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The SM is successful and predicts a wide variety of phenomena

that has been testes experimentally to an incredible accuracy.
However, there are some open problems = open oportunities

Represent our best window for New Physics
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e Matter-antimatter asymmetry (BAU)
e Neutrino masses

e Flavor Puzzle

e Hierarchy problem

e Strong C'P, Unification, ...
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INTRODUCTION: NEUTRINO MASSES IN SM

e Dirac neutrino masses
All fermions get masses through the Yukawa interaction

— after —
VLY PVR EWSB/ LYR

o UVEW

For neutrinos

_ VEW

Not present in the SM
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INTRODUCTION: NEUTRINO MASSES IN SM

e Majorana neutrino masses

Neutrinos are the only neutral fermions
mySrr  but violates SU(2)r x U(1)y
However, atter EWSB can be induced through Weinberg op.

1 _ — = ~ after ——
d=5 C I . C
5Cas (éa[¢ ) (¢T€5[) + h.c. - /V[V[

d =5 = Is SM low energy remnant of higher energy theory?

And therefore neutrinos are strictly massless in the SM.

The SM must be extended to account for neutrino oscillations.
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The SM is enlarged by an arbitrary number of Ng

JE— 1
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Yukawa interaction

l

Dirac neutrino masses
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INTRODUCTION: SM + TYPE I SEESAW

The SM is enlarged by an arbitrary number of Ng

Allowed Majorana mass for Np

l

New Physics scale

eV keV MeV GeV TeV
MN | | | | |

Experimental verification needed.
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light heavy
N © \active
[/ =
R S [sterile

with N = (I — a) Upymns and o lower triangular matrix
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INTRODUCTION: SM + TYPE I SEESAW

v eV @ MeV V TeV
N — ' ' ' ' >
N S

Kinks in 8-decay and peaks
in meson decay searches
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v oscillation o
searches
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INTRODUCTION: SM + TYPE I SEESAW

kelV M?V GIeV

v oscillation
searches

4

Arw
EW and flavor
observables

At some level, both limits

o Very |

high (M > Agw) neutrino — Non-Unitarity

o Very |

ight (My < keV) neutrino — sterile neutrinos

will impact neutrino oscillation searches.
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light heavy

Amg; L
' N © \ active

Pop = Z UaiUgiUa;Usje€ 22 with U = .
i,] R S sterile

e Non-Unitarity (very high masses) e Sterile neutrinos (very light masses)
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045 — ZNO&ZNBZN* Nﬁje_z 2F 045 — ZNQZNBZN* Nﬁje_z 2F

1,7 2,7

Averaged-out limit and at LO




NON-UNITARITY VS STERILE NEUTRINOS

Averaged-out

Non-Unitar . ,
on-Unitarity — sterile neutrinos

(very high masses) (very light masses)

Am; L
045 _ ZNQZNBZN* Nﬁje—z 2F at LO
i,
Amz?j . .
For %o > Voo, Ve this holds in matter.

However the bounds on the mixing in both limits are different.
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NON-UNITARITY VS STERILE NEUTRINOS

Present bounds on the two limits

e Non-Unitarity e Averaged-out sterile neutrinos
for m > AEW (at 20’)

a.. 1.3-1073

Am’® ( eV’ )
reactors i

o, 2.2-1074

107

a.. 2.8-1073

10

el  6.8-1071

a.| 2.7-1073

10

| 1.2-1079
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Present bounds on the two limits

e Non-Unitarity e Averaged-out sterile neutrinos
for m > Agw (at 20) for Am? > 100 eV*® (at 95% CL)
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Present bounds on the two limits

e Averaged-out sterile neutrinos
for Am? > 100 eV* (at 95% CL)

e Non-Unitarity
for m > AEW (at 20’)

Qe 1.3-1073 Qe 2.4-1072[1

ay,,  2.2-1074 221077 [2

arr 2.8-1073 ar-r 1.0-1071[3

Qpe| 6.8-1074 el 2.5-1072 [4

Ore| 2.7-1073 Qre 6.9-10"°

| 1.2-1079 | 1.2-1072 [5]
too small to be tested at

v oscillation experiments

could be probed??
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What is DUNE?

Deep Underground Neutrino Experiment

E—95 QeV Fermilab
Sanﬁnxilﬁﬂ) 1)2113001Gﬂ. IHﬂHﬁS
South Dakota — /
¢-_ - / I /

Near Detector

(ND)

Far Detector
)
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The role of the Near Detector (ND)

If flux and cross section at FD normalized with ND data

F _ PozB (LFD)
“ Pag (Lnp)

Are sterile neutrino oscillations also averaged out at ND?

e Yes e No
Am?jL
ZNMNBZ Ngze 2B Am2 L
Pop = Pop =Y NoiN3Ni;Ngje  2F
ZNMNBZ iNs; »
Non—Umtamty = sterile v sterile neutrino oscillations
osc. averaged at the ND undeveloped at the ND
DUNE setup — Am?2 > 100 eV® | DUNE setup — Am? ~ (0.1,1) eV~
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e What is IceCube?

Antarctic ice

IceCube laboratory

Array of detectors

P
1 il
11
.
e
1
H
//‘/

4 Eiffel Tower

Antarctic bedrock

South Pole _,
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Cosmic ray
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e What is IceCube?

Cosmic ray

Atmosphere

Vi

The v, oscillates during its propagation

IceCube measures P, with strong matter effects
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e The neutrino oscillation probability

We compute v, — v, probability P, for
— small heavy-active mixing angles

— averaged-out regime = large Am? (Am?2 > 100 eV?)
— 1V, does not participate in oscillations

A, L
P, = (1 — sin*(26,,, ) sin” (%))

At leading order in « and neglecting Am2,
Py~ 1 —WViglor,[*L?

