Search for lepton flavour violation with the ATLAS detector

16-Aug-2018 NuFACT 2018 Blacksburg

Wing Sheung Chan (Nikhef) for the ATLAS Collaboration

Content

Introduction

LHC and the ATLAS detector

• Searches:

- Decays of Standard-Model (SM) particles
- Decays of hypothetical particles / objects
- Summary

Introduction – Lepton Flavour Violation

• Flavour conservation is **not** a fundamental symmetry in the SM

• Fermions do change flavour:

- \circ Quarks: CKM matrix \rightarrow quark mixing observed
- \circ Leptons: PMNS matrix \rightarrow neutrino mixing observed

• How about charged leptons?

- $\circ \rightarrow$ (charged) Lepton Flavour Violation (cLFV)
- Not observed yet

$^{\rm o}$ In the SM

- Loop with neutrino oscillations
- Vanishingly small branching ratios

• BSM

- Various models: Supersymmetry, extended gauge models, heavy neutrinos, etc.
- Some predict LFV couplings to be tested at the LHC
- Unambiguous signal: observation = new physics phenomena!

The Large Hadron Collider (LHC)

World's largest and most powerful particle accelerator

- 27-km ring near Geneva, Switzerland
- Completed first operational run ("Run 1"):
 - 2010-2011: pp collisions at $\sqrt{s} = 7$ TeV (5 fb⁻¹)
 - 2012: pp collisions at $\sqrt{s} = 8$ TeV (21 fb⁻¹)
- Currently in second operational run ("Run 2"):
 - $\,\circ\,$ 2015-2018: pp collisions at $\sqrt{s}=13~{\rm TeV}$ (expecting ${\sim}150~{\rm fb^{-1}})$

The ATLAS detector

General-purpose particle detector at the LHC

• Inner detector (ID)

- High-precision tracking
- Silicon pixels / strips + transition radiation trackers

Calorimeters

- EM: liquid argon (LAr)
- Hadronic: scintillating tiles + LAr endcaps

Muon spectrometer (MS)

Muon identification and tracking

Magnet systems

- Solenoidal (ID)
- Toroidal (MS)

The ATLAS detector – Lepton efficiencies

Wing Sheung Chan (Nikhef)

90 100

p₋ [GeV]

80

Data, $\langle \mu \rangle \ge 40$

♦ Data, <µ> < 40</p>

Searches with the ATLAS detector

Decays of Standard-Model particles:

• $Z \rightarrow e\mu; Z \rightarrow e\tau/\mu\tau$ [New update!! arXiv:1804.09568 • $H \rightarrow e\tau/\mu\tau$

- $\circ \tau \rightarrow 3\mu$
- Decays of hypothetical particles / objects: New update!! arXiv:1807.06573
 - $\circ Z'$ Heavy gauge boson
 - $\circ~\widetilde{\nu}$ R-parity violating supersymmetry (RPV SUSY) sneutrino
 - QBH Quantum black hole

 $Z \rightarrow e\mu$

Dataset

 \circ 20.3 fb⁻¹ of pp collisions at $\sqrt{s} = 8$ TeV (2012)

Major backgrounds

- $\circ Z \to \tau \tau \to e \mu \nu \bar{\nu} \nu \bar{\nu}$
- $\circ WW \to e \mu \nu \bar{\nu}$
- $\circ t \overline{t} \to e \mu \nu \overline{\nu} b \overline{b}$

Strategy

- Reject events with high-energy jets \rightarrow suppress $t\bar{t}$
- Reject events with large transverse missing energy ($E_{\rm T}^{\rm miss}$) \rightarrow suppress WW
- Fit $e\mu$ invariant mass spectrum \rightarrow search for signal peaking near the Z mass

 $Z \rightarrow e\mu$

Invariant mass $(m_{e\mu})$

spectrum after all cuts

Rejection of events with high-energy jets ($p_{T_{max}}^{jet}$)

