Lepton-Number-Charged Scalars and Neutrino Beamstrahlung

1802.00009 with Jeffrey M. Berryman, André de Gouvêa, and Yue Zhang Phys. Rev. D97 (2018) no.7, 075030

Kevin Kelly WG5, 16 August, 2018

 $\begin{array}{l} \frac{1}{\sqrt{2}}\left(|\text{Northwestern University}\rangle + |\text{Fermilab}\rangle\right)\\ \textit{kkelly942@gmail.com}\\ @kjkelly_physics \end{array}$

Outline

• *LeNCS*: Lepton-Number-Charged Scalars

- LeNCS: Lepton-Number-Charged Scalars
- Non-Neutrino Beam Experiment Constraints

- LeNCS: Lepton-Number-Charged Scalars
- Non-Neutrino Beam Experiment Constraints
- LeNCS in Neutrino Beams

- LeNCS: Lepton-Number-Charged Scalars
- Non-Neutrino Beam Experiment Constraints
- LeNCS in Neutrino Beams
- LeNCS and Dark Matter

LeNCS: Lepton-Number-Charged Scalars

How can a new scalar talk to the SM?

New fields: Lepton-Number-Charged Scalars (LeNCS) – Scalars with nonzero Lepton number that can only couple to the SM in ways that preserve (B - L).

How can a new scalar talk to the SM?

New fields: <u>Lepton-Number-Charged Scalars</u> (LeNCS) – Scalars with nonzero Lepton number that can only couple to the SM in ways that preserve (B - L).

If we construct higher-dimension (d) operators with SM fields and ν^c , they can have non-zero (B-L) charge q_{B-L} .

$$(-1)^d = (-1)^{q_{B-L}/2},\tag{1}$$

assuming $SU(3) \times SU(2) \times U(1)$ and Lorentz invariance [1604.05726].

How can a new scalar talk to the SM?

New fields: <u>Lepton-Number-Charged Scalars</u> (LeNCS) – Scalars with nonzero Lepton number that can only couple to the SM in ways that preserve (B - L).

If we construct higher-dimension (d) operators with SM fields and ν^c , they can have non-zero (B-L) charge q_{B-L} .

$$(-1)^d = (-1)^{q_{B-L}/2},\tag{1}$$

assuming $SU(3) \times SU(2) \times U(1)$ and Lorentz invariance [1604.05726].

d is an integer $\implies q_{B-L}$ is even.

This means that if (B - L) is conserved, odd-charged LeNCS must appear in pairs.

Even-charged *LeNCS*

Since |L| = 1 LeNCS require (at least) two scalar fields for (B - L)-conservation, let's look at (B - L) = 2 called ϕ .

Since |L| = 1 LeNCS require (at least) two scalar fields for (B - L)-conservation, let's look at (B - L) = 2 called ϕ .

Only renormalizable operator with one ϕ :

$$\mathcal{L}_{LeNCS} \supset \frac{\lambda_c^{ij}}{2} \nu_i^c \nu_j^c \phi^*.$$
⁽²⁾

Since |L| = 1 LeNCS require (at least) two scalar fields for (B - L)-conservation, let's look at (B - L) = 2 called ϕ .

Only renormalizable operator with one ϕ :

$$\mathcal{L}_{LeNCS} \supset \frac{\lambda_c^{ij}}{2} \nu_i^c \nu_j^c \phi^*.$$
 (2)

Since operators with $q_{B-L} = 2$ must be odd, the (B - L)-invariant operators with a ϕ then must be even. Lagrangian up to dimension-six:

$$\mathcal{L}_{LeNCS} \supset \frac{\lambda_c^{ij}}{2} \nu_i^c \nu_j^c \phi^* + \frac{1}{\Lambda_{\alpha\beta}^2} \left(L_\alpha H \right) \left(L_\beta H \right) \phi + \text{h.c.}$$
(3)

