Exploring the Potential of Short-Baseline Physics at Fermilab

Pedro S. Pasquini O. G. Miranda, M. Tórtola and J. W. F. Valle

08/16/2018

NuFact 2018

Phys.Rev. D97 (2018) no.9, 095026

Arxiv: hep-pheno/1802.02133

The Fermilab short-baseline program:

The Fermilab short-baseline program:

(1) Running/Under Construction

The Fermilab short-baseline program:

(1) Running/Under Construction

(2) Future/To be designed

The Fermilab short-baseline program:

(1) Running/Under Construction

Short Beseline Neutrino (SBN) Experiment (arxiv:1503.01520) (2) Future/To be designed

The Fermilab short-baseline program:

(1) Running/Under Construction

Short Beseline Neutrino (SBN) Experiment (arxiv:1503.01520)

Detector	Active Size	Distance
SBND	112 t	110 m
MicroBooNE	89 t	470 m
ICARUS	476 t	600 m

(2) Future/To be designed

The Fermilab short-baseline program:

(1) Running/Under Construction

Short Beseline Neutrino (SBN) Experiment (arxiv:1503.01520)

Detector	Active Size	Distance
SBND	112 t	110 m
MicroBooNE	89 t	470 m
ICARUS	476 t	600 m

(2) Future/To be designed

DUNE/LBNF near detector

arXiv:1512.06148

The Fermilab short-baseline program:

(1) Running/Under Construction

Short Beseline Neutrino (SBN) Experiment (arxiv:1503.01520)

Detector	Active Size	Distance
SBND	112 t	110 m
MicroBooNE	89 t	470 m
ICARUS	476 t	600 m

(2) Future/To be designed

DUNE/LBNF near detector

arXiv:1512.06148

Detector	Active Size	Distance
ND	?	?

The Fermilab short-baseline program:

(1) Running/Under Construction

Short Beseline Neutrino (SBN) Experiment (arxiv:1503.01520)

Detector	Active Size	Distance
SBND	112 t	110 m
MicroBooNE	89 t	470 m
ICARUS	476 t	600 m

(2) Future/To be designed

DUNE/LBNF near detector

arXiv:1512.06148

Detector	Active Size	Distance
ND	?	?
around	$\sim 500~{\rm t}$	$\sim 600 {\rm m}$

If number of $\nu > 3$

If number of u > 3The (unitary) mixing matrix $N_{n imes n}$ is

$$N_{n \times n} = \begin{pmatrix} N_{11} & N_{12} & N_{13} & N_{14} & \dots \\ N_{21} & N_{22} & N_{23} & N_{24} & \dots \\ N_{31} & N_{32} & N_{33} & N_{34} & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

If number of $\nu > 3$ The (unitary) mixing matrix $N_{n imes n}$ is

$$N_{n \times n} = \begin{pmatrix} N_{11} & N_{12} & N_{13} & N_{14} & \dots \\ N_{21} & N_{22} & N_{23} & N_{24} & \dots \\ N_{31} & N_{32} & N_{33} & N_{34} & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$
Unitary

$$N_{3\times3} = \begin{pmatrix} \alpha_{11} & 0 & 0\\ \alpha_{21} & \alpha_{22} & 0\\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{pmatrix} .U_{\text{PMNS}}$$

$$N_{3\times3} = \begin{pmatrix} \alpha_{11} & 0 & 0\\ \alpha_{21} & \alpha_{22} & 0\\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{pmatrix} . \underbrace{U_{\text{PMNS}}}_{\text{Unitary}}$$

$$N_{3\times3} = \begin{pmatrix} \alpha_{11} & 0 & 0\\ \alpha_{21} & \alpha_{22} & 0\\ & & & \\ & &$$

5 / 24

Short-P

....

 $\frac{U_{\rm H}}{U_{\rm COG}}$

.

5 / 24

5 / 24

Short-P

....

.

production: Decay

Propagation: Matter

Detection: Charge Current

production: Decay

Propagation: Matter

Detection: Charge Current

production: Decay

Propagation: Matter

Detection: Charge Current

These new physics contain a short-distance (non-Standard) $u_{\mu} \rightarrow
u_{\mu}$

These new physics contain a short-distance (non-Standard) $u_{\mu}
ightarrow
u_{\mu}$

These new physics contain a short-distance (non-Standard) $u_{\mu}
ightarrow
u_{\mu}$

Non-UnitarityNSISterile Neutrino $P_{\mu e}^{NU} \sim |\alpha_{21}|^2$ $P_{\mu e}^{NSI} \sim |\epsilon_{e\mu}^d + \epsilon_{e\mu}^s|^2$ $P_{\mu e}^{3+1} \sim \sin^2 2\theta_{\mu e}$