Rejection of events with

large $E_{\rm T}^{\rm miss}$

 $Z \rightarrow e\mu$

• Results and interpretation

- Upper limit (95% CL) on the branching ratio is calculated by BR($Z \rightarrow e\mu$) $< \frac{N_{95\%}}{\epsilon_{e\mu}N_Z}$
- N_Z = total number of produced Z bosons, estimated by $Z \rightarrow ee$ and $Z \rightarrow \mu\mu$ measurements
- $\epsilon_{e\mu}$ = reconstruction efficiency of $e\mu$ events
- $N_{95\%} =$ upper limit on number of $Z \rightarrow e\mu$ events, obtained by fitting $m_{e\mu}$ spectrum
- Upper limit (95% CL): $BR(Z \rightarrow e\mu) < 7.5 \times 10^{-7}$

• Dataset

- 36.1 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV (2015-2016)
- Results for $Z \rightarrow \mu \tau$ combined with previous analysis with 20.3 fb⁻¹ 8-TeV data (2012)

\circ Focus on channels with hadronically-decaying au

Major backgrounds

- $Z \to \tau \tau \to \ell \tau_{had}$ $(\ell = e/\mu; \tau_{had} = hadronically-decaying \tau)$
- $W(\rightarrow \ell \nu)$ + jets (jets mis-identified as τ_{had} , aka "jet $\rightarrow \tau$ fakes") $\circ Z \to \ell \ell$
 - $(e/\mu \text{ mis-identified as } \tau_{had}, aka "\ell \rightarrow \tau \text{ fakes"})$

Strategy

- Reject events with high $m_{\rm T}(\tau_{\rm had-vis}, E_{\rm T}^{\rm miss}) \rightarrow {\rm suppress} \ Z \rightarrow \tau \tau \ / \ W + {\rm jets}$
- Reject events with visible invariant mass $\approx m_Z \rightarrow$ suppress $Z \rightarrow \ell \ell$
- Estimate jet $\rightarrow \tau$ fakes by data-driven method
- Discriminate events by neural network (NN) and fit on output

arXiv:1604.07730

11

Rejection of events with high $m_{\rm T}(\tau_{\rm had-vis}, E_{\rm T}^{\rm miss})$

 $Z \rightarrow e\tau/\mu\tau$

Rejection of events based on visible invariant mass $m(\operatorname{track}, \ell)$: τ energy measured by ID tracking $m(\tau_{\operatorname{had-vis}}, \ell)$: τ energy measured by calorimeters

$Z \rightarrow e \tau / \mu \tau$

• Data-driven jet $\rightarrow \tau$ fakes estimation

- jet $\rightarrow \tau$ fakes not well modelled in simulation
- Measure fake factors (FF) in calibration regions (CR) using data

1. Measure FF in CR: FF = ratio of events passing/failing τ identification

2. Apply FF in SR: Estimation = FF \times events failing τ ID

Neural network classifiers

- 3 classifiers: signal against $Z \rightarrow \tau \tau$, W+jets, and $Z \rightarrow \ell \ell$ backgrounds
- Trained with simulated events
- \circ Inputs: 4-momenta of ℓ,τ and $E_{\rm T}^{\rm miss}$ + few high-level variables like inv. mass
- Combined into one powerful classifier

 $Z \rightarrow e\tau/\mu\tau$

• Results and interpretation

- Predicted NN output distributions are fit to data
- Free parameters: $BR(Z \rightarrow \ell \tau)$ and normalisations of Z and jet $\rightarrow \tau$ fakes
- \circ Events with 1-prong and 3-prong au_{had} are fit separately (but simultaneously)
- \circ Upper limits (95% CL): BR(Z → eτ) < 5.8 × 10⁻⁵ BR(Z → μτ) < 2.4 × 10⁻⁵ BR(Z → μτ) < 2.4 × 10⁻⁵ PR(Z → μτ)
- Combined with 8-TeV data*: $BR(Z \rightarrow \mu \tau) < 1.3 \times 10^{-5}$ *no 8-TeV ATLAS results on $Z \rightarrow e\tau$

