Nucleon axial form factor from a Bayesian neural-network analysis of neutrino-scattering data*

Luis Alvarez Ruso, Krzysztof M. Graczyk, Eduardo Saúl Sala

Introduction

Neutrino interactions with matter:

- Crucial for oscillation experiments.
- Realistic modeling of neutrino interactions with nuclei required.
- Key ingredient for models are the amplitudes and cross sections.

Introduction

Neutrino interactions with matter:

- Crucial for oscillation experiments.
- Realistic modeling of neutrino interactions with nuclei required.
- Key ingredient for models are the amplitudes and cross sections.

Axial form factor as a source of uncertainty:

- Function of Q^2 .
- Axial coupling: $g_A = F_A(Q^2 = 0) = 1.2723 \pm 0.0023$.

Dipole ansatz:

$$F_A^{\rm dipole}(Q^2) = g_A \left(1 + \frac{Q^2}{M_A^2}\right)^{-2} \,, \label{eq:F_A}$$

• Not theoretically well founded.

Electric and magnetic form factors have non dipole shape.

Introduction

Bubble chamber experiments: $\nu_{\mu} + d \rightarrow \mu^{-} + p + p$

- Experimental Q^2 distribution of observed events.
 - ANL.
 - BNL.
 - FNAL.
- Known electromagnetic form factors from electron scattering data.
- Axial form factor can be extracted.
- Deuteron effects have to be considered.

F_A parametrization

- Which parametrization?
- Specific functional form \rightarrow bias the results of the analysis?
- How many parameters?

F_A parametrization

- Which parametrization?
- Specific functional form \rightarrow bias the results of the analysis?
- How many parameters?
- **Neural networks** \rightarrow model-independent.
- **Bayesian statistics** \rightarrow comparisons between models.

Statistical model

General methods:

- Non-parametric:
 - No particular functional model is assumed.
 - Probabilities are determined only by the data.
 - \blacksquare Large size of the data \rightarrow introduction of many internal parameters.
 - Computationally expensive.

Statistical model

General methods:

- Non-parametric:
 - No particular functional model is assumed.
 - Probabilities are determined only by the data.
 - \blacksquare Large size of the data \rightarrow introduction of many internal parameters.
 - Computationally expensive.
- Parametric:
 - Specific functional form of the model assumed.
 - Easy to find the optimal configuration.
 - Limited ability for an accurate description of the data.

Statistical model

General methods:

- Non-parametric:
 - No particular functional model is assumed.
 - Probabilities are determined only by the data.
 - \blacksquare Large size of the data \rightarrow introduction of many internal parameters.
 - Computationally expensive.

Parametric:

- Specific functional form of the model assumed.
- Easy to find the optimal configuration.
- Limited ability for an accurate description of the data.

Semi-parametric:

- Best features from both.
- \blacksquare Broad class of functions is considered \rightarrow optimal model.
- One realization are **neural-networks**: Methodology developed for last 30 years.

Neural networks

Feed-forward NN in a multilayer perceptron (MLP) configuration:

• Nonlinear map $\mathcal{N}: \mathbb{R}^{\mathsf{in}} \mapsto \mathbb{R}^{\mathsf{out}}$

Neural networks

Feed-forward NN in a multilayer perceptron (MLP) configuration:

• Nonlinear map $\mathcal{N} : \mathbb{R}^{\mathsf{in}} \mapsto \mathbb{R}^{\mathsf{out}}$

Neural networks

Feed-forward NN in a multilayer perceptron (MLP) configuration:

• Nonlinear map $\mathcal{N} : \mathbb{R}^{\mathsf{in}} \mapsto \mathbb{R}^{\mathsf{out}}$

For every unit:

$$y_{i,k} = f^{i,k} \left(\sum_{u \in \text{previous layer}} w_u^{i,k} y_{u,k-1} \right)$$

Neural networks

Feed-forward NN in a multilayer perceptron (MLP) configuration:

• Nonlinear map $\mathcal{N} : \mathbb{R}^{\mathsf{in}} \mapsto \mathbb{R}^{\mathsf{out}}$

