Standard Model prediction for muon g-2

Daisuke Nomura (KEK)

talk at NuFACT 2018 @ Virginia Tech August 14, 2018

Based on collaboration with Alex Keshavarzi and Thomas Teubner (KNT) Phys. Rev. D97 (2018) 114025 [arXiv:1802.02995]

Muon g-2: introduction

Lepton magnetic moment $\vec{\mu}$:

$$\vec{\mu} = -g \frac{e}{2m} \vec{s}$$
, $(\vec{s} = \frac{1}{2} \vec{\sigma}$ (spin), $g = 2 + 2F_2(0)$)

where

$$\overline{u}(p+q)\Gamma^{\mu}u(p) = \overline{u}(p+q)\left(\gamma^{\mu}F_{1}(q^{2}) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2m}F_{2}(q^{2})\right)u(p)$$

Anomalous magnetic moment: $a \equiv (g-2)/2 \ (=F_2(0))$

Historically,

★ g = 2 (tree level, Dirac) ★ $a = \alpha/(2\pi)$ (1-loop QED, Schwinger)

Today, still important, since...

★ One of the most precisely measured quantities:

 $a_{\mu}^{\exp} = 11\ 659\ 208.9(6.3) \times 10^{-10}$ [0.5ppm]

(Bennett *et al*)

★ Extremely useful in probing/constraining physics beyond the SM

KNT18 a_{μ}^{SN}	update [KNT18: arXiv:	1802.02995	5, PRD (in press)]
	<u>2011</u>		<u>2017</u>
QED	11658471.81 <mark>(0.02)</mark>	\longrightarrow	11658471.90 (0.01) [arXiv:1712.06060]
EW	15.40 (0.20)	\longrightarrow	15.36 (0.10) [Phys. Rev. D 88 (2013) 053005]
LO HLbL	10.50 (2.60)	\longrightarrow	9.80 (2.60) [EPJ Web Conf. 118 (2016) 01016]
NLO HLbL			0.30 (0.20) [Phys. Lett. B 735 (2014) 90]
	HLMNT11		<u>KNT18</u>
LO HVP	694.91 (4.27)	\longrightarrow	693.27 (2.46) this work
NLO HVP	-9.84 (0.07)	\longrightarrow	-9.82 (0.04) this work
NNLO HVP			1.24 (0.01) [Phys. Lett. B 734 (2014) 144]
Theory total	11659182.80 (4.94)	\longrightarrow	11659182.05 (3.56) this work
Experiment			11659209.10 (6.33) world avg
Exp - Theory	26.1 (8.0)	\longrightarrow	27.1 (7.3) this work
	3.3σ	\rightarrow	3.7σ this work
Δa_{μ}			

Hadronic Contributions

There are several hadronic contributions:

LO: Leading Order (or Vacuum Polarization) Hadronic Contribution NLO: Next-to-Leading Order Hadronic Contribution I-by-I: Hadronic light-by-light Contribution

The diagram to be evaluated:

pQCD not useful. Use the dispersion relation and the optical theorem.

$$a_{\mu}^{\text{had,LO}} = \frac{m_{\mu}^2}{12\pi^3} \int_{s_{\text{th}}}^{\infty} ds \; \frac{1}{s} \hat{K}(s) \sigma_{\text{had}}(s)$$

• Weight function $\hat{K}(s)/s = \mathcal{O}(1)/s$ \implies Lower energies more important $\implies \pi^{+}\pi^{-}$ channel: 73% of total $a_{\mu}^{\text{had,LO}}$

- Lots of new input $\sigma(e^+e^-
 ightarrow$ hadrons) data
- Improvements in the estimates of uncertainties due to radiative corrections (Vacuum Polarization Radiative Corrections & Final State Radiations)
- Improvements in data-combination method