New update!

arXiv:1804.09568

Dataset

- \circ 20.3 fb⁻¹ of pp collisions at $\sqrt{s} = 8$ TeV (2012)
- $^{\rm o}$ Consider both leptonically- and hadronically-decaying τ

Major backgrounds

- $\ell \tau_{\text{lep}}$ channels: *Z*+jets, *WW*, $t\bar{t}$
- $\ell \tau_{had}$ channels: Z+jets, W+jets, QCD multi-jet (jet $\rightarrow \tau$ fakes)

Strategy

- $\ell \tau_{\text{lep}}$ channels:
 - $\circ\,$ Focus on $e\mu$ final state exploit $e\leftrightarrow\mu$ symmetry in SM, asymmetry for LFV signal
- $\ell \tau_{had}$ channels:
 - Make use of signal characteristics in $m_{\rm T}(\tau_{\rm had-vis}, E_{\rm T}^{\rm miss})$ and $m_{\rm T}(\ell, E_{\rm T}^{\rm miss})$ (similar to $Z \to \ell \tau_{\rm had}$)

$\circ \ell \tau_{lep}$ channels ($e\mu$ final state)

- \circ Two categories: one for $p_{\rm T}^e > p_{\rm T}^\mu$ ($e\mu$) and one for $p_{\rm T}^e < p_{\rm T}^\mu$ (μe)
- $e\mu \leftrightarrow \mu e$ symmetric in SM, asymmetric for LFV signal (e/μ from τ is softer)
- Fit mass spectrum after correcting for asymmetry from trigger/reco. efficiencies and mis-identifications

$\circ \ell au_{had}$ channels

 $H \rightarrow e\tau/\mu\tau$

- Two SRs: different background composition (W+jets or $Z \rightarrow \tau \tau$ dominating)
- Event selection mainly based on $m_{\rm T}(au_{\rm had}$ -vis, $E_{\rm T}^{\rm miss})$ and $m_{\rm T}(\ell, E_{\rm T}^{\rm miss})$

 $H \rightarrow e\tau/\mu\tau$

Results and interpretation

- All channels are statistically combined
- Limit on BR($H \rightarrow e\tau$) obtained under the assumption BR($H \rightarrow \mu\tau$) = 0, and vice versa
- Upper limits (95% CL): BR($H \rightarrow e\tau$) < 1.04 × 10⁻² BR($H \rightarrow e\tau$) < 1.04 × 10⁻²

 $\tau \rightarrow 3\mu$

Dataset

 \circ 20.3 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV (2012)

Major backgrounds / challenges

- Almost background-free
- Challenging for ATLAS (very low-energy and close-by muons)

Strategy

- Use τ from $W \to \tau \nu$ (large $p_T^{\tau} \to$ muons close in angle; large recoil E_T^{miss})
- \circ Select events with 3 muons with common vertex and $m_{3\mu}pprox m_{ au}$
- Event selection mainly based on muon kinematics and vertex displacement
 - Loose selection for Boosted Decision Trees (BDT) training
 - Tight selection for BDT cut optimization
- Regions are defined according to how close $m_{3\mu}$ is to m_{τ} :
 - (close to m_{τ}) signal region < blinded region < sideband region < training region (far from m_{τ})

$\tau\to 3\mu$

Analysis procedures

- Obtain background samples (*loose* selection in training region)
- Train BDT input features:
 - $\circ 3\mu$ and $E_{\mathrm{T}}^{\mathrm{miss}}$ kinematics
 - Vertex/track fitting probability/significance
- Study rejection (*tight* selection in <u>sideband</u> region)
- Define optimal BDT cut
- Count events in the signal region for interpretation

 $\tau \rightarrow 3\mu$

• Results and interpretation

- One event observed at 1860 MeV
- Upper limit (90% CL): $BR(\tau \to 3\mu) < 3.76 \times 10^{-7}$