For every unit:

$$y_{i,k} = f^{i,k} \left(\sum_{u \in \text{previous layer}} w_u^{i,k} y_{u,k-1} \right)$$

Activation function:

$$\bullet f(x) = \frac{1}{1 + \exp(-x)}$$

Neural networks

Feed-forward NN in a multilayer perceptron (MLP) configuration:

• Nonlinear map $\mathcal{N} : \mathbb{R}^{\mathsf{in}} \mapsto \mathbb{R}^{\mathsf{out}}$

For every unit:

$$y_{i,k} = f^{i,k} \left(\sum_{u \in \text{previous layer}} w_u^{i,k} y_{u,k-1} \right)$$

Activation function:

$$f(x) = \frac{1}{1 + \exp(-x)}$$

Bias:
$$f(x) = 1$$
.

• Output: f(x) = x.

Neural networks

MLP $\mathcal{N}: \mathbb{R} \mapsto \mathbb{R}$ with M = 3 and a single hidden layer:

$$\mathcal{N}_M(Q^2; \{w_j\}) = \sum_{n=1}^M w_{2M+n} f\left(w_n Q^2 + w_{M+n}\right) + w_{3M+1}.$$

Cybenko's theorem: for large enough M, can map arbitrarily well any continuous function and its derivative.

Neural networks

MLP $\mathcal{N} : \mathbb{R} \mapsto \mathbb{R}$ with M = 3 and a single hidden layer:

$$\mathcal{N}_M(Q^2; \{w_j\}) = \sum_{n=1}^M w_{2M+n} f\left(w_n Q^2 + w_{M+n}\right) + w_{3M+1}.$$

• Cybenko's theorem: for large enough *M*, can map arbitrarily well any continuous function and its derivative.

Constrains of parametrization

- Q^2 -range: (0,3) GeV².
- $\bullet F_A(Q^2=0)=g_A.$
- $F_A(Q^2)/G_D(Q^2)$ of the order of g_A .

Neural networks

MLP $\mathcal{N} : \mathbb{R} \mapsto \mathbb{R}$ with M = 3 and a single hidden layer:

$$\mathcal{N}_M(Q^2; \{w_j\}) = \sum_{n=1}^M w_{2M+n} f\left(w_n Q^2 + w_{M+n}\right) + w_{3M+1}.$$

Cybenko's theorem: for large enough M, can map arbitrarily well any continuous function and its derivative.

Re-scale the output \rightarrow normalizing to dipole ansatz:

$$F_A(Q^2) = F_A^{\text{dipole}}(Q^2) \times \mathcal{N}_M(Q^2; \{w_i\})$$

$$F_A^{\text{dipole}}(Q^2) = g_A \left(1 + \frac{Q^2}{M_A^2}\right)^{-2}; \qquad M_A = 1 \text{GeV}$$

• Neural-network response \rightarrow deviation of F_A from F_A^{dipole}

Bayesian framework for MLP

General idea:

- How many parameters? \rightarrow number of units in the hidden layer: M.
 - Too many parameters \rightarrow over-fitting.
 - \blacksquare Too simple model \rightarrow under-fitting.

Bayesian framework for MLP

General idea:

- How many parameters? \rightarrow number of units in the hidden layer: M.
 - Too many parameters \rightarrow over-fitting.
 - Too simple model \rightarrow under-fitting.
- Bayes' theorem:

$$\mathcal{P}(\mathcal{N}_M \mid \mathcal{D}) = rac{\mathcal{P}(\mathcal{D} \mid \mathcal{N}_M)\mathcal{P}(\mathcal{N}_M)}{\mathcal{P}(\mathcal{D})}$$

We use $\mathcal{P}(\mathcal{N}_M \mid \mathcal{D})$ to compare different models.

Bayesian framework for MLP

General idea:

- How many parameters? \rightarrow number of units in the hidden layer: M.
 - Too many parameters \rightarrow over-fitting.
 - Too simple model \rightarrow under-fitting.
- Bayes' theorem:

$$\mathcal{P}(\mathcal{N}_M \mid \mathcal{D}) = rac{\mathcal{P}(\mathcal{D} \mid \mathcal{N}_M)\mathcal{P}(\mathcal{N}_M)}{\mathcal{P}(\mathcal{D})}$$

We use $\mathcal{P}(\mathcal{N}_M \mid \mathcal{D})$ to compare different models.

