The Role of Cross Sections in the Oscillation Analysis: The T2K Experience

Clarence Wret On behalf of the T2K collaboration

T2

Disclaimer

- Not mentioning the T2K detectors here or any detailed results
 - Cross Section Results from T2K, C. Wret, Mon. 5pm
 - Results and Prospects from T2K, S. Dennis, Tue. 11Am
 - Recent Results from the T2K Near Detector, X. Lu, Wed. 10am
 - Details of the T2K oscillation analyses, D. Sgalaberna, Thu. 2.30pm

• There's plenty of air for everyone!

Measuring oscillations

- T2K-SK selections are currently all 1 ring μ/e
- Use measured lepton information to reconstructed E_vccQE
 - Assumes CCQE interaction and stationary nucleon
 - Inherent bias from missing energy and initial state motion

T2K August 2018,

https://arxiv.org/pdf/1807.07891.

 v_{μ}

- e.g. Spectral Function, 2p2h, FSI
- Biases accounted for in model
- Unknown biases: aye there's the rub!

Measuring oscillations

- T2K-SK 1 ring selections emphasise modelling the 0π final state
- CCQE, 2p2h, single pion + abs. 1Rµ FHC with osc. conerent $CCm\pi$ $v_{\mu} \sigma/E_v (10^{-38} \text{ cm}^2/\text{nucleon/GeV})$ CC other - CC INC. -CC RES CC DIS - CCQE T2K flux NCT conerer NC other Reconstructed Energy (G

ROCHESTER

with osc. 0.4 0.5 0.6 0.8

Re d.e. FHC

- 2017 analysis included 1 ring e + 1 decay e
 - Explicitly selecting single pion events below Cherenkov threshold
- Interaction modelling changes 1) amplitude of prediction and 2) shifts the oscillation dip in E_v: affects both mixing angle and mass squared Clarence Wret

- Modelling relates observables (e.g. $p_{\mu} \theta_{\mu}$) to neutrino energy, E_{ν} , which determines the oscillation parameters
- Near and far detectors don't cancel systematics perfectly
 - E_v spectrum is different in the far detector
 - Acceptance, efficiency and targets differs in the detectors
- Data predominantly from v_{μ} : model used to predict v_{e} from v_{μ}
- Require few percent cross section systematics in current and future oscillation experiments
- WG2 Goals for the Meeting, K. Niewczas, Mon. 11.15am

Snapshot of current impact

Large systematics at T2K and NOvA long-baseline oscillation experiments

NOvA Preliminary

Effect on $\Delta N/N$ at Super-Kamiokande

Source [%]	$ u_{\mu} $	ν_e	$\nu_e \pi^+$	$\bar{ u}_{\mu}$	$\bar{\nu}_e$
ND280-unconstrained cross section	2.4	7.8	4.1	1.7	4.8
Flux & ND280-constrained cross sec.	3.3	3.2	4.1	2.7	2.9
SK detector systematics	2.4	2.9	13.3	2.0	3.8
Hadronic re-interactions	2.2	3.0	11.5	2.0	2.3
Total	5.1	8.8	18.4	4.3	7.1

T2K August 2018, https://arxiv.org/pdf/1807.07891.pdf

NOvA Wine and Cheese, A. Himmel, June 15, 2018

- NOvA's detector calibrations makes neutrino interactions dominant systematic for atmospheric and δ_{CP} parameters in future
 - Details of the NOvA oscillation analyses, E. Smith, Thu. 2pm
 - Details of the T2K oscillation analyses, D. Sgalaberna, Thu. 2.30pm
 - NOvA Cross Section Model / Oscillation Needs, J. Wolcott, Fri. 2pm

- Interaction model is chosen from theory and confronted with data
- Free parameters subjected to reasonable constraints (see later slides)
 - Compare to external data, inflate uncertainty if necessary

- Fit the model to ND280 data
 - 60,000 CC-inclusive events, split by FGD, topology and neutrino/anti-neutrino: 14 selections^{*}, binned in $p_{\mu} \cos \theta_{\mu}$
- Parameter constraints on entire model with correlations

Evaluating the ND280 fit

- Important to have full control over systematics parameterisation
 - Feel confident with the 1σ before the fit: weight of the prior
 - Evaluate interaction model against a wide range of data before fitting
- Fitting to ND280 data can expose weaknesses in model
 - Constraints from MiniBooNE, MINERvA or ANL and BNL may be incompatible with T2K results!