 \circ 36.1 fb^{-1} of pp collisions at $\sqrt{s}=$ 13 TeV (2015-2016)

Major backgrounds

- $\circ t \overline{t}$ and single-top
- W+jets and QCD multi-jet (channels with τ)

Strategy

- \circ Select events with high-mass $e\mu/e\tau_{\rm had}/\mu\tau_{\rm had}$ final state
- Construct invariant mass
- Estimate top background by extrapolating from low-mass regions
- Estimate *W*+jets and QCD multi-jet by data-driven methods
- Interpretations in three types of models ($Z'/\tilde{\nu}/QBH$) using Bayesian method

arXiv:1807.06573

 $Z'/\tilde{\nu}/\text{QBH} \rightarrow e\mu/e\tau/\mu\tau$

Background estimation

- Top background:
 - Very limited number of simulated events at high-mass
 - Fit smooth functions (3 parameters) in low-mass regions and extrapolate (vary fit parameters and fit range → uncertainty estimate)
- W+jets (channels with τ):
 - Measure jet $\rightarrow \tau$ fake rate in *W*+jets-enriched control region
 - Apply to simulated jets in signal region
- QCD multi-jet (channels with τ):
 - $\circ\,$ Idea similar to $Z \to \ell \tau$ Fake Factor method
 - Measure "pass"/"fail" ratio using events in CR (low- $p_{\rm T}$, same-charge $\ell \tau$ pairs) ("pass"/"fail" referring to lepton isolation and τ identification criteria)
 - Multiply observed "fail" events in signal region by the ratio

arXiv:1807.06573

 $Z'/\tilde{\nu}/\text{QBH} \rightarrow e\mu/e\tau/\mu\tau$

Results and interpretations

- Three models
 - Z': SM quark couplings; no SM lepton couplings. Upper limit set on $m_{Z'}$
 - $\circ \ \widetilde{
 u}$: RPV SUSY sneutrino. Upper limit set on $m_{\widetilde{
 u}}$
 - $\circ\,$ QBH: Considered two extra-dimension models ADD (n=6) and RS (n=1). Upper limit set on threshold mass $m_{\rm th}$
- Only one LFV coupling $(e\mu/e\tau/\mu\tau)$ allowed at a time
- Upper limits on $m_{Z'}/m_{\widetilde{\nu}}/m_{\mathrm{th}}$ (95% CL, Bayesian):

	Ex	pected lir	nit [Te	eV]	Observed limit [TeV]			
Model	eμ	eμ	$e\tau$	μau	eμ	eμ	$e\tau$	μau
		(b-veto)				(b-veto)		
LFV Z'	4.3	4.3	3.7	3.5	4.5	4.4	3.7	3.5
RPV SUSY \tilde{v}_{τ}	3.4	3.4	2.9	2.6	3.4	3.4	2.9	2.6
QBH ADD $n = 6$	5.6	5.5	4.9	4.5	5.6	5.5	4.9	4.5
QBH RS $n = 1$	3.3	3.4	2.8	2.7	3.4	3.4	2.9	2.6

Summary

• LFV searches performed in ATLAS:

- \circ Decays of SM Z,H and τ
- \circ Decays of hypothetical Z' , $\widetilde{\nu}$ and QBH
- No evidence or discovery of LFV processes
- Upper limits set on considered models
- Ongoing analyses with full Run-2 data
 - Data taking complete this year (2018)
 - $^{\rm o}$ Can expect luminosity ${\sim}150~{\rm fb^{-1}}$

• Stay tuned!!

Thank you!

