AN ISOTOPE DECAY-AT-REST EXPERIMENT ISODAR STATUS AND PHYSICS

NUFACT 2018 08/16/2018

SAXANI@MIT.EDU

IsoDAR overview

- 3.

Spencer N. Axani

PHIE

This talk will focus on the status and expected physics output

Spencer N. Axani

Accelerator Physics

PHIT

4

H₂⁺ ion source development

A group at LBL were able to construct a multicusp ion source capable of >50mA/cm² [1]. This would be sufficient for IsoDAR, so the design of our ion source was based off of their source.

Key innovations in designing H_2^+ ion sources:

1. Extract H_2^+ near to where it was produced.

Spencer N. Axani

2. Confine the plasma with a multicusp field.

[1] https://aip.scitation.org/doi/10.1063/1.1137452

H⁺₂ ion source development

and Leung's LBL Source	MIST-1
sma volume length: 2.0, 4.5 cm	Axial plasma volume length: 1.5 -
Not water cooled.	Front plate and plasma chamber is cooled
late biasing (observed a 30% ease in extracted current)	Back plate biasing and plasma ch biasing
configuration: plasma chamber/ back plate	Magnetic configuration: plasma ch back plate/front plate

MIST-1 is being optimized at the Plasma Science and Fusion Center at MIT.

First beam was about a year ago. Currently we've extracted 27mA/cm²!

See J. Smolsky's talk for further details: https://indico.phys.vt.edu/event/34/contributions/732/

Radio-Frequency Quadrupole (RFQ) buncher/pre-accelerator

Invented in the 1970s, they are primarily used to accelerate low-energy beams.

IsoDAR is investigating using an RFQ as a buncher and pre-accelerator to inject our beam into the cyclotron.

As of yet, using an RFQ as a buncher for axial injection into cyclotron has never been realized.

An RFQ is a common component of linear accelerators.

Radio-Frequency Quadrupole (RFQ)

Spencer N. Axani

The IsoDAR proton driver

Spencer N. Axani

- NSF funding for RFQ and 1

Expected cyclotron performance

			,
Parameter	IsoDAR	PSI Injector II	IBA C-70
Isotope	H ₂ +	H+	H-
Maximum energy [MeV/amu]	60	72	70
Pole radius [m]	1.99	2.5	1.24
Outer diameter [m]	6.2	10	4
Iron weight [tons]	450	250	140
Output current [mA]	10	2.4	0.75

K = -

capture efficiency.

New paper on high power cyclotrons for neutrino physics: **Daniel Winklehner et. al:** https://arxiv.org/pdf/1807.03759.pdf

Spencer N. Axani

State of the art

Commercial

• Generalized perveance (K) is a measure of the space-charge; a limiting factor of modern cyclotrons.

$$\frac{qI}{2\pi\varepsilon_0 m_0 c^3 \gamma^3 \beta^3}$$

• RFQ injection will improve the

 $E_p = 30 \text{keV}, E_{H2+} = 70 \text{keV},$ $\beta_{p} = 0.9236\beta_{H2+}$

Proton: 2mA

H₂+: 5mA

 $K_p = 0.000239$

K_{H2+}=0.000247

Medical Physics

Spencer N. Axani

Medical isotope production: 68Ge production

A high current beam can be used as a driver to produce isotopes with lower production cross-sections. As an example, ⁶⁸Ge/⁶⁸Ga generator.

150mb peak cross-section at

The IsoDAR cyclotron could generate **50 Curies** of the ⁶⁸Ge parent in a week of running.

 Short lived state Positron emitter (PET)

https://www.nist.gov/

Medical isotope production: Actinium-225 production

98% of the time ²²⁵AC decays through this chain

Alpha-emitting isotopes are in high demand for therapeutic applications.

- along the alpha track (5.8 8.4MeV).
- Actinium-225 is a particularly effective isotope. limited range in tissue (μm) high linear energy transfer which leads to dense radiation damage
- 10-day half-life
- four net alpha particles emitted per decay.

natural thorium target.

https://arxiv.org/pdf/1807.06627.pdf

- The IsoDAR cyclotron could produce 0.2Ci per hour of ²²⁵Ac from a
- New paper on the medical isotope production from Jose R. Alonso, Janet M. Conrad, and Loyd H. Waites:

Particle Physics

Spencer N. Axani

PHIT

IsoDAR target and neutrino production

- Dipole magnet: reduce back streaming neutrons
- Wobbler: distribute beam over target face
- Target: replaceable ⁹Be torpedo.
- Sleeve around target: 99.99% pure ⁷Li + ⁹Be
- Shielding: minimize activation of the mine

Spencer N. Axani

Interactions

$$(IBD): \overline{v}_e + p \rightarrow e^+ + n$$

 $(ES): \overline{v}_e + e^- \rightarrow \overline{v}_e + e^-$

1 21

Precision electroweak measurements (ES sample)

IsoDAR could collect the largest sample of low-energy \bar{v}_e -electron scatters (ES) that has been observed to date. Approximately 2600 ES events would be collected above a 3 MeV visible energy threshold over a 5 year run, and both the total rate and the visible energy can be measured.

Plif

Sterile neutrinos v_e searches

Spencer N. Axani

Similar to reactor experiments, IsoDAR will perform a " \overline{v}_e disappearance" measurement, however, unlike reactors, the neutrinos are generated from a well understood,

positionable source.

Sterile neutrino search (IBD sample)

Шiī

3+1 sterile neutrinos sensitivity

Spencer N. Axani

Anomalous oscillation measurements drive the global allowed regions.