Channel	Energy range [GeV]	$a_{\mu}^{\rm had,LOVP} \times 10^{10}$	$\Delta \alpha_{\rm had}^{(5)}(M_Z^2) \times 10^4$	New data	
	Chiral perturbation th	eory (ChPT) threshold contr	ibutions		Breakdown of contributions
$\pi^0 \gamma$	$m_{\pi} \le \sqrt{s} \le 0.600$	0.12 ± 0.01	0.00 ± 0.00		to α (had $IO V(D)$ from
$\pi^{+}\pi^{-}$	$2m_{\pi} \le \sqrt{s} \le 0.305$	0.87 ± 0.02	0.01 ± 0.00		$u_{\mu}(hau, LOVP)$ from
$\pi^{+}\pi^{-}\pi^{0}$	$3m_{\pi} \le \sqrt{s} \le 0.660$	0.01 ± 0.00	0.00 ± 0.00		various hadronis final states
117	$m_{\eta} \le \sqrt{s} \le 0.660$	0.00 ± 0.00	0.00 ± 0.00		various nauronic final states
	Data based c	hannels ($\sqrt{s} \le 1.937$ GeV)			
$\pi^{0}\gamma$	$0.600 \le \sqrt{s} \le 1.350$	4.46 ± 0.10	0.36 ± 0.01	[65]	
π ⁻ π ⁻	$0.305 \le \sqrt{s} \le 1.937$	502.97 ± 1.97	34.26 ± 0.12	[34,35]	
π ⁻ π ⁻ π ⁰	$0.660 \le \sqrt{s} \le 1.937$	47.79 ± 0.89	4.77 ± 0.08	[36]	
π'π π'π + - 0.0	$0.613 \le \sqrt{s} \le 1.937$	14.87 ± 0.20	4.02 ± 0.05	[40,42]	
$\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}$	$0.850 \le \sqrt{s} \le 1.937$	19.39 ± 0.78 0.00 ± 0.00	5.00 ± 0.20 0.33 ± 0.03	[44]	
$(2\pi \cdot 2\pi \pi^{-})_{non}$	1.013 ≤ √3 ≤ 1.937	0.99 ± 0.09	0.00 ± 0.01	1661	We have included new data sets
$3\pi^{-}3\pi^{-}$	$1.313 \le \sqrt{s} \le 1.937$	0.23 ± 0.01 1.25 ± 0.17	0.09 ± 0.01 0.51 ± 0.06	[00]	
$(2\pi^{-}2\pi^{-}2\pi^{''})_{napo}$	$1.322 \le \sqrt{s} \le 1.937$	1.35 ± 0.17	0.51 ± 0.06		from ~ 30 papers,
K * K *	$0.988 \le \sqrt{s} \le 1.937$	23.03 ± 0.22 12.04 ± 0.10	3.37 ± 0.03	[45,46,49]	
K ^o _S K ^o _L	$1.004 \le \sqrt{s} \le 1.937$	13.04 ± 0.19	1.77 ± 0.03	[50,51]	in addition to those included
ККЛ VV2-	$1.260 \le \sqrt{s} \le 1.937$	2.71 ± 0.12 1.02 ± 0.08	0.89 ± 0.04 0.75 ± 0.02	[03,04]	
K K 2 <i>A</i>	$1.330 \le \sqrt{3} \le 1.937$	1.95 ± 0.08 0.70 ± 0.02	0.75 ± 0.05	[50,55,55]	in the HLMN111 analysis
47 115 ⁺ 5 ⁻	$1.091 \le \sqrt{s} \le 1.760$	1.29 ± 0.06	0.09 ± 0.00 0.39 ± 0.02	[67]	
$(n \sigma^+ \sigma^- \sigma^0)$	$1.333 \le \sqrt{s} \le 1.937$	0.60 ± 0.15	0.35 ± 0.02 0.21 ± 0.05	[00,02]	
$n2\pi^+2\pi^-$	$1.338 \le \sqrt{s} \le 1.937$	0.08 ± 0.01	0.03 ± 0.00	[70]	
100	$1.333 \le \sqrt{s} \le 1.937$	0.31 ± 0.03	0.10 ± 0.01	[70.71]	We have included \sim 30 hadronic
$\omega(\rightarrow \pi^0 \gamma) \pi^0$	$0.920 \le \sqrt{s} \le 1.937$	0.88 ± 0.02	0.19 ± 0.00	[72,73]	Contation
$\eta \phi$	$1.569 \le \sqrt{s} \le 1.937$	0.42 ± 0.03	0.15 ± 0.01		final states
$\phi \rightarrow$ unaccounted	$0.988 \le \sqrt{s} \le 1.029$	0.04 ± 0.04	0.01 ± 0.01		
$\eta \omega \pi^0$	$1.550 \le \sqrt{s} \le 1.937$	0.35 ± 0.09	0.14 ± 0.04	[74]	
$\eta (\rightarrow npp) K \bar{K}_{nod \rightarrow K\bar{K}}$	$1.569 \le \sqrt{s} \le 1.937$	0.01 ± 0.02	0.00 ± 0.01	[53,75]	A+2 < - < AA C-M
pp	$1.890 \le \sqrt{s} \le 1.937$	0.03 ± 0.00	0.01 ± 0.00	[76]	At $Z \gtrsim \sqrt{s} \gtrsim 11$ GeV,
nñ	$1.912 \le \sqrt{s} \le 1.937$	0.03 ± 0.01	0.01 ± 0.00	[77]	we use inclusively measured data
	Estimated con	tributions ($\sqrt{s} \le 1.937$ GeV			we use inclusively measured data
$(\pi^{+}\pi^{-}3\pi^{0})_{nor}$	$1.013 \le \sqrt{s} \le 1.937$	0.50 ± 0.04	0.16 ± 0.01		
$(\pi^{+}\pi^{-}4\pi^{0})_{ma}$	$1.313 \le \sqrt{s} \le 1.937$	0.21 ± 0.21	0.08 ± 0.08		
ККЗл	$1.569 \le \sqrt{s} \le 1.937$	0.03 ± 0.02	0.02 ± 0.01		Δ t higher energies > 11 GeV
$\omega(\rightarrow npp)2\pi$	$1.285 \le \sqrt{s} \le 1.937$	0.10 ± 0.02	0.03 ± 0.01		At higher energies \gtrsim 11 GeV,
$\omega(\rightarrow npp)3\pi$	$1.322 \le \sqrt{s} \le 1.937$	0.17 ± 0.03	0.06 ± 0.01		
$\omega(\rightarrow npp)KK$	$1.569 \le \sqrt{s} \le 1.937$	0.00 ± 0.00	0.00 ± 0.00		we use poeb
$\eta \pi^{+} \pi^{-} 2 \pi^{0}$	$1.338 \le \sqrt{s} \le 1.937$	0.08 ± 0.04	0.03 ± 0.02		
	Other contri	butions ($\sqrt{s} > 1.937$ GeV)			
Inclusive channel	$1.937 \le \sqrt{s} \le 11.199$	43.67 ± 0.67	82.82 ± 1.05	[56,62,63]	
J/ψ		6.26 ± 0.19	7.07 ± 0.22		
ψ'		1.58 ± 0.04	2.51 ± 0.06		
T(1S - 4S)		0.09 ± 0.00	1.06 ± 0.02		
pQCD	$11.199 \le \sqrt{s} \le \infty$	2.07 ± 0.00	124.79 ± 0.10		
Total	$m_x \le \sqrt{s} \le \infty$	693.26 ± 2.46	276.11 ± 1.11		