Thus, $N_e \sim \phi_e + P_{\mu e}^{NEW} \phi_\mu$

We simulated:

We simulated:

$SBNE = SBND + \mu BooNE + ICARUS$

We simulated:

$SBNE = SBND + \mu BooNE + ICARUS$

LBNF beam with: protoDUNE and ICARUS as ND

This New Physics changes ν spectrum,

$$N_{\nu_e} \propto \phi_{\nu_e} + |\alpha_{21}|^2 \phi_{\nu_{\mu}}$$
 and $P(\nu_{\mu} \rightarrow \nu_e) = 1 - \sin^2 2\theta_{\mu e} \sin \frac{\Delta m_{41}L}{4E}$

This New Physics changes ν spectrum,

$$N_{\nu_e} \propto \phi_{\nu_e} + |\alpha_{21}|^2 \phi_{\nu_{\mu}}$$
 and $P(\nu_{\mu} \rightarrow \nu_e) = 1 - \sin^2 2\theta_{\mu e} \sin \frac{\Delta m_{41}L}{4E}$

This New Physics changes ν spectrum,

$$N_{
u_e} \propto \phi_{
u_e} + |lpha_{21}|^2 \phi_{
u_\mu}$$
 and $P(
u_\mu o
u_e) = 1 - \sin^2 2\theta_{\mu e} \sin \frac{\Delta m_{41}L}{4E}$

This New Physics changes ν spectrum,

$$N_{
u_e} \propto \phi_{
u_e} + |lpha_{21}|^2 \phi_{
u_\mu}$$
 and $P(
u_\mu o
u_e) = 1 - \sin^2 2\theta_{\mu e} \sin \frac{\Delta m_{41}L}{4E}$

This New Physics changes ν spectrum,

$$N_{
u_e} \propto \phi_{
u_e} + |lpha_{21}|^2 \phi_{
u_\mu}$$
 and $P(
u_\mu o
u_e) = 1 - \sin^2 2\theta_{\mu e} \sin \frac{\Delta m_{41}L}{4E}$

This New Physics changes ν spectrum,

$$N_{
u_e} \propto \phi_{
u_e} + |lpha_{21}|^2 \phi_{
u_\mu}$$
 and $P(
u_\mu o
u_e) = 1 - \sin^2 2\theta_{\mu e} \sin \frac{\Delta m_{41}L}{4E}$

This New Physics changes ν spectrum,

$$N_{
u_e} \propto \phi_{
u_e} + |lpha_{21}|^2 \phi_{
u_\mu}$$
 and $P(
u_\mu o
u_e) = 1 - \sin^2 2\theta_{\mu e} \sin \frac{\Delta m_{41}L}{4E}$

Knowing the flux will be challanging!

But we want to measure zero distance effects!

We need to rely on other types of measurements (see hep-ex/arxiv:1201.3025)

We need to rely on other types of measurements (see hep-ex/arxiv:1201.3025)

(1) Modeling the distribution of π and K produced by the proton beam

We need to rely on other types of measurements (see hep-ex/arxiv:1201.3025)

(1) Modeling the distribution of π and K produced by the proton beam

(2) Measuring the muon flux in the decay pipeline and relate it to the ν flux

We need to rely on other types of measurements (see hep-ex/arxiv:1201.3025)

(1) Modeling the distribution of π and K produced by the proton beam

(2) Measuring the muon flux in the decay pipeline and relate it to the u flux

(3) Measuring the low energy transfer events (low- ν)

We need to rely on other types of measurements (see hep-ex/arxiv:1201.3025)

(1) Modeling the distribution of π and K produced by the proton beam

(2) Measuring the muon flux in the decay pipeline and relate it to the u flux

 $\frac{(3) Measuring the low energy transfer events (low - \nu)}{by new physics}$

Knowing the flux will be challanging!

But we want to measure zero distance effects!

We need to rely on other types of measurements (see hep-ex/arxiv:1201.3025)

(1) Modeling the distribution of π and K produced by the proton beam

(2) Measuring the muon flux in the decay pipeline and relate it to the ν flux

(3) Measuring the low energy transfer events (low ν) May be affected by new physics

 $^{ar{\lambda}}$ Need to know production differential cross section and the horn magnetic field

Knowing the flux will be challanging!

But we want to measure zero distance effects!

