## Neutrino Cross-section Fits: What a NUISANCE

#### NuFACT, WG2 2018-08-17, Virginia Tech Luke Pickering, P. Stowell, C. Wret, C. Wilkinson

















#### This Talk

- Why you should care about 'tuning' neutrino interaction models
- Common problems found in global cross-section fits
- What is NUISANCE
- What do fitters really want? #3 will shock you!



#### Why do we need good interaction Models?

- The aim is to perform measurements of neutrino oscillations.
  - Oscillation occurs as a function of true neutrino energy, which is **not observable**.
- We use models to estimate:  $D(\mathbf{x}_{obs}|\mathbf{x}_{true})$ : *If we see*  $\mathbf{x}_{obs}$ , *what was the true neutrino energy*? We need to understand:
  - Selected backgrounds
  - Selection efficiency
  - Exclusive channel interaction rates and kinematics
- Wrong model  $\rightarrow$  wrong inferred  $P_{osc}(E_{\nu})$ .

$$N_{\text{near}}(\mathbf{x}_{\text{obs}}) = \int d\mathbf{x}_{\text{true}} \underbrace{\mathbf{D}_{\text{near}}(\mathbf{x}_{\text{obs}} | \mathbf{x}_{\text{true}})}_{\text{Smearing, Eff., Pur.}} \underbrace{N_{\text{targ}}\sigma(\mathbf{x}_{\text{true}})\Phi(E_{\nu})}_{N_{\text{Int}}(\mathbf{x}_{\text{true}})}$$

$$N_{\text{far}}\left(\mathbf{x}_{\text{obs}}\right) = \int d\mathbf{x}_{\text{true}} \underbrace{\mathbf{D}_{\text{far}}\left(\mathbf{x}_{\text{obs}} | \mathbf{x}_{\text{true}}\right)}_{\text{Smearing, Eff., Pur.}} \underbrace{N_{\text{targ}}\sigma\left(\mathbf{x}_{\text{true}}\right)\Phi\left(E_{\nu}\right)P_{osc}\left(E_{\nu}\right)}_{N_{\text{Int}}\left(\mathbf{x}_{\text{true}}\right)}$$

$$\begin{array}{c} 2.55 \\ \hline 0 \\ 2.50 \\ \hline 0 \\ 2.45 \\ \hline 2.45 \\ 2.40 \\ 2.35 \\ \hline 38 \\ 40 \\ 42 \\ 44 \\ 46 \\ 48 \\ 50 \\ 52 \\ \hline 0 \\ 48 \\ \theta_{23}[^\circ] \end{array}$$

#### What about uncertainties?

- Need plausible variations of models that can 'cover' the extant data.
- For experimentalists, well-motivated prior uncertainties are *the* reason to compare models to historic data.
  - Hope/assume that the model and associated errors are then predictive for interpreting new data...
- Without the ability to propagate theoretical uncertainties, an interaction model is hard to fully incorporate into an oscillation analysis.





#### How are we getting there?

- More complete models, e.g.:
  - Multi-nucleon effects (Martini, Nieves, ...)
  - Improved pion-production predictions (DCC, MK, MAID, ...)
- High statistics, model independent neutrino-scattering data with associated experimental errors.
  - (Semi-)exclusive samples: CC0 $\pi$ , CC1 $\pi$ ±, ...
  - Novel kinematic projections. e.g.:
    - Available hadronic energy (~energy transfer).
    - Transverse momentum imbalance
- Analyses to constrain understand uncertainties.



#### Anatomy of a Cross-section Fit



### Simple, Right?

- Global Fit Recipe:
  - Add all the data you can find
  - Stir free parameters until mixture is golden brown
  - Serve for updated interaction model and correlated uncertainties!
- But... have to take care:
  - Model parameterizations can be hard to uniquely constrain.
  - Hard to consistently evaluate test statistics.
  - Incomplete data coverage:
    - e.g. Many measurements focus on just charged lepton kinematics.
    - Need to be predictive in hadron kinematics...
  - Signal definitions not always clear/sensible.
- This is a problem we are all working on together, we know things now that we didn't before, but it is still worth highlighting specifics in historic data to be aware of.