For the particular case of just one extra neutrino

Py = 1= Vic|Ura|*|Upa|*L?



STERILE v ABOVE 10 EV AT ICECUBE

e Details of the analysis

The atmospheric neutrino flux has been computed with
HondaGaisser* + QGSJET II-04

The impact of different flux models has been studied.

*(Gaissser-Hillas H3a correction
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After propagating flux for every value of sterile v parameter,
the expected number of events N in every bin of reconstructed

zenit angle computed using the provided MonteCarlo.
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e Details of the analysis

The atmospheric neutrino flux has been computed with

HondaGaisser + QGSJET II-04

s

I'he impact of different flux models has been studied.

'S

I'he propagation of the neutrinos simulated using nuSQulDS.

After propagating flux for every value of sterile v parameter,

the expected number of events N® in every bin of reconstructed
zenit angle computed using the provided MonteCarlo.

The observable is energy independent =-

— only one energy bin
— 40 bins for reconstructed zenit angle
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e Details of the analysis

observed

Log-likelihood computed (

th dat dat Nt
L:—Z{Ni — N; N; log< T )}

(/

/? 1
K predicted

reconstructed
zenit angle bins
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e Details of the analysis

Log-likelihood computed

th dat dat N'data
L:—Z{Ni — N, N log< T )}

1 (/

Minimized for nuisance parameters to include systematic errors
— uncertainty in pion-kaon ratio of the initial flux

— efficiency of the Digital Optical Modules (DOMs)

— overall flux normalization
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e Details of the analysis

Log-likelihood computed

th dat dat N'data
L:—Z{Ni — N, N log< T )}

1 (/

Minimized for nuisance parameters to include systematic errors
— uncertainty in pion-kaon ratio of the initial flux

— efficiency of the Digital Optical Modules (DOMs)
— overall flux normalization

Standard osc. parameters set to actual best-fit values of NuFIT.
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e Constraints obtained for the public 1 year-data

90% 99%

L j \I’ / / 7
0.25 | —— SK+DC disfavored - 0.25

edr ' 1IC (1 year data) ] e
| |
: |
I
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|

]
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e Constraints obtained for the public 1 year-data

90% 99%
4 ! \ 7 T
1 / /! ),' / /|
o5l | —— SK+DC disfavored - 0.25 ——SK+DC disfavored -
0. ' 1IC (1 year data) ] i ——IC (1 year data) ]
: ;
0.2 ! : 0.2
I
| N
% 0.15
D
0.1
N\ 0.05}
1073 1072 107" 1073 1072 107"
2 2
| Upa | | Upa |

Mild preference (2.30 1 dof) for non-zero mixing

Between 0.75 and 30 depending on the binning and flux adopted



STERILE v ABOVE 10 EV AT ICECUBE

e Constraints obtained for the 8-years forecast

90%

V
0.25/
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I ——IC (1 year data) g
,I ' —— IC (8 years forecast) ]

99%

| /
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e Constraints obtained for the 8-years forecast
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e Constraints obtained for the 8-years forecast
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e Constraints obtained for 8-years and 20-years forecasts
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SUMMARY

Neutrino masses and mixings point to a New Physics scale
where L is broken.

Non-Unitarity induced by heavy neutrinos and oscillations of
light sterile neutrinos in the averaged out regime share the
same phenomenology at leading order.

Non-Unitarity from heavy neutrinos beyond the reach of near-

future neutrino oscillation experiments (6 ~ O(1072)),
contrary to previous claims in the literature.

Light sterile neutrino limit can be probed at present and near-

future neutrino oscillation experiments (0 ~ O(1071)).

Important to consider the role of the Near Detector.



SUMMARY

The capabilities of IceCube to search for sterile v above 10 eV
by analyzing its atmospheric v sample has been studied.

The 1-year data shows a mild preterence for non-zero mixing,
between 0.75 and 30 depending on the binning and flux adopted.

At 99% CL the obtained bounds improve over the SK and DC
present constrains in some part of the parameter space.

The results overlap with the favored region for the sterile v

interpretation of the upward shower observed by ANITA.

The preferred mixings are in tension with NOMAD data, and
non-standard matter interactions needed to reconcile results.

8 years of IceCube data would be suflicient to confirm or
exclude the present preference.
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INTRODUCTION: SM OPEN PROBLEMS

e Neutrino masses

Experimental neutrino oscillation evidence

e Data-BG-GeoV,
- —— Expectation based on osci. parameters
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INTRODUCTION: SM OPEN PROBLEMS

e Neutrino masses

e Flavor Puzzle
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No SM explanation for Yukawa ordering.



INTRODUCTION: SM OPEN PROBLEMS

e Neutrino masses

e Flavor Puzzle

Dissimilar pattern of quark and lepton mixings.
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If neutrinos are massive, it will be a misalignment between

physical (mass) and flavor eigenstates

Vo = (UpMNS),; Vi



INTRODUCTION: LEPTONIC MIXING MATRIX

If neutrinos are massive, it will be a misalignment between

physical (mass) and flavor eigenstates
Vo = (UpMNS),; Vi

Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix.

CC: (UpmMNS)aiVilaW ™ NC: 67,2
(. v,
W= A
K‘\ (UPMNS)ai E\ 52]
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e About the IceCube public data

1-year of high-energy through-going muons released by IceCube
— IceCube detector stage with 86 strings
— up-going track events (avoid background from cosmic pu)
— distances traveled L ~ 10* km
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e About the IceCube public data

1-year of high-energy through-going muons released by IceCube
— IceCube detector stage with 86 strings
— up-going track events (avoid background from cosmic pu)
— distances traveled L ~ 10* km

The selected events have
— reconstructed energies between 400 GeV and 20 TeV
— reconstructed cosf. between -1 and 0.2