Extending the SM with ϕ

$$\mathcal{L}_{LeNCS} \supset \frac{\lambda_c^{ij}}{2} \nu_i^c \nu_j^c \phi^* + \frac{1}{\Lambda_{\alpha\beta}^2} \left(L_{\alpha} H \right) \left(L_{\beta} H \right) \phi + \text{h.c.}$$
(4)

Post-Electroweak Symmetry Breaking, $H \rightarrow \frac{h+v}{\sqrt{2}}$:

$$\mathcal{L}_{LeNCS} \to \frac{\lambda_c^{ij}}{2} \nu_i^c \nu_j^c \phi^\star + \frac{\lambda_{\alpha\beta}}{2} \nu_\alpha \nu_\beta \phi + \frac{\lambda_{\alpha\beta}}{v} \nu_\alpha \nu_\beta \phi h + \text{h.c.} + \mathcal{O}(h^2), \quad (5)$$

where $\lambda_{\alpha\beta} \equiv v^2 / \Lambda_{\alpha\beta}^2$.

Extending the SM with ϕ

W

$$\mathcal{L}_{LeNCS} \supset \frac{\lambda_c^{ij}}{2} \nu_i^c \nu_j^c \phi^* + \frac{1}{\Lambda_{\alpha\beta}^2} \left(L_{\alpha} H \right) \left(L_{\beta} H \right) \phi + \text{h.c.}$$
(4)

Post-Electroweak Symmetry Breaking, $H \rightarrow \frac{h+v}{\sqrt{2}}$:

$$\mathcal{L}_{LeNCS} \to \frac{\lambda_c^{ij}}{2} \nu_i^c \nu_j^c \phi^\star + \frac{\lambda_{\alpha\beta}}{2} \nu_\alpha \nu_\beta \phi + \frac{\lambda_{\alpha\beta}}{v} \nu_\alpha \nu_\beta \phi h + \text{h.c.} + \mathcal{O}(h^2), \quad (5)$$

where $\lambda_{\alpha\beta} \equiv v^2 / \Lambda_{\alpha\beta}^2$.

If $\Lambda_{\alpha\beta} \simeq$ electroweak scale, then we can have $\lambda_{\alpha\beta} \simeq 1$ and realizable interactions between ϕ and the active neutrinos ν_{α} .

Non-Neutrino Beam Experiment Constraints

Higgs boson decay

Since we're interested in $m_{\phi} < 10$ GeV, let's work in the limit $m_{\phi} \ll m_h$.

$$\Gamma(h \to \nu_{\alpha} \nu_{\beta} \phi) = \frac{|\lambda_{\alpha\beta}|^2 m_h^3}{384\pi^3 v^2}.$$

Higgs boson decay Bound

 $\Gamma_h^{\text{tot.}} = 13 \text{ MeV.}$

$$\Gamma(h \to \nu_{\alpha} \nu_{\beta} \phi) = \frac{|\lambda_{\alpha\beta}|^2 m_h^3}{384\pi^3 v^2}, \quad \text{Br}(h \to \text{invisibles}) \lesssim 28\%$$

This decay will contribute to the Z-boson invisible decay width, $Br(Z \rightarrow \text{ invisibles}) = (20 \pm 0.06) \%$, and $\Gamma_Z^{\text{tot.}} = 2.495 \text{ GeV}$.

$$\Gamma(Z \to \nu_{\alpha} \nu_{\beta} \phi) \simeq \frac{G_F M_Z^3 |\lambda_{\alpha\beta}|^2 \left(\log \left(\frac{M_Z}{m_{\phi}} \right) - \frac{5}{3} \right)}{864 \sqrt{2} \pi^3 \left(1 + \delta_{\alpha\beta} \right)^2}$$

Z-boson decay bound

Charged meson decays

Many charged mesons have the decay channel $M^- \to \ell_{\alpha}^- \bar{\nu}_{\alpha}$ (or $M^+ \to \ell_{\alpha}^+ \nu_{\alpha}$). With a nonzero $\lambda_{\alpha\beta}$ and $m_{\phi} < m_M$,