Table from KNT18, Phys. Rev. D97 (2018) 114025

D. Nomura (KEK)

 \Rightarrow Fully updated, self-consistent VP routine: [vp_knt_v3_0], available for distribution

- \rightarrow Cross sections undressed with full photon propagator (must include imaginary part), $\sigma_{\rm had}^0(s) = \sigma_{\rm had}(s) |1 \Pi(s)|^2$
- $\Rightarrow \text{ If correcting data, apply corresponding radiative correction uncertainty} \\ \rightarrow \text{Take } \frac{1}{3} \text{ of total correction per channel as conservative extra uncertainty}$

Alex Keshavarzi (KNT18)	The muon $g = 2$: HVP	20th June 2018 1	L4 / 14
Slide by A. Keshavarzi (Liverpo	ool) at 'Muon $g-2$ Workshop	' at Mainz, June 18-22,	2018
D. Nomura (KEK)	SM prediction for muon g-2	August 14, 2018	8 / 21

Extras

$\sigma^0_{\mathrm{had},\gamma}$: final state radiation corrections

 \Rightarrow Cannot be unambiguously separated, not accounted for in HO contributions

- \rightarrow Must be included as part of 1PI hadronic blobs
- \Rightarrow Experiment may cut/miss photon FSR \rightarrow Must be added back
- \Rightarrow For $\pi^+\pi^-$, sQED approximation [Eur. Phys. J. C 24 (2002) 51, Eur. Phys. J. C 28 (2003) 261]
- ⇒ For higher multiplicity states, difficult to estimate correction
 Need new, more developed tools to increase precision here
 - .: Apply conservative uncertainty (e.g. CARLOMAT 3.1 [Eur.Phys.J. C77 (2017) no.4, 254]?)