#### L. Pickering 7

#### The Proof is in the Parameterization

- Need to take care to not absorb differences into the wrong model components
  - *e.g.* Fitting MiniBooNE CCQE leads to high nucleon axial mass unless you include 2p2h.
- Need projections that can break degeneracies:
  - e.g. Missing transverse momentum in CC0pi at ND280 shows preference for 2p2h.
- Many other examples...





### Hard/Impossible to Evaluate GOF

- Data sets without published correlated errors are difficult to use in a global fit.
- MiniBooNE CCQE(like):
  - Many bins, no published error matrix.
  - What should the contribution to the global GOF be?
    - Fully uncorrelated:  $\sim \sum_{i \in \text{bins}} (\text{Data}-\text{MC})_i^2$
    - **Fully correlated**:  $\sim \sum_{i \in \text{bins}} (\text{Data}-\text{MC})_i^2 / \text{NBins}$
  - If used naively, will incorrectly drive a fit **and more data won't help**...
- But, we need to use the information that this data holds, so cannot just throw it away.



#### PRD 93 072010

|                             | $\chi^2_{ m min}/N_{ m DOF}$ |
|-----------------------------|------------------------------|
| All                         | 117.9/228                    |
| $MINER\nu A$                | 30.3/13                      |
| MiniBooNE                   | 65.7/212                     |
| u                           | 69.1/142                     |
| $ar{ u}$                    | 46.1/83                      |
| ${\rm M}\nu{\rm A}$ vs MB   | 117.9/228                    |
| $\nu \text{ vs } \bar{\nu}$ | 117.9/228                    |

L. Pickering

#### Let's Play... Eyeball that χ2!





#### Let's Play... Eyeball that χ2!

• For each 'data set', guess which MC prediction fits the data better.



Something (A.U.)



#### **How About Now?**







#### What you expected?



Systematic parameter allows normalization change. *e.g.* flux uncertainty.

L. Pickering 13

Systematic parameter allows shift in Something. *e.g.* separation energy

**CHIGAN STATE** 



#### The data is the data is the data

- Sometimes the data is not the data is not the data.
- ANL/BNL CC1pi+1proton discrepancy:
  - Data biased by problems in the neutrino flux models
  - ~ Reconciled by re-analysis.
  - But, no correction for Q2 distribution!
- Need to be familiar with included data sets and tensions between them.
  - May need to assign *confidence* weights to samples in the global GOF.



PRD 90 112017



#### Hidden Model Biases 1

- Un-smearing and efficiency corrections introduce bias.
- From a fitters point of view, it is better to cut out regions of very poor efficiency:
  - Don't want to compare to model-of-the-day contaminated 'data'.
- Very helpful that such plots are in the publication!
- *N.B.* These problems are tricky and ubiquitous, not specifically calling out this publication.



15

#### Hidden Model Biases 2: Stealth mode



- It isn't always so clear: e.g. ND280 CCIncl
  - Practically cannot measure  $\cos(\theta\mu) < 0$ .
  - But, publish total cross-section.
- Similar out-of-acceptance corrections in many recent measurements: *Fiducial* cross-sections are much preferred!



16

#### **Experimental Signal Definitions**

- Not always fully clear from the publication:
  - Getting this correct is essential for interpreting the data.
- e.g. MiniBooNE CCQE C12 data, subtracts:
  - Wrong-sign background CH2.08
     component
  - H2.08 component
  - non-QE component (PDD)
  - o Mis-ID'd π-
- All predicted by NUANCE...
- But, the background subtractions are provided:
  - Might be better to produce H and v-C12 predictions and compare to the

MICHIGess-dorrected data.