Charged meson decays

Many charged mesons have the decay channel $M^- \to \ell_{\alpha}^- \bar{\nu}_{\alpha}$ (or $M^+ \to \ell_{\alpha}^+ \nu_{\alpha}$). With a nonzero $\lambda_{\alpha\beta}$ and $m_{\phi} < m_M$,

The width of this process is

$$\Gamma(M^- \to \ell_{\alpha}^- \nu_{\beta} \phi) = \frac{|\lambda_{\alpha\beta}|^2 G_F^2 f_M^2}{768 \pi^3 m_M^3} \times \\ \left[\left(m_M^2 - m_{\phi}^2 \right) \left(m_M^4 + 10 m_M^2 m_{\phi}^2 + m_{\phi}^4 \right) - 12 m_M^2 m_{\phi}^2 \left(m_M^2 + m \phi^2 \right) \log \frac{m_M}{m_{\phi}} \right],$$

where f_M is the decay constant of M.

Pion decay

 $\pi \to e\nu_{\alpha}\phi$ serves as a background for the search for $\pi \to e\bar{\nu}_e\nu\bar{\nu}$. PDG: $\operatorname{Br}(\pi \to e\bar{\nu}_e\nu\bar{\nu}) < 5 \times 10^{-6}$, with $m_{\pi} = 137$ MeV, $f_{\pi} = 131$ MeV.

Kaon decay

Search for $K^- \to e^- \nu_{\alpha} \phi$ $(K^- \to \mu^- \nu_{\beta} \phi)$ would contribute to $K \to e \bar{\nu}_e \nu \bar{\nu}$ $(K \to \mu \bar{\mu}_e \nu \bar{\nu})$. $m_K = 494$ MeV, $f_K = 160$ MeV. PDG: $\text{Br}(K \to e \bar{\nu}_e \nu \bar{\nu}) < 6 \times 10^{-5}$, $\text{Br}(K \to \mu \bar{\mu}_e \nu \bar{\nu}) < 2.4 \times 10^{-6}$.

Kaon decay

Search for $K^- \to e^- \nu_{\alpha} \phi$ $(K^- \to \mu^- \nu_{\beta} \phi)$ would contribute to $K \to e \bar{\nu}_e \nu \bar{\nu}$ $(K \to \mu \bar{\mu}_e \nu \bar{\nu})$. $m_K = 494$ MeV, $f_K = 160$ MeV. PDG: $\operatorname{Br}(K \to e \bar{\nu}_e \nu \bar{\nu}) < 6 \times 10^{-5}$, $\operatorname{Br}(K \to \mu \bar{\mu}_e \nu \bar{\nu}) < 2.4 \times 10^{-6}$.

D decay

D Mesons: $m_D = 1869$ MeV, $f_D = 249$ MeV. Only an upper bound exists on searches for both $D \to e\bar{\nu}_e$ (Br < 8.8×10^{-6}) and $D \to \mu\bar{\nu}_{\mu}$ (Br < 3.4×10^{-5}).

D decay

D Mesons: $m_D = 1869$ MeV, $f_D = 249$ MeV. Only an upper bound exists on searches for both $D \to e\bar{\nu}_e$ (Br $< 8.8 \times 10^{-6}$) and $D \to \mu\bar{\nu}_{\mu}$ (Br $< 3.4 \times 10^{-5}$).

Double-beta decay

Neutrinoless double-beta decay is a process that only exists if neutrinos are Majorana fermions, and many experiments have searched for this process. One background is two-neutrino double-beta decay, in which the outgoing electrons have a spectrum of energies, not a sharp line.

Bounds from double-beta decay

[1501.02345] analyzed Majoron emission impacting $2\nu\beta\beta$ measurements, which is identical to ϕ emission as long as $m_{\phi} < Q_{\beta\beta}$.

