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Introduction

Introduction

Neutrino interactions with matter:

Crucial for oscillation experiments.

Realistic modeling of neutrino interactions with nuclei required.

Key ingredient for models are the amplitudes and cross sections.

Axial form factor as a source of uncertainty:

Function of Q2.

Axial coupling: gA = FA(Q2 = 0) = 1.2723± 0.0023.

Dipole ansatz:

F dipole
A (Q2) = gA

(
1 +

Q2

M2
A

)−2
,

Not theoretically well founded.
Electric and magnetic form factors have non dipole shape.
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Introduction

Introduction

Bubble chamber experiments: νµ + d→ µ− + p+ p

Experimental Q2 distribution of observed events.

ANL.
BNL.
FNAL.

Known electromagnetic form factors from electron scattering data.

Axial form factor can be extracted.

Deuteron effects have to be considered.
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Introduction

FA parametrization

Which parametrization?

Specific functional form → bias the results of the analysis?

How many parameters?

Neural networks → model-independent.

Bayesian statistics → comparisons between models.
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Introduction

Statistical model

General methods:

Non-parametric:

No particular functional model is assumed.
Probabilities are determined only by the data.
Large size of the data → introduction of many internal parameters.
Computationally expensive.

Parametric:

Specific functional form of the model assumed.
Easy to find the optimal configuration.
Limited ability for an accurate description of the data.

Semi-parametric:

Best features from both.
Broad class of functions is considered → optimal model.
One realization are neural-networks: Methodology developed for last 30 years.
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Neural networks; multilayer perceptron

Neural networks

Feed-forward NN in a multilayer perceptron (MLP) configuration:

Nonlinear map N : Rin 7→ Rout

Q2

N

Hidden
layerInput layer Output

layer

fi,k

∑n
u=0

...
...

wi,k
n

yn,k−1

wi,k
01

wi,k
2

y2,k−1

wi,k
1

y1,k−1

inputs weights

For every unit:

yi,k = f i,k


 ∑

u∈previous layer

wi,ku yu,k−1




Activation function:

f(x) = 1
1+exp(−x)

.

Bias: f(x) = 1.

Output: f(x) = x.
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Neural networks; multilayer perceptron

Neural networks

MLP N : R 7→ R with M = 3 and a single hidden layer:

NM (Q2; {wj}) =

M∑

n=1

w2M+n f
(
wnQ

2 + wM+n

)
+ w3M+1.

Cybenko’s theorem: for large enough M , can map arbitrarily well any
continuous function and its derivative.
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Neural networks; multilayer perceptron

Neural networks

MLP N : R 7→ R with M = 3 and a single hidden layer:

NM (Q2; {wj}) =

M∑

n=1

w2M+n f
(
wnQ

2 + wM+n

)
+ w3M+1.

Cybenko’s theorem: for large enough M , can map arbitrarily well any
continuous function and its derivative.

Constrains of parametrization

Q2-range: (0, 3) GeV2.

FA(Q2 = 0) = gA.

FA(Q2)/GD(Q2) of the order of gA.
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Neural networks; multilayer perceptron

Neural networks

MLP N : R 7→ R with M = 3 and a single hidden layer:

NM (Q2; {wj}) =

M∑

n=1

w2M+n f
(
wnQ

2 + wM+n

)
+ w3M+1.

Cybenko’s theorem: for large enough M , can map arbitrarily well any
continuous function and its derivative.

Re-scale the output → normalizing to dipole ansatz:

FA(Q2) = F dipole
A (Q2)× NM (Q2; {wi})

F dipole
A (Q2) = gA

(
1 +

Q2

M2
A

)−2
; MA = 1GeV

Neural-network response → deviation of FA from F dipole
A
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Bayesian framework for MLP

Bayesian framework for MLP

General idea:

How many parameters? → number of units in the hidden layer: M .

Too many parameters → over-fitting.
Too simple model → under-fitting.

Bayes’ theorem:

P(NM | D) =
P(D | NM )P(NM )

P(D)

We use P(NM | D) to compare different models.