Alex Keshavarzi (KNT18)	The muon $g = 2$: HVP	20th June 2018	14 / 14
Slide by A. Keshavarzi (Liverpo	ool) at 'Muon $g-2$ Workshop	' at Mainz, June 18-22,	2018
D. Nomura (KEK)	SM prediction for muon g-2	August 14, 2018	9 / 21

d'Agostini bias

G. D'Agostini, Nucl. Instrum. Meth. A346 (1994) 306 We first consider an observable x whose true value is 1. Suppose that there is an experiment which measures xand whose normalization uncertainty is 10%. Now, assume that this experiment measured x twice:

$$\begin{array}{ll} \mbox{1st result:} & 0.9 \pm 0.1_{\rm stat} \pm 10\%_{\rm syst} \;, \\ \mbox{2nd result:} & 1.1 \pm 0.1_{\rm stat} \pm 10\%_{\rm syst} \;. \end{array}$$

Taking the systematic errors 0.09 and 0.11, respectively, the covariance matrix and the χ^2 function are

$$({ t cov.}) = egin{pmatrix} 0.1^2 + 0.09^2 & 0.09 \cdot 0.11 \ 0.09 \cdot 0.11 & 0.1^2 + 0.11^2 \end{pmatrix} \,, \ \chi^2 = egin{pmatrix} x - 0.9 & x - 1.1 \end{pmatrix} ({ t cov.})^{-1} egin{pmatrix} x - 0.9 \ x - 1.1 \end{pmatrix} \,.$$

 χ^2 takes its minimum at x = 0.98: Biased downwards!

d'Agostini bias (2): improvement by iterations

What was wrong? In the previous page,

$$\begin{array}{ll} \mbox{1st result:} & 0.9\pm 0.1_{\rm stat}\pm 10\%_{\rm syst} \ , \\ \mbox{2nd result:} & 1.1\pm 0.1_{\rm stat}\pm 10\%_{\rm syst} \ . \end{array}$$

we took the syst. errors 0.09 and 0.11, respectively, which made the downward bias. Instead, we should take 10% of some estimator \bar{x} as the syst. errors. Then,

$$(ext{cov.}) = egin{pmatrix} 0.1^2 + (0.1ar{x})^2 & (0.1ar{x})^2 \ (0.1ar{x})^2 & 0.1^2 + (0.1ar{x})^2 \end{pmatrix} \,, \ \chi^2 = egin{pmatrix} x - 0.9 & x - 1.1 \end{pmatrix} (ext{cov.})^{-1} egin{pmatrix} x - 0.9 \ x - 1.1 \end{pmatrix} \,.$$

 χ^2 takes its minimum at x = 1.00: Unbiased! In more general cases, we use iterations: we find an estimator for the next round of iteration by χ^2 -minimization. R.D.Ball et al, JHEP 1005 (2010) 075.

D. Nomura (KEK)

SM prediction for muon g-2

August 14, 2018

11 / 21

$\pi^+\pi^-$ channel

\Rightarrow Large improvement for 2π estimate

→ BESIII [Phys.Lett. B753 (2016) 629-638] and KLOE combination [arXiv:1711.03085] provide downward influence to mean value

$$\begin{split} \pi_{\mu}^{\pi^{+}\pi^{-}} [0.305 \leq \sqrt{s} \leq 1.937 \text{ GeV}] &= 502.97 \pm 1.14_{\text{stat}} \pm 1.59_{\text{sys}} \pm 0.06_{\text{vp}} \pm 0.14_{\text{fsr}} \\ &= 502.97 \pm 1.97_{\text{tot}} \end{split}$$

 \Rightarrow 15% local $\chi^2_{\rm min}/{\rm d.o.f.}$ error inflation due to tensions in clustered data

Alex Keshavarzi (UoL)	$a_{\mu}^{had, VP}$ from KNT18	12 th February 2018	6 / 22
Slide by A. Keshavarzi (Liverpo	bol) at 'Muon $g-2$ HVP Work	shop' at KEK, Feb. 12-	14, 2018
D. Nomura (KEK)	SM prediction for muon g-2	August 14, 2018	12 / 21

$\pi^+\pi^-$ channel

- \Rightarrow Tension exists between BaBar data and all other data in the dominant ρ region.
 - \rightarrow Agreement between other radiative return measurements and direct scan data largely compensates this.