Review of Tension in Data/Models of Neutrino Cross Sections, K. Mahn, Wed. 9am

- Fit fully correlates the flux and cross section systematics: correlated uncert.
- P-value from the fit evaluates the goodness of the model before doing OA
 - If it's bad, start again! Think more! Scratch heads!
- Possibility of over-fitting to selected distributions
 - Modelling $p_{\mu} \cos \theta_{\mu}$ well does not ensure hadronic variables are OK!
 - But (for now) SK only looks at lepton candidate
 - Hadronic variables of interest in the future: ND280 will have to follow

Measurements that make us think J2k

- Single pion production
 - No generator or calculation describes T2K, MiniBooNE and MINERvA data at the same time
 - You're very successful if you get $CC1\pi^+$ and $CC1\pi^0$, or v_{μ} and anti- v_{μ} , correct!

- But where is it from? Nucleon model? Nuclear effect? FSI?
 - Current kinematic distributions don't really shine light, need to look beyond momentum and angle?

- Low momentum pions are difficult! MINERvA and T2K consistently underpredicted, but MiniBooNE well predicted by GiBUU
- No external $v_e CC1\pi^{\pm}$ interaction data
- Avoid pion samples at SK until understood? Loss of statistics!

External constraints, CC0 π Tzk

- M_A^{QE} is initially set to 1.2 GeV/c², but entirely free in ND280 fit
 - Fitting to corrected ANL, BNL, FNAL data, $M_A^{QE} = 1.08 \pm 0.04 \text{ GeV}$
 - Also fit alternative form-factors, z-expansion and three component

External constraints, 2p2h

- 2p2h shape parameter puts the 2p2h as Delta-like or non-Delta like in Nieves model
 - Separated for Carbon and Oxygen and correlated 30%

- 2p2h normalisation parameters for v and anti-v
- Constrained 2p2h C→O extrapolation normalisation parameter: 30% uncertainty
- No constraints from external data

External constraints, CC1 π T2k

- Rein-Sehgal tuned to nucleon data* in all channels, W < 2.0 GeV
 - Cross-checked against FNAL and GGM, and the W < 1.4 and W < 1.6 GeV data
 - Parameter inflation to roughly cover predictions for MiniBooNE and MINERvA in muon variables

- Indicates the nominal nuclear model is insufficient
 - An effective T2K-only model in the making?
 - Evaluate by extensive comparisons/fits to external data

The near detector fit

- Clear improvement on the pre-fit
- RPA shape post-fit doesn't resemble Nieves RPA

- CCOther selections only bad news: 0-1% good
- CCOther has negligible impact on SK selections

The near detector fit

The 2015 flux increase is now absorbed in the RPA parameters

- Replacing one bad egg with another?
- ND280 data wants a $Q^2(q_0, q_3?)$ dependent correction
- Evaluate the post-fit interaction model against neutrino scattering data to gauge how T2K-specific the tune is: complicated due to flux parameters
- Might rethink BeRPA for next year: try Rik Gran RPA and develop more

Clarence Wret

ROCHESTER

https://arxiv.org/abs/1705.02932

10

E, (GeV)

The far detector prediction J

- Look at the prediction for the SK $E_{\nu}{}^{\rm rec}$ spectrum with and without the fit (posterior vs prior)

- Clear reduction in uncertainty on event spectrum
- Changes the prediction in the oscillation dip, need to evaluate what effect this may have

Mock data studies

- Evaluates impact of interaction model choice on extracted oscillation parameters
- Reweight simulation to some model not covered in the simulation, and set these template to be the "mock data"
- Fit the simulation at ND280 and SK with the normal model to the "mock data"
- Check to see if the extracted oscillation parameters differ to when using the Asimov data
- If large difference, devise method for oscillation parameter inflation
- <u>Is not</u> equivalent to re-running simulation, but approximate and much less time-consuming
- Full list in backups
- Details of the T2K oscillation analysis, D. Sgalaberna, Thur. 2.30pm

What's needed desired

- Addressed with new NEUT 5.4.0 production:
 - Include LFG for more interaction modes than CCQE
 - Including Nieves 1p1h and 2p2h with hadron tensor
 - M. Kabirnezhad single pion model Phys. Rev. D 97, 013002
- <u>More work on multi-generator OA:</u>
 - Recent GENIE and NuWro versions with ReWeight
 - GiBUU as a comparison (no systematics)
- Compare the post ND280 fit model to other experiments' equivalent (e.g. MINERvA and NOvA tune)
- Smaller issue: CC DIS model is poor at ND280

Conclusions

- T2K's recent interaction parameterisation is the most sophisticated to date
- Capturing more nuclear physics than previous analyses, including shape freedom in 2p2h and RPA
 - 2p2h shape and BeRPA pushed beyond 1σ
- The inputs to the ND280 and SK fit are carefully checked against external data
- Current model is satisfactory in muon variables with T2K flux and target, but lots of room for improvement
- Devised methods for evaluating interaction model dependence on oscillation analysis results: upcoming long paper
- <u>Crucial to nurture collaboration between</u> interaction theorists, generators, and experiments!