Charged-lepton Flavor Violation

LeNCS in Neutrino Beams

We will be interested in ν_{μ} beams, so the parameters $\lambda_{\mu\alpha}$:

The process of interest

Standard ν Charged-Current Interaction:

The process of interest

Charged-Current Interaction with ϕ Emission:

• Wrong-sign lepton – neutrino beam generates ℓ^+ , antineutrino beam generates ℓ^- .

- Wrong-sign lepton neutrino beam generates ℓ^+ , antineutrino beam generates ℓ^- .
- Need m_φ < E_ν high-energy neutrino beams open up more m_φ phase space.

- Wrong-sign lepton neutrino beam generates ℓ^+ , antineutrino beam generates ℓ^- .
- Need m_φ < E_ν high-energy neutrino beams open up more m_φ phase space.
- Events tend to peak in forward-going ϕ region.

- Wrong-sign lepton neutrino beam generates ℓ^+ , antineutrino beam generates ℓ^- .
- Need $m_{\phi} < E_{\nu}$ high-energy neutrino beams open up more m_{ϕ} phase space.
- Events tend to peak in forward-going ϕ region.
- If we look where $m_{\phi} \rightarrow E_{\nu}$, the ϕ can be radiated at large angles, giving large missing transverse momentum p_T .

MINOS Beam: 91.7% ν_{μ} , 7% $\bar{\nu}_{\mu}$, nearly monochromatic $E_{\nu} \simeq 3$ GeV.

Collaboration measured the rate of $\bar{\nu}_{\mu}+p \to \mu^++n$ to be 3.84 ± 0.05 events/ 10^{15} protons on target.

Existence of ϕ (with nonzero $\lambda_{\mu\mu}$) adds to this apparent rate via $\nu_{\mu} + p \rightarrow \mu^{+} + \phi + n$.

$$\mathcal{R} \equiv \frac{\sigma(\nu_{\mu} + p \to \mu^{+} + \phi + n)}{\sigma(\bar{\nu}_{\mu} + p \to \mu^{+} + n)}, \quad \mathcal{R} \lesssim 0.002.$$

Resulting bound from MINOS

Existing constraints: NOMAD

Searched for $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillations in the 1990s. If LeNCS exists with nonzero $\lambda_{\mu\tau}$, there would be a contribution that seemed like this oscillation. NOMAD: $P(\nu_{\mu} \rightarrow \nu_{\tau}) < 2.2 \times 10^{-4}$. Since we know $\sigma(\nu_{\mu}p \rightarrow \tau^{+}n\phi) \propto |\lambda_{\mu\tau}|^{2}$, we can solve for where the bound is saturated as a function of m_{ϕ} :

Existing constraint*: MiniBooNE [1310.0076]

MiniBooNE: Predominantly ν_{μ} beam (some ν_e contamination) searching for short-baseline $P(\nu_{\mu} \rightarrow \nu_e)$ oscillation. Famous low-energy excess. Can Φ_{μ} and $\lambda_{e\mu}$ explain?

Looking ahead: DUNE

Assuming a $2 \to 2$ scattering event like $\nu_{\alpha}n \to \ell_{\alpha}^{-}p$, with perfect knowledge of outgoing ℓ_{α}^{n} and nucleon, we can calculate the neutrino energy exactly. $E_{\nu} \simeq E_{\ell}$.

If, however, we assume an event was $2 \to 2$, but it was actually $2 \to 3$ like $\nu_{\alpha}p \to \ell_{\beta}^+ n\phi$ with a particle not identified, then the calculated E_{ν} is wrong.

Exploiting LeNCS Kinematics

LeNCS signal at near detector: $\nu_{\mu} + p \rightarrow \mu^{+} + \phi + n$. Large apparent missing transverse momentum in reconstructed μ^{+}/n final state.

SM background:

 $\nu_{\mu} + n \rightarrow \mu^{-} + p$ should be reconstructed as known flux as a function of energy, $p_T = 0$ for all events.