Backup

$Z \rightarrow e\mu$: Event selections, reconstruction efficiencies

Z decay	Efficiency (%)	N_{7} (10 ⁸)
ee	10.8 ± 0.3	7.85 ± 0.24
$\mu\mu$	17.8 ± 0.4	7.79 ± 0.17
$\langle ee, \mu\mu angle$		7.80 ± 0.15
$e\mu$	14.2 ± 0.4	

Sources	MC			Data						
Channels	ee	$\mu\mu$	$e\mu$	ee	ee		$\mu\mu$		$e\mu$	
_	Eff. (%)	Eff. (%)	Eff. (%)	Events	Eff. (%)	Events	Eff. (%)	Events	Eff. (%)	
Initial		_	_	242,852,345		242,852,345	_	242,852,345		
Triggered	62.5	65.7	64.8	76,840,946	31.6	76,840,946	31.6	76,840,946	31.6	
Two Lepton, η and $p_{\rm T}$ cuts	31.1	51.6	40.6	4,908,037	6.4	8,129,937	10.6	76,657	0.1	
$E_{\mathrm{T}}^{\mathrm{miss}} < 17~\mathrm{GeV}$	67.9	66.9	68.0	$3,\!384,\!179$	69.0	5,547,293	68.2	12,189	15.9	
$p_{\mathrm{T}_{\mathrm{max}}^{\mathrm{jet}}} < 30 \mathrm{GeV}$	84.9	81.7	81.8	2,965,933	87.6	4,869,110	87.8	8,744	71.7	
$70 < m_{\ell\ell} < 110 \text{ GeV}$	96.4	96.3	97.1	2,847,689	96.0	4,670,014	95.9	3,163	36.2	
$85 < m_{\ell\ell} < 95~{\rm GeV}$	81.8	86.5	86.2	2,248,034	78.9	3,702,598	79.3	362	11.4	

$Z \rightarrow \ell \tau$: Event selections, CR definitions

 $\begin{array}{ll} \mbox{Preselection} & \mbox{one isolated tight light lepton with $p_{\rm T}>30$ GeV matched to a lepton selected at trigger level} \\ & \mbox{leading $\tau_{\rm had-vis}$ with $p_{\rm T}>20$ GeV, $N_{\tau}^{\rm tracks}=1$ or 3 and passing tight identification} \\ & \mbox{if $N_{\tau}^{\rm tracks}=1$: $0.0(0.1)<|\eta_{\tau}|<1.37$ or $1.52<|\eta_{\tau}|<2.2(2.5)$ in $e\tau(\mu\tau)$ events} \\ & \mbox{if $N_{\tau}^{\rm tracks}=3$: $0.0<|\eta_{\tau}|<1.37$ or $1.52<|\eta_{\tau}|<2.5$ } \\ & \mbox{$q_{\ell}\times q_{\tau}=-1$} \\ & \mbox{no b-jet, no additional light lepton} \\ \end{array}$

if $N_{\tau}^{\text{tracks}} = 1$ and $|\eta_{\tau}| < 2.0$: $m(\text{track}, \ell) < 84 \text{ GeV}$ or $m(\text{track}, \ell) > 105 \text{ GeV}$

if $N_{\tau}^{\text{tracks}} = 1$ and $|\eta_{\tau}| > 2.0$: $m(\text{track}, \ell) < 80 \text{ GeV or } m(\text{track}, \ell) > 105 \text{ GeV}$

if $N_{\tau}^{\text{tracks}} = 1$ and $80 < m(\tau_{\text{had-vis}}, \ell) < 100 \text{ GeV}$: $m(\text{track}, \ell) > 40 \text{ GeV}$

Region	Change relative to SR selection			
		e au	μau	
CRZll	Two same-flavor opposite-charge light leptons with $81 < m_{\ell\ell} < 101 \text{ GeV}$	98	98	
CRW	$m_{\rm T}(\ell, E_{\rm T}^{\rm miss}) > 40 \text{ GeV} \text{ and } m_{\rm T}(\tau_{\rm had-vis}, E_{\rm T}^{\rm miss}) > 35(30) \text{ GeV} \text{ in } e\tau \ (\mu\tau) \text{ events}$	84	85	
CRT	$N_{b ext{-jets}} \geq 2$	98	98	
CRQ	Inverted light-lepton isolation	75	37	