Assuming all NN configurations are equally suited to describe data. \rightarrow Prior for each model: $\mathcal{P}(\mathcal{N}_1) = \mathcal{P}(\mathcal{N}_2) = \cdots = \mathcal{P}(\mathcal{N}_M)$

Bayesian framework for MLP

Model comparison:

$$\mathcal{P}(\mathcal{N}_M \mid \mathcal{D}) = \frac{\mathcal{P}(\mathcal{D} \mid \mathcal{N}_M)\mathcal{P}(\mathcal{N}_M)}{\mathcal{P}(\mathcal{D})}$$

For a given model:

• Posterior = $\frac{\text{Likelihood} \times \text{Prior}}{\text{Evidence}}$

$$\mathcal{P}(\mathbf{w} \mid \mathcal{D}, \mathcal{N}_M) = \frac{\mathcal{P}(\mathcal{D} \mid \mathbf{w}, \mathcal{N}_M) \mathcal{P}(\mathbf{w} \mid \mathcal{N}_M)}{\mathcal{P}(\mathcal{D} \mid \mathcal{N}_M)}$$

• Key to calculate the $\mathcal{P}(\mathcal{N}_M \mid \mathcal{D})$:

$$\mathcal{P}(\mathcal{D} \mid \mathcal{N}_M) = \int \mathcal{P}(\mathcal{D} \mid \mathbf{w}, \mathcal{N}_M) \mathcal{P}(\mathbf{w} \mid \mathcal{N}_M) \, d\mathbf{w}$$

Evaluating the evidence:

 \blacksquare For many problems the posterior has a strong peak at w_{MP}

 $\underbrace{\mathcal{P}(\mathcal{D} \mid \mathcal{N}_M)}_{\text{Evidence}} \approx \underbrace{\mathcal{P}(\mathcal{D} \mid \mathbf{w}_{\text{MP}}, \mathcal{N}_M)}_{\text{Best fit likelihood}} \underbrace{\mathcal{P}(\mathbf{w}_{\text{MP}} \mid \mathcal{N}_M) \, \Delta \mathbf{w}}_{\text{Occam factor}}$

Evaluating the evidence:

 \blacksquare For many problems the posterior has a strong peak at w_{MP}

$$\underbrace{\mathcal{P}(\mathcal{D} \mid \mathcal{N}_M)}_{\text{Evidence}} \approx \underbrace{\mathcal{P}(\mathcal{D} \mid \mathbf{w}_{\text{MP}}, \mathcal{N}_M)}_{\text{Best fit likelihood}} \underbrace{\mathcal{P}(\mathbf{w}_{\text{MP}} \mid \mathcal{N}_M) \Delta \mathbf{w}}_{\text{Occam factor}}$$

• Likelihood in terms of χ^2 :

$$\mathcal{P}(\mathcal{D} \mid \mathbf{w}, \mathcal{N}) = \frac{1}{N_L} \exp(-\chi^2)$$

Evaluating the evidence:

 \blacksquare For many problems the posterior has a strong peak at w_{MP}

$$\underbrace{ \mathcal{P}(\mathcal{D} \mid \mathcal{N}_M)}_{\text{Evidence}} \approx \underbrace{ \mathcal{P}(\mathcal{D} \mid \mathbf{w}_{\text{MP}}, \mathcal{N}_M)}_{\text{Best fit likelihood}} \underbrace{ \mathcal{P}(\mathbf{w}_{\text{MP}} \mid \mathcal{N}_M) \, \Delta \mathbf{w}}_{\text{Occam factor}}$$

Interpretation of the Occam factor for one parameter:

Occam factor penalizes complex models:

- $\blacksquare \ \Delta w$ is the posterior uncertainty in w
- Assume uniform on large interval Δw_{ini}

•
$$\mathcal{P}(w_{\mathsf{MP}} \mid \mathcal{N}_M) = \frac{1}{\Delta w_{ini}}$$

$$\text{Occam factor} = \frac{\Delta w}{\Delta w_{ini}} \rightarrow \frac{V(\text{Posterior})}{V(\text{Prior})}$$