Smeared SM Background at DUNE

Smeared $\nu_{\mu} + n \rightarrow \mu^{-} + p$ events.

Projecting $p_T - E_{\nu}$ down to just p_T :

LeNCS and Dark Matter

$$\mathcal{L} \supset \left(\mu_{\phi\chi} \phi \chi^2 + \mathrm{h.c.}
ight) + c_{\phi\chi} |\phi|^2 |\chi|^2 + c_{H\chi} |H|^2 |\chi|^2 + \left(\chi^2 \hat{O}_{B-L=2} + \mathrm{h.c.}
ight) + ...$$

• Neutrinophilic Dark Matter with ϕ portal to χ – if $\mu_{\phi\chi}$ and $c_{\phi\chi}$ are the most significant terms, ϕ -mediated interaction between neutrinos and χ s.

$$\mathcal{L} \supset \left(\mu_{\phi\chi} \phi \chi^2 + \text{h.c.} \right) + c_{\phi\chi} |\phi|^2 |\chi|^2 + \frac{c_{H\chi}}{|H|^2} |\chi|^2 + \left(\chi^2 \hat{O}_{B-L=2} + \text{h.c.} \right) + \dots$$

- Neutrinophilic Dark Matter with ϕ portal to χ if $\mu_{\phi\chi}$ and $c_{\phi\chi}$ are the most significant terms, ϕ -mediated interaction between neutrinos and χ s.
- Higgs Portal Dark Matter Assuming $c_{H\chi}$ is most important term, the Higgs acts as a mediator between SM and Dark Sector. The fact that χ has (B L) charge in this scenario is indistinguishable from a normal Higgs Portal scenario.

$$\mathcal{L} \supset \left(\mu_{\phi\chi} \phi \chi^2 + \text{h.c.} \right) + c_{\phi\chi} |\phi|^2 |\chi|^2 + c_{H\chi} |H|^2 |\chi|^2 + \left(\chi^2 \hat{O}_{B-L=2} + \text{h.c.} \right) + \dots$$

- Neutrinophilic Dark Matter with ϕ portal to χ if $\mu_{\phi\chi}$ and $c_{\phi\chi}$ are the most significant terms, ϕ -mediated interaction between neutrinos and χ s.
- Higgs Portal Dark Matter Assuming $c_{H\chi}$ is most important term, the Higgs acts as a mediator between SM and Dark Sector. The fact that χ has (B L) charge in this scenario is indistinguishable from a normal Higgs Portal scenario.
- Dark Matter triggered Nucleon Decay If the χ²Ô_{B−L=2} terms dominate, then we could have reactions such as χ + (Z, A) → χ^{*} + (Z, A − 1) + ν, where detectable hadronic activity could be a signal of an interaction.

Summary

• Neutrinos have mass. This requires new physics.

- Neutrinos have mass. This requires new physics.
- We explored one new physics extension, in which (B L) is preserved in nature, and new scalar fields are charged under (B L).

- Neutrinos have mass. This requires new physics.
- We explored one new physics extension, in which (B L) is preserved in nature, and new scalar fields are charged under (B L).
- The parameter space is already constrained by a number of sources, both related to neutrino beams and not.

- Neutrinos have mass. This requires new physics.
- We explored one new physics extension, in which (B L) is preserved in nature, and new scalar fields are charged under (B L).
- The parameter space is already constrained by a number of sources, both related to neutrino beams and not.
- Next-generation experiments (like DUNE) will be able to add to the picture.

- Neutrinos have mass. This requires new physics.
- We explored one new physics extension, in which (B L) is preserved in nature, and new scalar fields are charged under (B L).
- The parameter space is already constrained by a number of sources, both related to neutrino beams and not.
- Next-generation experiments (like DUNE) will be able to add to the picture.
- These LeNCS may serve as a portal to a stable Dark Matter candidate.