$Z \rightarrow \ell \tau$: Observed/post-fit events, NN inputs

	1-prong	3-prong					
Total observed $e\tau$ events	89294	35148					
Total post-fit $e\tau$ events	$89300{\pm}300$	$35200{\pm}200$					
Fakes	$57000{\pm}1000$	$21500{\pm}500$	Variable	Description	Z NN	Zll NN	W NN
$\begin{array}{c} Z \to \tau \tau \\ Z \to \ell \ell \end{array}$	26000 ± 1000 3200 ± 100	$11500{\pm}500$ $250{\pm}150$	\hat{E}^{lep}	light-lepton energy	\checkmark	\checkmark	\checkmark
Тор	770 ± 120	440 ± 70	$\hat{p}_x^{ au_{ ext{had-vis}}}$	$ au_{\mathrm{had-vis}} p_x$	\checkmark	\checkmark	\checkmark
W+jets	540 ± 100	950 ± 180	$\hat{P}^{ au_{ m had-vis}}_{m{z}}$ $\hat{E}^{ au_{ m had-vis}}$	$\tau_{\rm had-vis} p_z$	\checkmark	\checkmark	\checkmark
Other $Z \rightarrow \sigma$ signal	340 ± 70	150 ± 30	$\hat{p}_z^{\mathrm{miss}}$	$E_{\rm T}^{\rm miss}$ component along z-axis	\checkmark	\checkmark	\checkmark
$Z \rightarrow 7e$ signal	900±400	<u> </u>	\hat{E}^{miss}	magnitude of $E_{\rm T}^{\rm miss}$	\checkmark	\checkmark	\checkmark
Total observed $\mu\tau$ events	79744	25050	$p_{\mathrm{T}}^{\mathrm{tot}}$	transverse component of total momentum	\checkmark	\checkmark	\checkmark
Total post-fit $\mu\tau$ events	$79700{\pm}500$	$25100{\pm}700$	$m_{ m coll} \Delta lpha$	collinear mass see Eq. (1) [47]	\checkmark	\checkmark	\checkmark
Fakes	$52000{\pm}1000$	$13600{\pm}800$	$m(\ell, au_{ m had-vis})$	invariant mass of light lepton and $\tau_{\text{had-vis}}$	·	\checkmark	v
$Z \to \tau \tau$	$26000{\pm}1000$	$10300{\pm}300$					
$Z \to \ell \ell$	240 ± 110	$80{\pm}40$					
Тор	890 ± 140	360 ± 60					
W+jets	610 ± 120	680 ± 130					
Other	290 ± 70	110 ± 20					
$Z \to \tau \mu$ signal	-20 ± 360	-10 ± 140					

$H \rightarrow \ell \tau$: Event selections, region definitions

		$\ell au_{ ext{lep}}$					
Criterion	SR1	SR2	WCR	TCR		$\mathrm{SR}_\mathrm{noJets}$	${ m SR}_{ m withJets}$
$E_{\mathrm{T}}(e)$	$>\!\!26~{\rm GeV}$	$>\!\!26~{\rm GeV}$	$>\!26~{\rm GeV}$	$>\!\!26~{\rm GeV}$	Light leptons	$e^{\pm}\mu^{\mp}$	$e^{\pm}\mu^{\mp}$
$p_{\mathrm{T}}(au_{\mathrm{had}})$	$>45~{\rm GeV}$	$>45~{\rm GeV}$	$>45~{\rm GeV}$	$>45~{\rm GeV}$	τ leptons	veto	veto
$ \eta(e) - \eta(\tau_{\rm had}) $	<2	<2	<2	<2	Central jets	0	≥ 1
$m^{e,E_{\mathrm{T}}^{\mathrm{m}_{\mathrm{ISS}}}}_{\mathrm{T}}$	$>40~{\rm GeV}$	$<\!40~{\rm GeV}$	$>60~{\rm GeV}$	_	$b ext{-jets}$	0	0
$m_{ ext{T}}^{ au_{ ext{had}},E_{ ext{T}}^{ ext{miss}}}$	$< 30 { m GeV}$	$<\!60~{ m GeV}$	$>40~{\rm GeV}$	_	$p_{ extsf{T}}^{\ell_1}$	$\geq 35 GeV$	$\geq 35 GeV$
$N_{ m jet}$	_	_	_	≥ 2	$p_{\mathrm{T}}^{\ell_2}$	$\geq 12 GeV$	$\geq 12 GeV$
$N_{b- m jet}$	0	0	0	≥ 1	$ \eta^e $	≤ 2.4	≤ 2.4
					$ \eta^{\mu} $	≤ 2.4	≤ 2.4
					$\Delta \phi(\ell_2, E_{\mathrm{T}}^{\mathrm{miss}})$	≤ 0.7	≤ 0.5
					$\Delta \phi(\ell_1,\ell_2)$	≥ 2.3	≥ 1.0
					$\Delta \phi(\ell_1, E_{\mathrm{T}}^{\mathrm{miss}})$	≥ 2.5	≥ 1.0
					$\Delta p_{ m T}(\ell_1, \ell_2)$	$\geq 7 GeV$	$\geq 1 GeV$