J.C. MacKay, Neural Computation 4, 415 (1992)

Bayesian framework for MLP

Predictive power:

- Choose the right model.
- Avoid overfit and underfit.
- Overestimation and underestimation of uncertainties:

This approach has been used in:

 Parametrization of EM nucleon form factors, K. M. Graczyk et al., JHEP 1009 (2010)

Proton Radius,

K. M. Graczyk and C. Juszczak, PRC90, 054334 (2014)

Bayesian framework for MLP

Predictive power:

- Choose the right model.
- Avoid overfit and underfit.
- Overestimation and underestimation of uncertainties:

Fit of $G_{Mn}/\mu_n G_D$ data. K. M. Graczyk, PRC84, 034314 (2011)

Bayesian framework for MLP

Application of this method: Proton radii determination

K. M. Graczyk and C. Juszczak, PRC90, 054334 (2014)

Analysis of ANL data

Neutrino-induced CCQE: $\nu_{\mu}(k) + n(p) \rightarrow \mu^{-}(k') + p(p')$

$$\frac{d\sigma_{\nu n}}{dQ^2} = \frac{G_F^2 m_N^2}{8\pi E_\nu^2} \left[A(Q^2) + B(Q^2) \frac{(s-u)}{m_N^2} + C(Q^2) \frac{(s-u)^2}{m_N^4} \right]$$

• A, B, C are functions of $F_{1,2}^V(Q^2)$ and $F_{A,P}(Q^2)$.

• $F_{1,2}^V(Q^2)$ from electron scattering data. $F_P(Q^2)$ given in terms of $F_A(Q^2)$

Analysis of ANL data

Neutrino-induced CCQE: $\nu_{\mu}(k) + n(p) \rightarrow \mu^{-}(k') + p(p')$

$$\frac{d\sigma_{\nu n}}{dQ^2} = \frac{G_F^2 m_N^2}{8\pi E_\nu^2} \left[A(Q^2) + B(Q^2) \frac{(s-u)}{m_N^2} + C(Q^2) \frac{(s-u)^2}{m_N^4} \right]$$

Analysis of ANL data

Neutrino-induced CCQE: $\nu_{\mu}(k) + n(p) \rightarrow \mu^{-}(k') + p(p')$

$$\frac{d\sigma_{\nu n}}{dQ^2} = \frac{G_F^2 m_N^2}{8\pi E_\nu^2} \left[A(Q^2) + B(Q^2) \frac{(s-u)}{m_N^2} + C(Q^2) \frac{(s-u)^2}{m_N^4} \right]$$

• A, B, C are functions of $F_{1,2}^V(Q^2)$ and $F_{A,P}(Q^2)$.

• $F_{1,2}^V(Q^2)$ from electron scattering data. $F_P(Q^2)$ given in terms of $F_A(Q^2)$ • Events:

$$N^{th} = \int_0^\infty dE_\nu \frac{d\sigma}{dQ^2} (E_\nu, F_A, Q^2) \phi(E_\nu)$$

Neutrino flux:

$$\phi(E_{\nu}) = p \frac{1}{\sigma(E_{\nu}, F_A)} \frac{dN}{dE_{\nu}}$$

Experimental E_{ν} distribution of observed envents $\rightarrow \frac{dN}{dE_{\nu}}$

Barish et al. PRD19 (1979)

Analysis of ANL data

Neutrino-induced CCQE: $\nu_{\mu}(k) + n(p) \rightarrow \mu^{-}(k') + p(p')$

$$\frac{d\sigma_{\nu n}}{dQ^2} = \frac{G_F^2 m_N^2}{8\pi E_\nu^2} \left[A(Q^2) + B(Q^2) \frac{(s-u)}{m_N^2} + C(Q^2) \frac{(s-u)^2}{m_N^4} \right]$$

• A, B, C are functions of $F_{1,2}^V(Q^2)$ and $F_{A,P}(Q^2)$.

