21 6b (2 8x1 013ppp)
£ £
— — 6 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
g ab-H-- No reS|duaI plast|c strain - § | S|gn|f|cant re5|dual
UpOn cool- dOWﬂ | L B\ p|ast|c strain @ N
LN ‘ : :
0 02 04 06 08 1 N i os
Time (s) Time (s)

» Distinctive strain response for the three different Be grades
» Residual plastic strain observed upon cool-down
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Post Irradiation Examination Results

= Thin disc specimen PIE performed at University of Oxford

= Optical microscopy and profilometry to measure out-of-plane plastic
deformations

@ 15 mm, t: 0.25, 0.75, 2 mm

2000

Deformation (nm)
= =
8 8
o o

g

Array 1

S-65F grade specimens
u.‘

Array 1—2 mm II

-
i |
1

Array 3

® PF60 (EBSD) m PF60 m S200F = S200FH m S65F m S65F (EBSD)

ki e

All Be grades showed less plastic

deformation than predicted by available
literature strength models

S200FH showed least plastic

deformation, in agreement with advanced
empirical strength model

Array 3

Observed plastic strain ratcheting in

validation of Johnson-Cook strength model

2000
2 mm discs T
E 1500 =
c
i)
%= 1000
E
L g T
5 500 E
144 b 216 b
o ~w—

Array 1

m PF60 m S200F

Array 3 Array 4

m 5200FH m565F
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BeGrid2 (HRMT43) scheduled on Oct.1st week 2018 °

Graphite slug
Thin specimen hoxes

boxes

Vertical base
plate

Support
brackets

Allgnment
masks

T.Ishida WG1

Harizontal
base plate

With remote handling features (captive nuts
in cover boxes) for 3 boxes that will contain
irradiated specimens

L
s %
Glassy carbon
windows (US/DS)
POCO ZXF-5Q . Borosilicate glass

Gafchromic foil fitted viewport

graphite slug

in US window flange

Hermetically-sealed in air to fully contain
specimens and avoid contamination release

Irradiated specimens have been shipped
from BNL to PNNL

+ Assemble specimens in holders and inner
containment boxes
Irradiated boxes to be shipped from
PNNL to CERN for final assembly to
vertical base plate
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Beam-Induced Strain&Stress at BeGrid2

= Increasing beam intensities on different arrays
s Peak beam intensity: 0=0.25mm, 288 x 1.2e11ppb (3.5e13ppp)

+ Peak proton pulse fluence: 9.5 x 105 p/cm?

Graphite

2D axisymmetric ANSYS model

beam

22 Min

Irradiated BLIP graphite specimens
4.5e21 POT (~0.05 DPA)

Beryllium LS-DYNA (Johnson-Cook strength model)

1.251e-02

1.126e-02 :I
1.000e-02 _|

8.754e-03 _

7.504¢-03
6.253e-03
5.002e-03
3.752e-03

2.501e-03

Effective plastic strain at end of cool-down

Irradiated BLIP Be specimens
4.5e21 POT (~0.03 DPA)

Reduced ductility expected (~100 appm He)
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4. Summary and Prospect ¥

BNL-BLIP proton irradiation runs have been completed March 2018

+ The POT / accumulated peak DPA reached to unprecedented values, which
are comparable to MW facility operation

PIE campaign starts now. First outcomes expected within current FY
s Capsules receiving, opening, specimen extraction and cataloguing
s Mechanical testing PIE on Ti alloys, beryllium, iridium, etc.

s Fatigue testing PIE of Ti alloy specimens

+ Radiation damage on high-cycle fatigue in Ti alloys has never been done
before

¢+ Novel meso-scale fatigue testing technique also to be applied at UK
In-beam thermal shock experiment at CERN HiRadMat facility
= |Incorporating various specimens irradiated at BLIP

¢ Testing highly irradiated samples with thermal shock from high intensity beam
has also never happened before

e Assembly of irradiated spec;lmens in holders and inner containment

HPT is very challengmg to materlals The RaDIATE collaboration is to address these
challenges even to be successful with 1-2 MW primary beam power, let alone 4 MW
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Recent / Coming Workshops X

= [he 10th International Workshop on Neutrino Beams and Instrumentation
(NBI2017) + 4th RaDIATE Open Collaboration Meeting
+ Tokai-mura, Ibaraki, Japan, Sep.18~22, 2017
¢ https://conference-indico.kek.jp/indico/event/16/

= RaDIATE 2018 Collaboration Meeting
+ At CERN between 17th and 21st December 2018
¢ https://indico.cern.ch/event/718767/

address topical issues associated with radiation damage in accelerator targets
environment, as well as providing a forum for discussing between experts in this
specialized domain. Contribution to this challenging mission is always welcome !
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