- LSND
- MiniBooNE
- Global reactor deficit
- GALLEX/SAGE anomaly

Including NEOS and DANSS, an updated global allowed favors $\Delta m^2 \sim 1.3 eV^2$

IsoDAR@KamLAND, will be able to make a definitive statement about the existence of light sterile neutrinos.

- Rule out 3+1 global fit region:
 - 20σ in 5 years
 - 5σ in 4 months

Sterile neutrino precision measurement

Spencer N. Axani

IsoDAR @ CHANDLER

Virginia Tech is home to a scalable, "mobile" \overline{v}_e detector called CHANDLER.

Could IsoDAR be combined with a CHANDLER-style detector?

- Similar energy resolution to KamLAND (6.5% at 1MeV).
- Better spatial resolution due to segmented cells.
- Lower fiducial volume, but can be strategically positioned.
- Pulse shape neutron rejection.

IsoDAR @ CHANDLER

Spencer N. Axani

Plots courtesy of Mike Shaevitz.

Improved statistics at low L/E in the first disappearance.

The Daeδalus experiment

(Decay At rest Experiment for δ_{CP} At Laboratory for Underground Science)

ШiT

The Dae δ alus δ_{cp} measurement

Initial Muon Neutrino

The Dae δ alus δ_{cp} measurement

or liquid scintillator

Underground detector

The Dae δ alus accelerator for accelerator driven systems (ADS)

PliT

Spencer N. Axani

Modified from **Sarah Cousineau's** NuFact talk on Tuesday: https://indico.phys.vt.edu/event/34/contributions/609/

Accelerated Driven Nuclear Technology:

- Nuclear power generation -
- Can be used with Thorium based fuel cycle
- operate far from "prompt criticality" (safety)
- Transmutation of long lived nuclear wastes (actinide burning)

The Dae δ alus accelerator for ADS

Design basis from S. Henderson, Thorium Energy Conference 2011

High power requirements for industrial scale applications (electricity generation)

Beam Trip Frequency:

thermal stress and fatigue in reactor structural elements and fuel assembly sets stringent requirements on accelerator reliability.

Accelerator Physics

Innovations in H₂+ multicusp ion source development and RFQ axial injection into a cyclotron will push the cyclotrons into the high-intensity frontier.

The IsoDAR cyclotron can be used for medical isotope production, and for a decisive short baseline neutrino oscillation measurements: • Probe the global best fit allowed regions to 5σ in just 4-months of livetime. Test 3+1 versus 3+N hypothesis. Precision sterile measurement

The high-intensity cyclotrons could lead to larger δ_{cp} measurements, and are suitable for accelerator driven nuclear reactors.

SUMMARY

IsoDAR has a broad physics reach.

Medical Physics

Particle Physics

THANKS FOR YOUR ATTENTION!

THANKS FOR YOUR ATTENTION!

Sterile Neutrino Overview

Modern searches for $\sim 1 \text{ eV}$ scale light sterile neutrinos are motivated by a set of observed anomalies.

Oscillation Channel	Class	Anomalo signals (>
v_e disappearance $P(v_e \rightarrow v_e)$	Reactor/Source Experiments	GALLEX SAGE (v {Global Read
v_{μ} disappearance $P(v_{\mu} \rightarrow v_{\mu})$	Long/Short Baseline Experiments	none
v_e appearance $P(v_\mu \rightarrow v_e)$	Short Baseline Experiments	LSND (* MiniBooNE

Many of the proposed experiments to test the light sterile neutrino hypothesis do not have sufficient sensitivity to make a definitive $>5\sigma$ statement.

Spencer N. Axani

H2+ production cross-section

- beam is highly divergent.
- aperture.

RFQ parameters

Parameter	Va
Operating frequency	33.2
Injection energy	15
Final beam energy	80
Design input current	10
Current limit	22
Transmission at 10 mA	99
Input transverse emittance (6-rms, norm)	0.5 pi-n
Nominal vane voltage	43
Bore radius (a)	1.2
Maximum vane modulation (m)	1.
Structure length	1 .C
Peak RF field surface gradient	4.66
Structure RF power	<9.
Beam power	0.64
Total input RF power	<10

Backup

lue

- 2 MHz
- keV
- keV
- mΑ
- mΑ
- 9%
- nm-mrad
- 8 kV
- 7 cm
- .94
-)9 m
- MV/m
- 5 kW
- 4 kW
- .1 kW

2

Cyclotron parameters

Spencer N. Axani

		Backup
Energy at extraction	60	MeV/amu
Injected energy	35	keV/amu
Radius at extraction		1.99 m
Iron weight	450 tons	
Harmonic		4th

Requirements:

- A compact accelerator that can fit into the Kamioka observatory. Mine entrance size restriction and weight limits.
- Extract 10 mA @ 60 MeV protons Innovations:
- ► Usage of H₂+:
 - decrease the space charge effects
 - 2 protons per ion
 - eliminates the problem of Lorentz stripping
- Inject highly bunched beam from an intense ion source.

Location in the mine

Target design and cooling

Spencer N. Axani

Backup

H₂+ lon source development

Spencer N. Axani

PliT

H₂+ lon source development

1. We form a multicusp magnetic field around a vacuum chamber

2. Introduced molecular hydrogen into the vacuum chamber and apply an O(100V) electric field in the direction of the extraction.

3. Pass a high current through a filament to boil off electrons that are then accelerated towards the extraction plate.

4. The interaction of the electrons with the hydrogen gas cause ionization. Extract and accelerate.

H₂+ Ion source development

Spencer N. Axani

)

Daedalus

Backup