BaBar data alone $\Rightarrow a_{\mu}^{\pi^+\pi^-}$ (BaBar data only) $= 513.2 \pm 3.8$.

Simple weighted average of all data $\Rightarrow a_{\mu}^{\pi^+\pi^-}$ (Weighted average) = 509.1 ± 2.9. (i.e. - no correlations in determination of mean value)

BaBar data dominate when no correlations are taken into account for the mean value Highlights importance of fully incorporating all available correlated uncertainties

Alex Keshavarzi (UoL)	$a_{\mu}^{had, VP}$ from KNT18	12 th February 2018	7 / 22
Slide by A. Keshavarzi (Liverpo	ool) at 'Muon $g-2$ HVP Work	shop' at KEK, Feb. 12-	14, 2018
D. Nomura (KEK)	SM prediction for muon g-2	August 14, 2018	13 / 21

Other notable exclusive channels [KNT18: arXiv:1802.02995, PRD (in press)]

Results KN

KNT18 update

KNT18 $a_{\mu}^{\text{had, VP}}$ update

Results

KNT18 update

Comparison with HLMNT11

Channel	This work (KNT18)	HLMNT11	Difference
$\pi^+\pi^-$	502.99 ± 1.97	505.77 ± 3.09	-2.78 ± 3.66
$\pi^{+}\pi^{-}\pi^{0}$	47.82 ± 0.89	47.51 ± 0.99	0.31 ± 1.33
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	15.17 ± 0.21	14.65 ± 0.47	0.52 ± 0.51
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	19.80 ± 0.79	20.37 ± 1.26	-0.57 ± 1.49
K^+K^-	23.05 ± 0.22	22.15 ± 0.46	0.90 ± 0.51
$K_{S}^{0}K_{L}^{0}$	13.05 ± 0.19	13.33 ± 0.16	-0.28 ± 0.25
Inclusive channel	41.27 ± 0.62	41.40 ± 0.87	-0.13 ± 1.07
Total	693.27 ± 2.46	694.91 ± 4.27	-1.64 ± 4.93

- $\Rightarrow \text{Biggest difference in } 2\pi \text{ channel} \\ \rightarrow \text{ large reduction in mean}$
 - → large reduction in fr and uncertainty
- ⇒ Tensions with HLMNT11 analysis for both two-kaon channels
- \Rightarrow Overall agreement with HLMNT11
- ⇒ Notable improvement of about one third in uncertainty

Alex Keshavarzi (UoL) a_{μ}^{hd} , VP from KNT18 12^{th} February 201817/22Slide by A. Keshavarzi (Liverpool) at 'Muon g - 2 HVP Workshop' at KEK, Feb. 12-14, 2018D. Nomura (KEK)SM prediction for muon g-2August 14, 201816/21

KNT18 update

Comparison with other similar works

Channel	This work (KNT18)	DHMZ17	Difference
$\pi^+\pi^-$	503.74 ± 1.96	507.14 ± 2.58	-3.40 ± 3.24
$\pi^+\pi^-\pi^0$	47.70 ± 0.89	46.20 ± 1.45	1.50 ± 1.70
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	13.99 ± 0.19	13.68 ± 0.31	0.31 ± 0.36
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	18.15 ± 0.74	18.03 ± 0.54	0.12 ± 0.92
K^+K^-	23.00 ± 0.22	22.81 ± 0.41	0.19 ± 0.47
$K_{S}^{0}K_{L}^{0}$	13.04 ± 0.19	12.82 ± 0.24	0.22 ± 0.31
$1.8 \leq \sqrt{s} \leq 3.7~{ m GeV}$	$34.54\pm0.56~\mathrm{(data)}$	$33.45 \pm 0.65 \text{ (pQCD)}$	1.09 ± 0.86
Total	693.3 ± 2.5	693.1 ± 3.4	0.2 ± 4.2

- \Rightarrow Total estimates from two analyses in very good agreement
- \Rightarrow Masks much larger differences in the estimates from individual channels
- \Rightarrow Unexpected tension for 2π considering the data input likely to be similar
 - \rightarrow Points to marked differences in way data are combined
 - \rightarrow From 2π discussion: $a_{\mu}^{\pi^+\pi^-}$ (Weighted average) = 509.1 ± 2.9
- \Rightarrow Compensated by lower estimates in other channels

