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L Introduction

Introduction

Neutrino interactions with matter:
m Crucial for oscillation experiments.
m Realistic modeling of neutrino interactions with nuclei required.

m Key ingredient for models are the amplitudes and cross sections.
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L Introduction

Introduction

Neutrino interactions with matter:

m Crucial for oscillation experiments.
m Realistic modeling of neutrino interactions with nuclei required.

m Key ingredient for models are the amplitudes and cross sections.

Axial form factor as a source of uncertainty:
m Function of Q2.
m Axial coupling: g4 = Fa(Q? = 0) = 1.2723 £ 0.0023.
m Dipole ansatz:

dipol 2 Q2 -
FApoe(Q):gA(l‘f'W) )
A

m Not theoretically well founded.
m Electric and magnetic form factors have non dipole shape.
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L Introduction

Introduction

Bubble chamber experiments: v, +d =y~ +p+p

m Experimental Q? distribution of observed events.

= ANL.
= BNL.
= FNAL.

m Known electromagnetic form factors from electron scattering data.
m Axial form factor can be extracted.

m Deuteron effects have to be considered.
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L Introduction

F'4 parametrization

m Which parametrization?
m Specific functional form — bias the results of the analysis?

m How many parameters?
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L Introduction

F'4 parametrization

m Which parametrization?

Specific functional form — bias the results of the analysis?

How many parameters?

m Neural networks — model-independent.

Bayesian statistics — comparisons between models.
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L Introduction

Statistical model

General methods:

m Non-parametric:
m No particular functional model is assumed.
m Probabilities are determined only by the data.
m Large size of the data — introduction of many internal parameters.
u

Computationally expensive.
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m Probabilities are determined only by the data.
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m Parametric:
m Specific functional form of the model assumed.

m Easy to find the optimal configuration.
m Limited ability for an accurate description of the data.
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L Introduction

Statistical model

General methods:

m Non-parametric:
m No particular functional model is assumed.
m Probabilities are determined only by the data.
m Large size of the data — introduction of many internal parameters.
u

Computationally expensive.

m Parametric:
m Specific functional form of the model assumed.

m Easy to find the optimal configuration.
m Limited ability for an accurate description of the data.

m Semi-parametric:
m Best features from both.
m Broad class of functions is considered — optimal model.
m One realization are neural-networks: Methodology developed for last 30 years.



Nucleon axial form factor from a Bayesian neural-network analysis of neutrino-scattering data*

L Neural networks; multilayer perceptron

Neural networks

Feed-forward NN in a multilayer perceptron (MLP) configuration:
= Nonlinear map N : R™ s Rout

Hidden Output

Input layer layer layer
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L Neural networks; multilayer perceptron

Neural networks

Feed-forward NN in a multilayer perceptron (MLP) configuration:
= Nonlinear map N : R™ s Rout

Hidden Output

Input layer layer layer

inputs weights
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L Neural networks; multilayer perceptron

Neural networks

Feed-forward NN in a multilayer perceptron (MLP) configuration:
= Nonlinear map N : R™ s Rout

Hidden Output

Input layer layer layer

m For every unit:

Yik = [ E Wy Yu, k—1

u€Eprevious layer
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L Neural networks; multilayer perceptron

Neural networks
Feed-forward NN in a multilayer perceptron (MLP) configuration:

= Nonlinear map N : R™ s Rout

Hidden Output
Input layer layer layer

0.5

m For every unit:
Activation function:
_ 1
" f@) = mepeay-

Yik = [ E Wy Yu, k—1

u€Eprevious layer
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L Neural networks; multilayer perceptron

Neural networks

Feed-forward NN in a multilayer perceptron (MLP) configuration:
= Nonlinear map N : R™ s Rout

Hidden Output

Input layer layer layer

inputs weights

m For every unit:

Activation function:

_ 1
ik ik " @)= trexp(=o)”
Yik = f Z W, Yu,k—1 = Bias: f(z)=1.

u€Eprevious layer
m Output: f(z) = =z.
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L Neural networks; multilayer perceptron

Neural networks

MLP A : R +— R with M = 3 and a single hidden layer:

M
Nur (@ {w;}) = wonrsn f (wnQ® + waryn) + wanry1.
n=1

m Cybenko's theorem: for large enough M, can map arbitrarily well any
continuous function and its derivative.
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L Neural networks; multilayer perceptron

Neural networks

MLP A : R +— R with M = 3 and a single hidden layer:

M
Nur (@ {w;}) = wonrsn f (wnQ® + waryn) + wanry1.
n=1

m Cybenko's theorem: for large enough M, can map arbitrarily well any
continuous function and its derivative.
Constrains of parametrization
m Q?-range: (0,3) GeV2.
m Fa(Q*=0) = ga.
m F4(Q%)/Gp(Q?) of the order of g4.
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L Neural networks; multilayer perceptron

Neural networks

MLP A : R +— R with M = 3 and a single hidden layer:

M
Nur (@ {w;}) = wonrsn f (wnQ® + waryn) + wanry1.
n=1

m Cybenko's theorem: for large enough M, can map arbitrarily well any
continuous function and its derivative.