• $F_{1,2}^V(Q^2)$ from electron scattering data. $F_P(Q^2)$ given in terms of $F_A(Q^2)$ • Events:

$$N^{th} = \int_0^\infty dE_\nu \frac{d\sigma}{dQ^2} (E_\nu, F_A, Q^2) \phi(E_\nu)$$

Neutrino flux:

$$\phi(E_{\nu}) = p \frac{1}{\sigma(E_{\nu}, F_A)} \frac{dN}{dE_{\nu}}$$

$$\chi^{2} = \left(\frac{F_{A}(0) - g_{A}}{\Delta g_{A}}\right)^{2} + \sum_{i=k}^{n_{\text{ANL}}} \frac{\left(N_{i} - N_{i}^{th}\right)^{2}}{N_{i}} + \left(\frac{1 - p}{\Delta p}\right)^{2} \qquad \Delta p = 20\%$$

Numerical results

- About 17000 fits have been collected.
- \blacksquare MLPs with: M=1,2,3 and 4, hidden units have been trained.
- \blacksquare Best model \rightarrow maximal value of the evidence.
- All the best models within each MLP type reproduce well the ANL data.

Numerical results

- About 17000 fits have been collected.
- MLPs with: M = 1, 2, 3 and 4, hidden units have been trained.
- \blacksquare Best model \rightarrow maximal value of the evidence.
- All the best models within each MLP type reproduce well the ANL data.

Best fits; $F_A(Q^2)$ functions:

- BIN0: all ANL bins included.
 - $r_A^2 < 0$ incompatible with previous results.
- BINk: ANL bins without the first k bins.

Comparison with dipole

Probably unphysical behavior:

- Improper description of the nuclear corrections.
- Low quality of the measurements at low- $Q^2 \rightarrow$ efficiency?
- Lack of very low- Q^2 data.

Dependence of r_A^2 on the evidence

Best fit, for BIN2: $r_A^2 = 0.478 \pm 0.017 \text{ fm}^2$ **z**-expansion: $r_A^2 = 0.46 \pm 0.22 \text{ fm}^2$ Meyer et al., PRD93 (2016) **muon capture by protons:** $r_A^2 = 0.43 \pm 0.24 \text{ fm}^2$ Hill et al., arXiv:1708.08462

• Small errors \rightarrow optimal model.

Predictive power

Avoid overfit and underfit.

Fit of $G_{Mn}/\mu_n G_D$ data. K. M. Graczyk, PRC84, 034314 (2011)

Conclusions

- First Bayesian analysis of the neutrino-deuteron scattering data.
- With the full ANL data set F_A has a local maximum at low Q^2 .
- Inclusion of deuteron correction reduces the peak in F_A .
- Removing the lowest Q^2 region a value of r_A^2 consistent with available determinations could be obtained.
- Corrections from the deuteron-structure play a crucial role at low Q^2 .
- Experimental errors in this kinematic region could be underestimated.
- Analyses without the low Q^2 data do not show any significant deviation from the dipole shape.
- New more precise measurements of neutrino cross section on hydrogen and deuterium are needed.

Thank for your attention!

- Conclusions

Section 7

Backup

Maximal evidence vs minimal error

Likelihood, prior and posterior densities:

Prior: weights are Gaussian distributed:

$$\mathcal{P}(\{w_j\}, \mathcal{N}) = \left(\frac{\alpha}{2\pi}\right)^{W/2} \exp\left(-\alpha \frac{1}{2} \sum_{i=1}^{W} w_i^2\right)$$

 α is the width of the prior.

• Likelihood in terms of χ^2 :

$$\mathcal{P}(\mathcal{D} \mid \{w_j\}, \mathcal{N}) = \frac{1}{N_L} \exp(-\chi^2)$$

Take into account also

$$\mathcal{P}(F_A(0) = g_A \mid \{w_j\}, \mathcal{N}) \sim \exp(-\chi_{g_A}^2)$$

 \blacksquare Modification of the likelihood: $\chi^2 \rightarrow \chi^2_{ANL} + \chi^2_{g_A}$

Evidence

• Optimal configuration of $\rho_{MP} = \{\{w_j\}_{MP}, \alpha_{MP}\}$ close to

$$\mathcal{E} = \chi^2 + \alpha \, \frac{1}{2} \sum_{i=1}^{W} w_i^2$$

 $\alpha \rightarrow$ plays the role of regularizer to deal with over-fitting.