Assuming all NN configurations are equally suited to describe data.
→ Prior for each model: P(N1) = P(N2) = · · · = P(NM )
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Bayesian framework for MLP

Bayesian framework for MLP

Model comparison:

P(NM | D) =
P(D | NM )P(NM )

P(D)

For a given model:

Posterior = Likelihood×Prior
Evidence

P(w | D,NM ) =
P(D | w,NM )P(w | NM )

P(D | NM )

Key to calculate the P(NM | D):

P(D | NM ) =

∫
P(D | w,NM )P(w | NM ) dw
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Bayesian framework for MLP

Bayesian framework for MLP

Evaluating the evidence:

For many problems the posterior has a strong peak at wMP

P(D | NM )︸ ︷︷ ︸
Evidence

≈ P(D | wMP,NM )︸ ︷︷ ︸
Best fit likelihood

P(wMP | NM ) ∆w︸ ︷︷ ︸
Occam factor



Nucleon axial form factor from a Bayesian neural-network analysis of neutrino-scattering data* 10

Bayesian framework for MLP

Bayesian framework for MLP

Evaluating the evidence:

For many problems the posterior has a strong peak at wMP

P(D | NM )︸ ︷︷ ︸
Evidence

≈ P(D | wMP,NM )︸ ︷︷ ︸
Best fit likelihood

P(wMP | NM ) ∆w︸ ︷︷ ︸
Occam factor

Likelihood in terms of χ2:

P(D | w,N ) =
1

NL
exp(−χ2)
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Bayesian framework for MLP

Evaluating the evidence:

For many problems the posterior has a strong peak at wMP

P(D | NM )︸ ︷︷ ︸
Evidence

≈ P(D | wMP,NM )︸ ︷︷ ︸
Best fit likelihood

P(wMP | NM ) ∆w︸ ︷︷ ︸
Occam factor

Interpretation of the Occam factor for one parameter:

Occam factor penalizes complex models:

∆w is the posterior uncertainty in w

Assume uniform on large interval ∆wini

P(wMP | NM ) = 1
∆wini

Occam factor =
∆w

∆wini
→ V (Posterior)

V (Prior)

J.C. MacKay, Neural Computation 4, 415 (1992)
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Bayesian framework for MLP

Bayesian framework for MLP

Predictive power:

Choose the right model.
Avoid overfit and underfit.
Overestimation and underestimation of uncertainties:

This approach has been used in:

Parametrization of EM nucleon form factors,
K. M. Graczyk et al., JHEP 1009 (2010)
Proton Radius,
K. M. Graczyk and C. Juszczak, PRC90, 054334 (2014)
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Bayesian framework for MLP

Bayesian framework for MLP

Predictive power:
Choose the right model.
Avoid overfit and underfit.
Overestimation and underestimation of uncertainties:

Fit of GMn/µnGD data.
K. M. Graczyk, PRC84, 034314 (2011)
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Bayesian framework for MLP

Bayesian framework for MLP

Application of this method:
Proton radii determination

K. M. Graczyk and C. Juszczak,

PRC90, 054334 (2014)
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Analysis of ANL data

Analysis of ANL data

Neutrino-induced CCQE: νµ(k) + n(p)→ µ−(k′) + p(p′)

dσνn
dQ2

=
G2
Fm

2
N

8πE2
ν

[
A(Q2) +B(Q2)

(s− u)

m2
N

+ C(Q2)
(s− u)2

m4
N

]

A, B, C are functions of FV1,2(Q2) and FA,P (Q2).

FV1,2(Q2) from electron scattering data. FP (Q2) given in terms of FA(Q2)

Events:

N th =

∫ ∞

0

dEν
dσ

dQ2
(Eν , FA, Q

2)φ (Eν)

Neutrino flux:

φ (Eν) = p
1

σ(Eν , FA)

dN

dEν

χ2 =

(
FA(0)− gA

∆gA

)2

+

nANL∑

i=k

(
Ni −N th

i

)2

Ni
+

(
1− p
∆p

)2

∆p = 20%
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Bubble chamber experiments: νµ + d→ µ− + p+ p

dσνd
dQ2

= R(Q2)
dσνn
dQ2

Singh, Arenhovel Z. Phys.
A324 (1986)
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Experimental Eν distribution of observed envents → dN
dEν

Barish et al. PRD19 (1979)
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Numerical results

Numerical results

About 17000 fits have been collected.
MLPs with: M = 1, 2, 3 and 4, hidden units have been trained.
Best model → maximal value of the evidence.
All the best models within each MLP type reproduce well the ANL data.
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Numerical results

Best fits; FA(Q
2) functions:
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BIN0: all ANL bins included.

r2
A < 0 incompatible with previous results.

BINk: ANL bins without the first k bins.
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Numerical results

Comparison with dipole
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Probably unphysical behavior:

Improper description of the nuclear corrections.

Low quality of the measurements at low-Q2 → efficiency?

Lack of very low-Q2 data.
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Numerical results

Dependence of r2
A on the evidence
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Best fit, for BIN2:
r2A = 0.478± 0.017 fm2

z-expansion:
r2A = 0.46± 0.22 fm2

Meyer et al., PRD93 (2016)

muon capture by protons:
r2A = 0.43± 0.24 fm2

Hill et al., arXiv:1708.08462

Small errors → optimal model.
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Numerical results

Predictive power

Avoid overfit and underfit.

