

SEARCHES FOR ELECTRIC DIPOLE MOMENTS (EDM) AT A STORAGE RING WITH JEDI

17 AUGUST 2018

MARIA ŻUREK FOR THE JEDI COLLABORATION

NUFACT2018, BLACKSBURG, VIRGINIA, 13-18 AUGUST 2018

MOTIVATION

Baryon Asymmetry Problem

Baryon Asymmetry	Observation	Standard Cosmological Model
$(\mathrm{N}_{\mathrm{B}}^{}-\mathrm{N}_{\overline{\mathrm{B}}})$ / $\mathrm{N}_{\gamma}^{}$	6 × 10 ⁻¹⁰	~ 10-18

Preconditions needed to explain it (Sakharov):

- *C* and *CP* violation
- Baryon number violation
- Thermal non-equilibrium in the early Universe

CP violation in Standard Model

- Electroweak sector (CKM matrix well established)
- **Strong interactions** (θ-term, strong-*CP* puzzle)

Predictions orders of magnitude **too small** to explain the asymmetry!

New sources of *CP* violation can be seen in EDM of particles

Matter

Antimatter

ELECTRIC DIPOLE MOMENT

CP-symmetry violation

The observable quantity - Energy:

- of electric dipole in electric field
- of magnetic dipole in magnetic field

$$H = H_M + H_E = -\vec{\mu} \cdot \vec{B} - \vec{d} \cdot \vec{E}$$
$$P : H = -\vec{\mu} \cdot \vec{B} + \vec{d} \cdot \vec{E}$$
$$T : H = -\vec{\mu} \cdot \vec{B} + \vec{d} \cdot \vec{E}$$

ELECTRIC DIPOLE MOMENT

Current limits

Forschungszentrum

MOTIVATION

Disentanglement the fundamental source(s) of EDMs

PRINCIPLE OF EDM MEASUREMENT

Charged Particles in a Storage Ring

General idea: Observation of **EDM** interaction with **electric field**

"Frozen spin" - Spin parallel to momentum

EXPERIMENTAL REQUIREMENTS

High precision storage ring	alignment, stability, field homogeneity
Polarized hadron beams	P = 0.8
High intensity beams	$N = 4 \times 10^{10} \text{ per fill}$
Large electric fields	E = 10 MV/m
Long spin coherence time	τ = 1000 s
Polarimetry	analyzing power A = 0.6, acc. f = 0.005

$$\sigma_{\text{stat}} \approx \frac{1}{\sqrt{Nf}\tau PAE} \implies \sigma_{\text{stat}}(1 \text{ year}) \approx 10^{-29} e \text{cm}$$

Challenge: systematic uncertainties on the same level!

Even in Pure Electric Ring – lots of sources of systematic uncertainties Very small radial B field can mimic an EDM effect: $\mu B_r \sim dE_r$

STORAGE RING EDM MEASUREMENTS

- Only EDM storage ring measurement: muon (parasitic measurement to g-2)
- Cooler Synchrotron COSY at Forschungszentrum Jülich, Germany
 - magnetic storage ring
 - polarized proton and deuteron beams up to 3 GeV/c

Ideal **starting point** for proof of principle experiment

EDMs of charged hadrons: p, d

R&D with deuterons p = 1 GeV/c G = -0.14256177(72) $f_s \approx 120 \text{ kHz}$ $f_{rev} \approx 750 \text{ kHz}$

 $\nu_s = \frac{\text{spin revolutions}}{\text{turn}} \approx G\gamma \approx -0.16$

SPIN IN PURELY MAGNETIC RING

Thomas-BMT equation:

In storage rings (magnetic field – vertical, electric field - radial)

MDM causes fast spin precession in horizontal plane EDM causes small vertical polarization buildup oscillating up and down

SPIN IN PURELY MAGNETIC RING

SPIN IN PURELY MAGNETIC RING

Wien Filter has to be always in phase with the horizontal spin precession!

ACTIVITY AT COSY

Jülich Electric Dipole moment Investigations (JEDI)

POLARIZATION MEASUREMENT

POLARIZATION MEASUREMENT

 $\nu_s = \frac{\rm spin \ revolutions}{\rm turn} \approx G\gamma \approx -0.16 \quad {\rm Deuteron \ spin \ precesses \ with \ \sim 120 \ kHz!}$

Detector signal and measured asymmetry oscillates

$$\epsilon_{UD} = \frac{N_U - N_D}{N_U + N_D} = P_x A_y \sin(2\pi \cdot f_{\text{prec}} t) = P_x A_y \sin(2\pi \cdot \nu_s n_{turn})$$

With event rates ~ 5000 s⁻¹ we have ~ 1 hit / 25 precessions

PRECISE SPIN TUNE MEASUREMENT

Monitoring phase of asymmetry with fixed spin tune

Relative precision:Muon (g-2): $\sim 10^{-6}$ Deuteron (JEDI): $\sim 10^{-9}$ Much longer measurement: $600 \mu s v s 100 s$

Precise determination of G impossible: Ring imperfections MDM rotations about non-vertical axes

SPIN COHERENCE TIME

SPIN COHERENCE TIME

SPIN COHERENCE TIME

Maria Żurek – EDMs with JEDI

CH

CONTROLLING SPIN DIRECTION

Feedback system

Goal: Maintain resonance frequency and phase between spin precession and Wien filter

1st test at COSY: control spin tune via COSY rf: $\nu_s = G\gamma$

Now: We change directly Wien filter frequency!