 \rightarrow For example, the choice to use pQCD instead of data above 1.8 GeV

$$\Rightarrow$$
 FJ17: $a_{\mu, \text{ FJ17}}^{\text{had, LO VP}} = 688.07 \pm 41.4$

\rightarrow Much lower mean value, but in agreement within errors

Alex Keshavarzi (UoL)	$a_{\mu}^{had, VP}$ from KNT18	12 th February 2018	18 / 22
Slide by A. Keshavarzi (Liverpo	ool) at 'Muon $g-2$ HVP Work	shop' at KEK, Feb. 12	-14, 2018
D. Nomura (KEK)	SM prediction for muon g-2	August 14, 2018	17 / 21

μ				
	<u>2011</u>		2017	
QED	11658471.81 <mark>(0.02)</mark>	\longrightarrow	$11658471.90 \ (0.01) \ {}_{[arXiv:1712.06060]}$	
EW	15.40 (0.20)	\longrightarrow	15.36 (0.10) [Phys. Rev. D 88 (2013)	3) 053005]
LO HLbL	10.50 (2.60)	\longrightarrow	9.80 (2.60) [EPJ Web Conf. 118 (2016) 01016]
NLO HLbL			0.30 (0.20) [Phys. Lett. B 735 (20	14) 90]
	HLMNT11		<u>KNT18</u>	
LO HVP	694.91 (4.27)	\longrightarrow	693.27 (2.46) this work	
NLO HVP	-9.84 (0.07)	\longrightarrow	-9.82 (0.04) this work	
NNLO HVP			1.24 (0.01) [Phys. Lett. B 734 (20	14) 144]
Theory total	11659182.80 (4.94)	\longrightarrow	11659182.05 (3.56) this work	
Experiment			11659209.10 (6.33) world avg	
Exp - Theory	26.1 (8.0)	\longrightarrow	27.1 (7.3) this work	
Δa_{μ}	3.3σ	\rightarrow	3.7σ this work	

SM prediction for muon g-2

August 14, 2018

18 / 21

D. Nomura (KEK)

Results KNT18 update

KNT18 $a_{\mu}^{\rm SM}$ update

	Alex Keshavarzi (UoL)	$a_{\mu}^{had, VP}$ from KNT18	12 th February 2018	20 / 22
S	lide by A. Keshavarzi (Liverpo	bol) at 'Muon $g-2$ HVP Work	shop' at KEK, Feb. 12	-14, 2018
	D. Nomura (KEK)	SM prediction for muon g-2	August 14, 2018	19 / 21

The obvious: $a_{\mu}^{\text{LO-HVP}}$

- Lattice errors $\sim 2\%$ vs phenomenology errors $\sim 0.4\%$
- Some lattice results suggest new physics others not but all compatible with phenomenology

	Laurent Lellouch	Mainz, 18-22 June 2018		
Slide by L. Lellouch (Mars	eille) at 'Muon g-2	Workshop' at N	4ainz, June 18-22, 2	018
D. Nomura (KEK)	SM prediction	for muon g-2	August 14, 2018	20 / 21

Summary

- Standard Model prediction for $(g-2)_{\mu}$: $\gtrsim 3.5\sigma$ deviation from measured value \implies New Physics?
- Recent data-driven evaluations of hadronic vacuum polarization contributions seem convergent (Similar mean values from KNT18 and Davier et al with slightly smaller uncertainty from KNT18.)
- To better establish the g-2 anomaly, better data for $e^+e^- \rightarrow \pi^+\pi^-$ welcome (from Belle II !?)
- Lattice calculations still suffer from large uncertainties

Backup Slides

HLbL in muon g - 2: summary of selected results (model calculations)

$\mu^{-(p')} \xrightarrow{ \mu^{-(p)}} \mu^{-(p)} =$	= +	+	Exchange of other reso- + \cdots + nances $(f_0, a_1, f_2 \dots)$	+
de Rafael '94:	4	6	8	8
Chiral counting	g: p'	<i>p</i> -	p ²	p-
N_C -counting:	1	N _C	N _C	N _C
Contribution to $a_{\mu} imes 10^{11}$:				
BPP: +83 (32)	-19 (13)	+85 (13)	$-4(3)[f_0,a_1]$	+21(3)
HKS: +90 (15)	-5 (8)	+83 (6)	$+1.7(1.7)[a_1]$	+10(11)
KN: +80 (40)		+83 (12)		
MV: +136 (25)	0 (10)	+114(10)	$+22(5)[a_1]$	0
2007: +110 (40)				
PdRV:+105 (26)	-19 (19)	+114 (13)	$+8(12)[f_0, a_1]$	+2.3 [c-quark]
N, JN: +116 (39)	-19 (13)	+99 (16)	$+15(7)[f_0, a_1]$	+21 (3)
ud.	: -45	ud.: $+\infty$		ud.: +60

ud. = undressed, i.e. point vertices without form factors

Pseudoscalars: numerically dominant contribution (according to most models !).