Re-scale the output — normalizing to dipole ansatz:

Fa(Q%) = F{P'°(Q%) x Nar(Q% {w;})

—2
Fdipole 2\ Q2 . —
A (Q)—gA 1+W y MA—lGeV
A

m Neural-network response — deviation of F4 from Fg‘p(’le
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Bayesian framework for MLP

General idea:

m How many parameters? — number of units in the hidden layer: M.

m Too many parameters — over-fitting.
m Too simple model — under-fitting.
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Bayesian framework for MLP

General idea:

m How many parameters? — number of units in the hidden layer: M.

m Too many parameters — over-fitting.
m Too simple model — under-fitting.

m Bayes' theorem:
P(D | Nu)P(Nur)
P(D)

We use P(N,s | D) to compare different models.

PWNu | D) =
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L Bayesian framework for MLP

Bayesian framework for MLP

General idea:

m How many parameters? — number of units in the hidden layer: M.

m Too many parameters — over-fitting.
m Too simple model — under-fitting.

m Bayes' theorem:

P(D | Na)P(Nur)
P(D)

We use P(N,s | D) to compare different models.

PWNu | D) =

m Assuming all NN configurations are equally suited to describe data.
— Prior for each model: P(N1) = P(Na) = -+ = P(Nuy)
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Bayesian framework for MLP

Model comparison:
P(D | Nt )P(Nur)
P(D)

PN | D) =

For a given model:

Likelihood X Prior

m Posterior = Eviderce

(D\WNM P(w | M)

m Key to calculate the P(Nys | D):

PD | Nur) = /p(p | w, Nt YP(w | Nag) dw
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Bayesian framework for MLP

Evaluating the evidence:

m For many problems the posterior has a strong peak at wyp

P(D | NM) ~ 'P('D ‘ WMP7NM) 'P(WMP |NM) Aw

Evidence Best fit likelihood Occam factor
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Bayesian framework for MLP

Evaluating the evidence:

m For many problems the posterior has a strong peak at wyp

P(D | NM) =~ P(D ‘ WMP,NM) P(WMP |NM)AW

Evidence Best fit likelihood Occam factor

m Likelihood in terms of x2:

P(D|w,N) = — exp(—x?)
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L Bayesian framework for MLP

Bayesian framework for MLP

Evaluating the evidence:

m For many problems the posterior has a strong peak at wyp

P(D | NM) ~ 'P(D ‘ WMP7NM) P(WMP |NM) Aw

Evidence Best fit likelihood Occam factor

m Interpretation of the Occam factor for one parameter:
Occam factor penalizes complex models:

Evidence

m Aw is the posterior uncertainty in w
/[\ m Assume uniform on large interval Awin;

|
| \ m P(wwe | Nur) = Awlim_

- — Aw V (Posterior)
& o factor =
/// = \ ccam factor = 7 — ¥ (Prion
Wmp D

i J.C. MacKay, Neural Computation 4, 415 (1992)
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Bayesian framework for MLP

Predictive power:
m Choose the right model.
m Avoid overfit and underfit.
m Overestimation and underestimation of uncertainties:

This approach has been used in:
m Parametrization of EM nucleon form factors,
K. M. Graczyk et al., JHEP 1009 (2010)
m Proton Radius,
K. M. Graczyk and C. Juszczak, PRC90, 054334 (2014)
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Bayesian framework for MLP

Predictive power:
m Choose the right model.
m Avoid overfit and underfit.
m Overestimation and underestimation of uncertainties:

1.15]
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Fit of Gprn/pnGp data.
K. M. Graczyk, PRC84, 034314 (2011)



Nucleon axial form factor from a Bayesian neural-network analysis of neutrino-scattering data*

L Bayesian framework for MLP

Bayesian framework for MLP

Application of this method:
Proton radii determination

K. M. Graczyk and C. Juszczak,
PRC90, 054334 (2014)
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Analysis of ANL data

Neutrino-induced CCQE: v, (k) + n(p) — p~ (k') + p(»’)

doyn _ Ggmi 2 2\ (s —u) 2y (s —u)®
iQ®> ~ 8aE? A(Q7) + B(Q )T?\,+O(Q) mi,

m A, B, C are functions of F'5(Q?) and Fa, p(Q?).
m Fl‘fz(QQ) from electron scattering data. Fp(Q?) given in terms of F4(Q?)
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L Analysis of ANL data