$\tau \rightarrow 3\mu$: Region definitions, event counts

Region	Range in $m_{3\mu}$ [MeV]
Signal region	[1713, 1841]
Blinded region	[1690, 1870]
Sideband region	[1450, 1690] and $[1870, 2110]$
Training region	[750, 1450] and $[2110, 2500]$

Phase	Data SB	Data SR	Signal MC SR
			[out of 2×10^5]
loose	2248	580	12672
$loose+x>x_0$	736	203	12557
tight	42	9	5503
$tight + x > x_0$	28	7	5501
$tight + x > x_1$	0	0	4616

$\tau \rightarrow 3\mu$: BDT input features

- 1. The calorimeter-based transverse mass, $m_{\rm T}^{\rm cal}$.
- 2. The track-based missing transverse momentum, $E_{T \text{ trk}}^{\text{miss}}$.
- 3. The isolation variable, $\Sigma p_{\rm T}^{\rm trk} (\Delta R_{\rm max}^{3\mu} + 0.20) / p_{\rm T}^{3\mu}$.
- 4. The transverse component of the vector sum of the three-muon and leading jet momenta, $\Sigma_{\rm T}$.
- 5. The track-based transverse mass, $m_{\rm T}^{\rm trk}$.
- 6. The difference between the $E_{\text{T,cal}}^{\text{miss}}$ and $E_{\text{T,trk}}^{\text{miss}}$ directions, $\Delta \phi_{\text{trk}}^{\text{cal}}$.
- 7. The calorimeter-based missing transverse momentum, $E_{T,cal}^{miss}$.
- 8. The track-based missing transverse momentum balance $p_{\rm T}^{3\mu}/E_{\rm T,trk}^{\rm miss} 1$.
- 9. The difference between the three-muon and $E_{\text{T,cal}}^{\text{miss}}$ directions, $\Delta \phi_{3\mu}^{\text{cal}}$.
- 10. Three-muon vertex fit probability, p-value.
- 11. The three-muon vertex fit a_{xy}^0 significance, $S(a_{xy}^0)$.
- 12. The track fit probability product, \mathcal{P}_{trks} .
- 13. The three-muon transverse momentum, $p_{\rm T}^{3\mu}$.
- 14. The number of tracks associated with the PV (after refitting the PV while excluding the three-muon tracks), N_{trk}^{PV} .
- 15. The three-muon vertex fit L_{xy} significance, $S(L_{xy})$.
- 16. The calorimeter-based missing transverse momentum balance, $p_{\rm T}^{3\mu}/E_{\rm T,cal}^{\rm miss} = 1$.

$Z' \rightarrow \ell \ell'$: Limit conversion from low-energy experiments

$\tilde{\nu} \rightarrow \ell \ell'$: Limit conversion from low-energy experiments