Recall (in units of 10⁻¹¹): $\delta a_{\mu}(\text{HVP}) \approx 40$; $\delta a_{\mu}(\exp[\text{BNL}]) = 63$; $\delta a_{\mu}(\text{future exp}) = 16$

BPP = Bijnens, Pallante, Prades '96, '02; HKS = Hayakawa, Kinoshita, Sanda '96, '98, '02; KN = Knecht, AN '02; MV = Melnikov, Vainshtein '04; 2007 = Bijnens, Prades; Miller, de Rafael, Roberts; PdRV = Prades, de Rafael, Vainshtein '09 (compilation; "Glasgow consensus"); N,JN = AN '09, Jegerlehner, AN '09 (compilation)

Recent reevaluations of axial vector contribution lead to much smaller estimates than in MV '04: $a_{\mu}^{\text{HLbL};\text{axial}} = (8 \pm 3) \times 10^{-11}$ (Pauk, Vanderhaeghen '14; Jegerlehner '14, '15). Would shift central values of compilations downwards:

 $a_{\mu}^{\mathrm{HLbL}} = (98 \pm 26) \times 10^{-11} (PdRV)$ and $a_{\mu}^{\mathrm{HLbL}} = (102 \pm 39) \times 10^{-11} (N, JN).$

Slide by A. Nyffeler (Mainz) at 'Muon g-2 Ibyl Workshop' at Connecticut, March 12-14, 2018

D. Nomura (KEK)

SM prediction for muon g-2

August 14, 2018 23 / 21

Model calculations of HLbL: recent developments

• Most calculations for neutral pion and all light pseudoscalars agree at level of 15%, but full range of estimates (central values) much larger:

 $\begin{array}{lll} a_{\mu}^{\mathrm{HLbL;\pi^{0}}} & = & (50-80)\times10^{-11} & = & (65\pm15)\times10^{-11} & (\pm23\%) \\ a_{\mu}^{\mathrm{HLbL;P}} & = & (59-114)\times10^{-11} & = & (87\pm27)\times10^{-11} & (\pm31\%) \end{array}$

• New estimates for axial vectors (Pauk, Vanderhaeghen '14; Jegerlehner '14, '15):

$$a_\mu^{\mathrm{HLbL;axial}} = (6-8) imes 10^{-11}$$

Substantially smaller than in MV '04 !

• First estimate for tensor mesons (Pauk, Vanderhaeghen '14):

$$a_{\mu}^{\mathrm{HLbL;tensor}} = 1 imes 10^{-11}$$

 Open problem: Dressed pion-loop Potentially important effect from pion polarizability and a₁ resonance (Engel, Patel, Ramsey-Musolf '12; Engel '13; Engel, Ramsey-Musolf '13):

$$a_{\mu}^{
m HLbL;\pi-loop} = -(11-71) imes 10^{-11}$$

Maybe large negative contribution, in contrast to BPP '96, HKS '96. Not confirmed by recent reanalysis by Bijnens, Relefors '15, '16. Essentially get again old central value from BPP, but smaller error estimate:

$$a_\mu^{\mathrm{HLbL};\pi-\mathrm{loop}} = (-20\pm5) imes10^{-11}$$

 Open problem: Dressed quark-loop Dyson-Schwinger equation approach (Fischer, Goecke, Williams '11, '13):

 $a_{\mu}^{\text{HLbL;quark-loop}} = 107 \times 10^{-11}$ (still incomplete !)

Large contribution, no damping seen, in contrast to BPP '96, HKS '96.

Slide by A. Nyffeler (Mainz) at 'Muon g-2 Ibyl Workshop' at Connecticut, March 12-14, 2018

D. Nomura (KEK)

August 14, 2018 24 / 21