Analysis of ANL data

Neutrino-induced CCQE: v, (k) + n(p) — p~ (k') + p(»’)

doy,  GZm3, (s —u) (s —u)?
vn _ A(0?) + B(O? C(0?
T = e @)+ @)L o@)
m A
n ) Bubble chamber experiments: v, +d =y~ +p+p )
R(q") ——————
0.9] / ---------------
doyq o doyy
dQ? = R(Q7) dQ? oA [/
Singh, Arenhovel Z. Phys. M'.';
A324 (1986) '
s, 0.05 0.10 0.15
g (GeV”)
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Analysis of ANL data

Neutrino-induced CCQE: v, (k) + n(p) — p~ (k') + p(»’)

doyn _ Ggmi 2 2\ (s —u) 2y (s —u)®
o = S @+ B R v oy

m A, B, C are functions of F'5(Q?) and Fa, p(Q?).
m Fl‘fz(QQ) from electron scattering data. Fp(Q?) given in terms of F4(Q?)
m Events:

Nth:/o dE, dZQ(Eu,FA,QM(Eu)

m Neutrino flux:
1 dN

¢(Eu) = piJ(E,,, FA) E

Experimental E, distribution of observed envents — %

Barish et al. PRD19 (1979)
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Analysis of ANL data

Neutrino-induced CCQE: v, (k) + n(p) — p~ (k') + p(»’)

doyn _ Ggmi 2 2\ (s —u) 2y (s —u)®
o = S @+ B R v oy

A, B, C are functions of F\y(Q?) and Fa p(Q?).
] Fl‘fz(QQ) from electron scattering data. Fp(Q?) given in terms of F4(Q?)
Events:

Nth:/o dE, dZQ(Eu,FA,QM(Eu)

m Neutrino flux:
1 dN

¢(Eu) = piJ(E,,, FA) E

FA(0) — 2 MANL Ni—Nthg 1 2
X2:<A<) gA> LR =N +<App) Ap— 20%
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L Numerical results

Numerical results

m About 17000 fits have been collected.

m MLPs with: M =1,2,3 and 4, hidden units have been trained.

m Best model — maximal value of the evidence.

m All the best models within each MLP type reproduce well the ANL data.

250
the Best model: M=4
ANL data ——
1 bestin: M=1, ev=-35.69  x*
200 fFr ll bestin: M=2, ev=-35.10 *
il, best in: M=3, ev=-34.41
’“T best in: M=4, ev=-33.91
% 150 I
& Ir
s E
« 100 | ,
il
I
50 Z. C
L *
oI TT
T eelely =
0
0 0.5 1 15 2 25
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L Numerical results

Numerical results

m About 17000 fits have been collected.

m MLPs with: M =1,2,3 and 4, hidden units have been trained.

m Best model — maximal value of the evidence.

m All the best models within each MLP type reproduce well the ANL data.
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L Numerical results

Best fits; F4(Q?) functions:

BINO —— BINO ——
BIN1 —— BIN1 ——
1.50 BIN2 - 1 1.25 BIN2
1.25 q
1.00 1
1.00 B
u w075 with deuteron correction
0.75 no deuteron correction
0.50 -
0.50
025 e 0.25 -
0.00 L L L L 0.00
~ 200 T T T —— ~ 200
£ 150 E| & 150 | =
< 100 - El < 100 | ——— ]
Y50 B L 50 > B
< 00 ; . . . < 00 n . . .
0.0 0.5 1.0 15 20 25 0.0 0.5 1.0 15 20 25
Q? (GeV?) Q? (GeV?)

m BINO: all ANL bins included.

m 74 < 0 incompatible with previous results.

m BINk: ANL bins without the first k bins.
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L Numerical results

Comparison with dipole

BIN1, deuteron

1.5 T T T T
network

dipole fit

AFA(%)
3
3

Probably unphysical behavior:

Fa

AFA(%)

15.0

5.0

00 =

BINO, deuteron

network

dipole fit -----

0.0

m Improper description of the nuclear corrections.

Q? (GeV?)

m Low quality of the measurements at low-Q? — efficiency?

m Lack of very low-Q? data.

25
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L Numerical results

Dependence of 7% on the evidence

270 "BINO, no deuteron —-—i - )
280 B.NE:,:&* 523:2:82 — 1 Best fit, for BIN2:
1, t —e—i
200 BIN2, o deuteron 1 13 =0.478£0.017 fm?
BIN2, deuteron —=— .

g 800r o 1 B z-expansion:

3 stof 1 r% = 0.46 4+ 0.22 fm?