Fit of GMn/µnGD data.
K. M. Graczyk, PRC84, 034314 (2011)
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Conclusions

Conclusions

First Bayesian analysis of the neutrino-deuteron scattering data.

With the full ANL data set FA has a local maximum at low Q2.

Inclusion of deuteron correction reduces the peak in FA.

Removing the lowest Q2 region a value of r2A consistent with available
determinations could be obtained.

Corrections from the deuteron-structure play a crucial role at low Q2.

Experimental errors in this kinematic region could be underestimated.

Analyses without the low Q2 data do not show any significant deviation from
the dipole shape.

New more precise measurements of neutrino cross section on hydrogen and
deuterium are needed.
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Conclusions

Thank for your attention!
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Conclusions
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Backup

Section 7

Backup
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Backup

Maximal evidence vs minimal error

Fit of R+/− =
dσ(e+p→e+p)
dσ(e−p→e−p) .

K. M. Graczyk, C. Juszczak, J. Phys. G42, 034019 (2015)
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Backup

Likelihood, prior and posterior densities:

Prior: weights are Gaussian distributed:

P({wj},N ) =
( α

2π

)W/2
exp

(
−α 1

2

W∑

i=1

w2
i

)

α is the width of the prior.

Likelihood in terms of χ2:

P(D | {wj},N ) =
1

NL
exp(−χ2)

Take into account also

P (FA(0) = gA | {wj},N ) ∼ exp(−χ2
gA)

Modification of the likelihood: χ2 → χ2
ANL + χ2

gA
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Backup

Evidence

Optimal configuration of ρMP = {{wj}MP , αMP } close to

E = χ2 + α
1

2

W∑

i=1

w2
i

α→ plays the role of regularizer to deal with over-fitting.
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Backup

Evidence for the model:

lnP (D| N ) ≈ −χ2 − αMP
1

2

W∑

i=1

{wj}2MP

−1

2
ln | A | +W

2
lnαMP −

1

2
ln
γ

2
+M ln(2) + ln(M !).

Normalization factors common to all models are omitted.
|A| denotes the determinant of the Hessian matrix:

Aij = ∇i∇j χ2
∣∣
{wk}={wk}MP

+ δijαMP .

The parameter

γ =

W∑

i=1

λi
α+ λi

,

measures the effective number of weights, whose values are controlled by the data.
The λis are eigenvalues of the matrix ∇i∇jχ2 |~w=~wMP .
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Backup

Best-fit parametrization for BIN0 with deuteron correction:

N (Q2, {wj}) =
w9

e−Q2w1−w2 + 1
+

w10

e−Q2w3−w4 + 1
+

w11

e−Q2w5−w6 + 1

+
w12

e−Q2w7−w8 + 1
+ w13 .

Contribution from four sigmoids (units).

Given unit, typically, describes one particular feature of the function.

If the data dependence is trivial then some units may describe the same features
and can be similar in the response.

Weights w1−13:

{wj} = {−2.174061, 0.1991515, 2.140942,−0.1947798,−2.174070,

0.1991740,−5.481409, 2.501837,−2.502352, 2.308397,

−2.502347, 3.120895,−0.1638095}



Nucleon axial form factor from a Bayesian neural-network analysis of neutrino-scattering data* 28

Backup

Bayesian framework for MLP

Evaluating the evidence:

For many problems the posterior has a strong peak at wMP

P(D | NM )︸ ︷︷ ︸
Evidence

≈ P(D | wMP,NM )︸ ︷︷ ︸
Best fit likelihood

P(wMP | NM ) ∆w︸ ︷︷ ︸
Occam factor

Bayes embodies Occam’s razor:

H1 limited range of predictions.

H2 weaker prediction of C1 data.
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Backup

Bayesian framework for MLP

Evaluating the evidence:

For many problems the posterior has a strong peak at wMP

P(D | NM )︸ ︷︷ ︸
Evidence

≈ P(D | wMP,NM )︸ ︷︷ ︸
Best fit likelihood

P(wMP | NM ) ∆w︸ ︷︷ ︸
Occam factor

Interpretation of the Occam factor for one parameter:

Occam factor penalizes complex models:

∆w is the posterior uncertainty in w

Assume uniform on large interval ∆wini

P(wMP | NM ) = 1
∆wini

Occam factor =
∆w

∆wini
→ V (Posterior)

V (Prior)

J.C. MacKay, Neural Computation 4, 415 (1992)
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