#### What Can We Do?

- Build more *hierarchical* analyses:
  - a. Fit nucleon-parameters to bubble chamber data (~ free of nuclear effects, but low statistics)
  - b. Use BC priors to investigate  $0\pi$ ,  $1\pi$ ,  $n\pi$ , ... nuclear-target data separately.
  - c. Combine to a joint fit
  - d. ...
  - e. Profit!
- Nuclear effects mean that interaction channels (e.g. QE) do not map onto single FS topologies (e.g. 0π): cannot study each in isolation.
- **On-going problem:** How best to architecture 'global' cross-section fits?
  - a. Work being done by NUISANCE, GENIE+Professor, many others -currently hovering around **b**.

#### What a NUISANCE



- Global neutrino scattering data comparator and model fitter:
  - Contains hundreds of published data sets with associated errors and signal definitions.
  - The most valuable part of NUISANCE is the person-hours that have been spent checking that these are implemented correctly as possible!
- Applies experimental signal definitions to MC events from: GENIE, NEUT, NuWro, GiBUU, HepMC, ...
- Links to MC event generator interaction systematic uncertainty tools for model parameter fitting.
- Code is open source so analyses can be reproduced and extended: <u>https://nuisance.hepforge.org/</u>

#### L. Pickering 19

## Why NUISANCE might be right for you

- Consistently comparing your model predictions to many data-sets.
- Producing comparisons to your new data set with a variety of MCs --without having to be an expert.
- Ensuring that comparisons to your data are done correctly.
- Tools make cross-section parameter fitting mechanically simple:
  - But, garbage in  $\rightarrow$  garbage out.
  - Choice of data, choice of parameters, structure of fit is the tough bit.



#### **Current work**

- **T2K** (and MicroBooNE):
  - Down select from available models.
  - Better-motivate prior interaction uncertainties
- MINERVA:
  - Benchmarking CCOπ tune (MnvTunev1)
  - Producing a public π-production tune (Paper in prep.).
- Connection to theory:
  - G. King, K. Mahn, F. Nunes comparing to *ab initio* nuclear response models from Lovato, Gandolfi *et. al.*
  - S. Dolan, U. Mosel, comparing GiBUU multi-nucleon predictions to ND280 data.
  - K. McFarland, MINERvA students, benchmarking Z-expansion AxFFQE fits to MINERvA data.



#### **Future work**

0

- Studies of 'forward folding' publication strategy:
  - Publish reco + smearing + efficiency + systematic 0 propagation in formation.
  - May be better for data longevity. 0



**Perevalov** Thesis

1.0

0.5

Energy Transfer [GeV]

L. Pickering

1.5

 $\times 10^{-3}$ 

- pi-A, N-A data sets: Ο
  - 'Standard' technique for validating/tuning hadronic cascade/transport models.

#### What Fitters Really Want from Experiments

- 1. Clear, unambiguous signal definitions, chosen in the context of the detector:
  - If you cannot measure final state muons with  $\theta_{\mu} > 30^{\circ}$ , don't ask the MC to correct for it!

L. Pickering

- 2. Covariance matrices describing the correlated errors between:
  - **NEED**: Bins in a projection
  - **Very useful**: Projections of the same sample
  - Would be nice: Different samples from the same experiment
- 3. Interesting projections of both lepton and hadronic (and composite...) variables!



#### What Fitters Really Want from Theory

- 1. Interaction models to be implemented in event generators:
  - New models will not **really** be compared to experimental data unless they are available in generators.
  - A task for generator experts, experimentalists, and theoreticians.
- 2. Predictions for the hadronic system!
- 3. Parameterized uncertainties that allow meaningful variations in predictions:
  - If the freedom to match the data isn't available in the model, experimentalists will make something (rubbish) up...



## **Thanks for listening**

L. Pickering

# THERE IS ALWAYS HOPE