9 wof 1 Meyer et al., PRD93 (2016)
330 1 1 ®E muon capture by protons:
840 | g r124 =0.43 +0.24 fm?
35.0 e L . . . . Hill et al., arXiv:1708.08462

-0.40 -0.20 0.00 0.20 0.40 0.60

ra” (fm?)

m Small errors — optimal model.
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L Numerical results

Predictive power

Avoid overfit and underfit.

1.15]
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Fit of Garn/pnGp data.
K. M. Graczyk, PRC84, 034314 (2011)
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L Conclusions

Conclusions

m First Bayesian analysis of the neutrino-deuteron scattering data.
m With the full ANL data set F4 has a local maximum at low Q2.
m Inclusion of deuteron correction reduces the peak in F.

m Removing the lowest Q? region a value of 7% consistent with available
determinations could be obtained.

m Corrections from the deuteron-structure play a crucial role at low Q2.
m Experimental errors in this kinematic region could be underestimated.

m Analyses without the low Q? data do not show any significant deviation from
the dipole shape.

m New more precise measurements of neutrino cross section on hydrogen and
deuterium are needed.
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L Conclusions

Thank for your attention!
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Section 7

Backup
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Maximal evidence vs minimal error

Network with maximal evidence

Network with minimal error

=02 —— | =02 ——
€04 =---eoms 1 £=0.4 ------r i
¢=0.6 \l’ e=0.6
e=0.8 €=0.8 -
1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 0 1 2 3 4 5 6
Q2 (GeV?) Q? (GeV?)
. da(e+p—>e+p)
Fit of Ry /o = tempsep) -

K. M. Graczyk, C. Juszczak, J. Phys. G42, 034019 (2015)
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Likelihood, prior and posterior densities:

m Prior: weights are Gaussian distributed:

Pt ) = ()" exp <_a1 3 w)

« is the width of the prior.
m Likelihood in terms of x?:

P(D | {w;}, ) = NiLexm—x?)

m Take into account also

P (Fa(0) = ga | {w;}, N) ~ exp(—x2,)

= Modification of the likelihood: Xx* — X% n 1 + X2,
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Evidence

m Optimal configuration of parp = {{w;}mp,arrp} close to
|
i=1

a — plays the role of regularizer to deal with over-fitting.
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Evidence for the model:
L
nP(D|N) = *X2 — amp 5 Z{wj}E/IP

—fln|A\—|—WlnaMp—flnf—|—Mln( 2) + In(M!).

Normalization factors common to all models are omitted.
|A| denotes the determinant of the Hessian matrix:

_ 2
Aij =V;V; x |{wk}:{wk}w + dijomp -

The parameter

w
Ai
:;a—ﬁ—)\l’

measures the effective number of weights, whose values are controlled by the data.
The A;s are eigenvalues of the matrix V;V;x? |g—wp-
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Best-fit parametrization for BINO with deuteron correction:

Wy w10 w11
e— Qw1 —ws +1 + e—Q2ws—wa +1 + e—QR?ws—we +1
wi2
e*Q2w7*w8 +1

N(Q* {w;}) =

+ +wiz .

m Contribution from four sigmoids (units).

m Given unit, typically, describes one particular feature of the function.

m If the data dependence is trivial then some units may describe the same features
and can be similar in the response.

Weights w1-13:
{w;} = {-2.174061,0.1991515,2.140942, —0.1947798, —2.174070,

0.1991740, —5.481409, 2.501837, —2.502352, 2.308397,
—2.502347,3.120895, —0.1638095 }
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Bayesian framework for MLP

Evaluating the evidence:

m For many problems the posterior has a strong peak at wyp

P(D | NM) ~ P(D ‘ WMP,NM) P(WMP |NM)AW

Evidence Best fit likelihood Occam factor

m Bayes embodies Occam’s razor:

Evidence

P(D[H,)
I m H; limited range of predictions.

P(DH,) m H; weaker prediction of C; data.

J 1\
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Bayesian framework for MLP

Evaluating the evidence:

m For many problems the posterior has a strong peak at wyp

P(D | NM) ~ P(D ‘ WMP,NM) P(WMP |NM)AW

Evidence Best fit likelihood Occam factor

m Interpretation of the Occam factor for one parameter:

Occam factor penalizes complex models:

Evidence
m Aw is the posterior uncertainty in w
/’\\\ m Assume uniform on large interval Awin;
( m Plwmp | Nyr) = Awlim
P(wID,H)| \ -
e - Aw V (Posterior)
[ Aw \ Occam factor = — -
_ o\ N AWini V (Prior)

wup D

s J.C. MacKay, Neural Computation 4, 415 (1992)
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