Thank you!

T2K Breakthrough Prize Party

January 28th, 2016 at Kuji Sunpia Hitachi

Backups

- Near detectors 280 m from target
 - Constrains flux before oscillation and interaction physics
 - Measurements of neutrino cross sections for the community
 - Exotic measurements, e.g. steriles and HNL
- Far detector 295 km from target
 - Apply model constraints from near detector and external data, add-on SK detector model and oscillations
 - Cross sections and exotics are also measured

The near detectors

- ND280: 2.5° off-axis, 0.6 GeV narrow band: constrain cross section
- INGRID: On-axis, 1.3 GeV wide band: constrain neutrino beam

- Multiple targets in INGRID and ND280: C₈H₈, H₂O, Ar, Pb, Fe
- More detectors being rolled in!

Super-Kamiokande far detector

- 50kt water Cherenkov detector, 2.7 km water equivalent overburden
- Running since 1996, with last upgrade SK-IV in 2008
 - 2.5° off-axis with similar flux to ND280
- 11,146 20" PMTs in ID, 1,885 8" PMTs in OD 40% PMT coverage

• Excellent μ/e separation: <1% mis-assign e as μ and vice versa Clarence Wret

The INGRID detector

- Organised in cross pattern for beam direction measurements
- Proton module for dedicated cross section modules
 - No iron plates: fully plastic scintillator

- 14 topological event selections (data events per FGD up to 2015)[†]:
 - <u>ν</u>: CC0π (17000), CC1π (4500), CCOther (4000)
 - <u>Anti-v</u>: CC1Trk (2700), CCNTrk (800), CC1Trk v bkg (900), CCNTrk v bkg (1000)
- Selections are developed by the cross-section groups
- Constrains oscillation signal interaction (CC0π) and backgrounds (1π, CCOther or NTracks, neutrino in anti-neutrino)

Clarence Wret

[†]Doubling in 2018 analyses 31

SK selection breakdown

• Event selection with Asimov A oscillation after ND280 fit constraints

ROCHESTER

T2K's 2018 parameterisation J2K

- RFG with dipole form factor
 - Can also use Spectral Function (Benhar et al.) but was chosen against after MiniBooNE+MINERvA fit
- 2p2h from Valencia group
- 1p1h RPA from Valencia, applied to our RFG model
 - Technically incorrect, but Nieves estimated it's roughly alright
- Rein-Sehgal with 18 resonances, interference, and a non-resonant background P11(1450). Matter effects included, form factor choice Graczyk & Sobczyk
- Coherent Rein-Sehgal with p_pi normalisations to roughly match Berger-Sehgal and MINERvA data
- Multi-pi as transition from Rein-Sehgal to DIS in 1.3 < W < 2.0 GeV. Custom routine for the extrapolation
- DIS modelling through PYTHIA 5.9
- Pion final state interactions Salcedo Oset
- Nucleon final state interactions Bertini cascade

T2K's 2018 parameterisation J

- MAQE, MAQEH, pF C, pF O
- 2p2h norm nu, anti-nu, <u>C to O</u> uncorrelated
- 2p2h shape C, 2p2h shape O correlated 30%
- <u>BeRPA A, B, D, E</u> uncorrelated
- MARES, C5A, I1/2 bkg correlated by fit
- <u>CC coh norm C, CC coh norm O</u> correlated fully
- <u>CC other shape</u>, weight = value*0.4/Enu
- NC coh norm, NC 1gamma norm, NC oth norm
- <u>CC nue/numu ratio, CC nuebar/numubar ratio</u>
- <u>Pion FSI parameters: abs., inel. Lo, inel. hi, charge ex</u> <u>lo, elastic (no charge ex hi)</u>

ined

r used

Mock data studies

- Many alternative models tested:
- ND280 data-driven
 - All differences in all selections due to 1p1h, 2p2h Delta-like or 2p2h non Delta-like
- MINERvA data-driven
 - Apply Gaussian weights in $q_{\rm 0},\,q_{\rm 3}$ to 1p1h or 2p2h events to match the MINERvA data
- ND280 data driven pion momentum in true p_{π}
- Z-expansion CCQE alternative form factors
- Nieves 1p1h, CCQE Spectral Function
- Martini 2p2h model
- M. Kabirnezhad single pion production model
- Binding energy variations migrating events