Evidence for the model:

$$\ln \mathcal{P}\left(\mathcal{D} \mid \mathcal{N}\right) \approx -\chi^2 - \alpha_{\mathsf{MP}} \frac{1}{2} \sum_{i=1}^{W} \{w_j\}_{\mathsf{MP}}^2$$
$$-\frac{1}{2} \ln \mid A \mid +\frac{W}{2} \ln \alpha_{\mathsf{MP}} - \frac{1}{2} \ln \frac{\gamma}{2} + M \ln(2) + \ln(M!).$$

Normalization factors common to all models are omitted. |A| denotes the determinant of the Hessian matrix:

$$A_{ij} = \nabla_i \nabla_j \chi^2 \big|_{\{w_k\} = \{w_k\}_{\mathsf{MP}}} + \delta_{ij} \alpha_{\mathsf{MP}} \,.$$

The parameter

$$\gamma = \sum_{i=1}^{W} \frac{\lambda_i}{\alpha + \lambda_i},$$

measures the effective number of weights, whose values are controlled by the data. The λ_i s are eigenvalues of the matrix $\nabla_i \nabla_j \chi^2 \mid_{\vec{w} = \vec{w}_{MP}}$.

Best-fit parametrization for BIN0 with deuteron correction:

$$\mathcal{N}(Q^2, \{w_j\}) = \frac{w_9}{e^{-Q^2w_1 - w_2} + 1} + \frac{w_{10}}{e^{-Q^2w_3 - w_4} + 1} + \frac{w_{11}}{e^{-Q^2w_5 - w_6} + 1} + \frac{w_{12}}{e^{-Q^2w_7 - w_8} + 1} + w_{13}.$$

- Contribution from four sigmoids (units).
- Given unit, typically, describes one particular feature of the function.
- If the data dependence is trivial then some units may describe the same features and can be similar in the response.

Weights w_{1-13} :

$$\{w_j\} = \{-2.174061, 0.1991515, 2.140942, -0.1947798, -2.174070, \\ 0.1991740, -5.481409, 2.501837, -2.502352, 2.308397, \\ -2.502347, 3.120895, -0.1638095\}$$

Evaluating the evidence:

 \blacksquare For many problems the posterior has a strong peak at w_{MP}

$$\underbrace{\mathcal{P}(\mathcal{D} \mid \mathcal{N}_M)}_{\text{Evidence}} \approx \underbrace{\mathcal{P}(\mathcal{D} \mid \mathbf{w}_{\text{MP}}, \mathcal{N}_M)}_{\text{Best fit likelihood}} \underbrace{\mathcal{P}(\mathbf{w}_{\text{MP}} \mid \mathcal{N}_M) \Delta \mathbf{w}}_{\text{Occam factor}}$$

Bayes embodies Occam's razor:

- H_1 limited range of predictions.
- *H*₂ weaker prediction of C₁ data.

Evaluating the evidence:

 \blacksquare For many problems the posterior has a strong peak at w_{MP}

$$\underbrace{ \mathcal{P}(\mathcal{D} \mid \mathcal{N}_M)}_{\text{Evidence}} \approx \underbrace{ \mathcal{P}(\mathcal{D} \mid \mathbf{w}_{\text{MP}}, \mathcal{N}_M)}_{\text{Best fit likelihood}} \underbrace{ \mathcal{P}(\mathbf{w}_{\text{MP}} \mid \mathcal{N}_M) \, \Delta \mathbf{w}}_{\text{Occam factor}}$$

Interpretation of the Occam factor for one parameter:

Occam factor penalizes complex models:

- $\blacksquare \ \Delta w$ is the posterior uncertainty in w
- Assume uniform on large interval Δw_{ini}

$$\mathcal{P}(w_{\mathsf{MP}} \mid \mathcal{N}_M) = \frac{1}{\Delta w_{ini}}$$

$$\text{Occam factor} = \frac{\Delta w}{\Delta w_{ini}} \rightarrow \frac{V(\text{Posterior})}{V(\text{Prior})}$$

J.C. MacKay, Neural Computation 4, 415 (1992)