Forschungszentrum

WIEN FILTER COMMISSIONING

Maria Żurek – EDMs with JEDI

We see vertical polarization buildup - EDM-like signal

We see vertical polarization buildup - EDM-like signal

Two **systematic** contributions:

1. Residual, radial magnetic field from WF

- effect equivalent to WF rotation
- 2. Field imperfections in COSY
- transverse contribution: equivalent to WF rotation
- longitudinal contribution: equivalent to additional static solenoid field

Stability of COSY conditions within 24 hours

We see vertical polarization buildup - EDM-like signal

Two **systematic** contributions:

1. Residual, radial magnetic field from WF

- effect equivalent to WF rotation
- 2. Field imperfections in COSY
- transverse contribution: equivalent to WF rotation
- longitudinal contribution: equivalent to additional static solenoid field

Stability of COSY conditions within 24 hours

OUTLOOK

SUMMARY

- EDMs of elementary particles key for understanding sources of CP violation
 - explanation of matter antimatter imbalance
- Extremely ambitious measurement for charged particles
- Preparations for proof-of-principle experiment at COSY
 - → Extended R&D program
- First measurement of deuteron EDM in progress

THANK YOU!

http://collaborations.fz-juelich.de/ikp/jedi/

🔀 mariakzurek@gmail.com

Maria Żurek – EDMs with JEDI

Page 27

BACKUP

Maria Żurek – EDMs with JEDI

POLARIMETRY FOR AN EDM EXPERIMENT

Challenge: measurement of tiny polarization build-up

Minimization of asymmetry error:

Maximization of FoM

ACTIVITY AT COSY

JEDI

Jülich Electric Dipole moment Investigations (JEDI)

R&D with towards first proof-of-principle EDM experiment for deuterons and protons

Polarimetry-group activity:

- Development of dedicated polarimeter based on LYSO crystals
- Database experiment with WASA detector

Motivation:

- Optimal configuration of the polarimeter
- **Goal:** A_{v} , A_{vv} , $d\sigma/d\Omega$ for
- dC elastic scattering
- main background reactions (deuteron breakup)

http://collaborations.fz-juelich.de/ikp/jedi/

Page 30

DEUTERON DATABASE EXPERIMENT WITH WASA

Detector Setup

DATABASE EXPERIMENT WITH WASA

Analyzing power for elastic dC scattering

POLARIMETRY

 N^{up}

Detector signal

$$\begin{array}{ll} down &= 1 \pm PA \sin(2\pi \cdot f_{\rm prec}t) \\ &= 1 \pm PA \sin(2\pi \cdot v_s \, n_{\rm turns}) \\ & {\rm P: \, polarisation, \, A: \, analysing \, power} \end{array}$$

Asymmetry

$$\varepsilon = \frac{N^{up} - N^{down}}{N^{up} + N^{down}} = PA\sin(2\pi \cdot \upsilon_s n_{\text{turns}})$$

Challenges

- precession frequency $f_{\text{prec}} \approx 120 \text{ kHz}$
- $v_s \approx -0.16 \rightarrow 6 \text{ turns / precession}$
- event rate \approx 5000 s⁻¹ \rightarrow 1 hit / 25 precessions
 - \rightarrow no direct fit of the rates

R&D AT COSY

EDMs of charged hadrons: p, d

R&D with deuterons p = 1 GeV/c G = -0.14256177(72) $v_s \approx -0.161 \ f \approx 120 \text{ kHz}$

WIEN FILTER METHOD

WIEN FILTER METHOD

Wien Filter has to be always **in phase** with the horizontal spin precession!

Feedback system developed and tested: Phys. Rev. Lett., 119, 014801 (2017) Resonant frequency controlled, precession of spin phase locked

WIEN FILTER COMMISSIONING – 90° MODE SPIN ROTATIONS WITH PHASE LOCK

Forschungszentrum

We see vertical polarization buildup - EDM-like signal

Two **systematic** contributions:

1. Residual, radial magnetic field from WF

- effect equivalent to WF rotation

2. Field imperfections in COSY

- transverse contribution: equivalent to WF rotation
- longitudinal contribution: equivalent to additional static solenoid field

The measurement shows the stability of COSY conditions within 24 hours