We need to rely on other types of measurements (see hep-ex/arxiv:1201.3025)

(1) Modeling the distribution of π and K produced by the proton beam

(2) Measuring the muon flux in the decay pipeline and relate it to the ν flux

(3) Measuring the low energy transfer events (low ν)

May be affected by new physics

ightarrow Need to understand detector very well and is hard to measure E dependency

 $^{ar{ar{\lambda}}}$ Need to know production differential cross section and the horn magnetic field

Let's parametrize our lack of knowledge to see its impact:

-

Let's parametrize our lack of knowledge to see its impact: Normalization: $N^0(1+a) \label{eq:normalization}$

- -

Let's parametrize our lack of knowledge to see its impact: Normalization: $N^0(1+a) \label{eq:normalization}$

Let's parametrize our lack of knowledge to see its impact: Normalization: $N^0(1+a) \label{eq:normalization}$

Let's parametrize our lack of knowledge to see its impact: Normalization: $N^0(1+a) \label{eq:normalization}$

Let's parametrize our lack of knowledge to see its impact:

-

Let's parametrize our lack of knowledge to see its impact: Shape: $N_i^0(1 + a_i)$, bin i = 1, 2, ...

- -

Let's parametrize our lack of knowledge to see its impact: Shape: $N_i^0(1 + a_i)$, bin i = 1, 2, ...

Let's parametrize our lack of knowledge to see its impact: Shape: $N_i^0(1 + a_i)$, bin i = 1, 2, ...

Let's parametrize our lack of knowledge to see its impact: Shape: $N_i^0(1 + a_i)$, bin i = 1, 2, ...

$$\chi^{2} = \sum_{i=1}^{N_{\text{bin}}} \left(\frac{N_{i}^{\text{exp}} - (1 - a - a_{i})N_{i}^{\text{th}} - (1 - b - b_{i})N_{i}^{\text{bg}}}{\sqrt{N_{i}^{\text{exp}}}} \right)^{2} + \chi^{2}_{\text{SYS}},$$

$$\chi^{2} = \sum_{i=1}^{N_{\text{bin}}} \left(\frac{N_{i}^{\text{exp}} - (1 - a - a_{i})N_{i}^{\text{th}} - (1 - b - b_{i})N_{i}^{\text{bg}}}{\sqrt{N_{i}^{\text{exp}}}} \right)^{2} + \chi^{2}_{\text{SYS}},$$

$$\chi^2 = \sum_{i=1}^{N_{\rm bin}} \left(\frac{N_i^{\rm exp} - (1 - a - a_i) N_i^{\rm th} - (1 - b - b_i) N_i^{\rm bg}}{\sqrt{N_i^{\rm exp}}} \right)^2 + \chi^2_{\rm SYS} \,,$$

$$\chi^{2} = \sum_{i=1}^{N_{\text{bin}}} \left(\frac{N_{i}^{\text{exp}} - (1 - a - a_{i})N_{i}^{\text{th}} - (1 - b - b_{i})N_{i}^{\text{bg}}}{\sqrt{N_{i}^{\text{exp}}}} \right)^{2} + \chi^{2}_{\text{SYS}},$$
$$\chi^{2}_{\text{SYS}} = \left(\frac{a}{\sigma_{a}}\right)^{2} + \left(\frac{b}{\sigma_{b}}\right)^{2} + \sum_{i=1}^{N_{\text{bin}}} \left(\frac{a_{i}}{\sigma_{sa}}\right)^{2} + \left(\frac{b_{i}}{\sigma_{sb}}\right)^{2},$$

A bit of math....

$$\chi^{2} = \sum_{i=1}^{N_{\text{bin}}} \left(\frac{N_{i}^{\text{exp}} - (1 - a - a_{i})N_{i}^{\text{th}} - (1 - b - b_{i})N_{i}^{\text{bg}}}{\sqrt{N_{i}^{\text{exp}}}} \right)^{2} + \chi^{2}_{\text{SYS}},$$
$$\chi^{2}_{\text{SYS}} = \left(\frac{a}{\sigma_{a}}\right)^{2} + \left(\frac{b}{\sigma_{b}}\right)^{2} + \sum_{i=1}^{N_{\text{bin}}} \left(\frac{a_{i}}{\sigma_{sa}}\right)^{2} + \left(\frac{b_{i}}{\sigma_{sb}}\right)^{2},$$

We minimize over a, b, a_i, b_i

A bit of math....

$$\chi^{2} = \sum_{i=1}^{N_{\text{bin}}} \left(\frac{N_{i}^{\text{exp}} - (1 - a - a_{i})N_{i}^{\text{th}} - (1 - b - b_{i})N_{i}^{\text{bg}}}{\sqrt{N_{i}^{\text{exp}}}} \right)^{2} + \chi^{2}_{\text{SYS}},$$
$$\chi^{2}_{\text{SYS}} = \left(\frac{a}{\sigma_{a}}\right)^{2} + \left(\frac{b}{\sigma_{b}}\right)^{2} + \sum_{i=1}^{N_{\text{bin}}} \left(\frac{a_{i}}{\sigma_{sa}}\right)^{2} + \left(\frac{b_{i}}{\sigma_{sb}}\right)^{2}$$

We minimize over a, b, a_i, b_i

$$\sigma_{sa} = \sigma_{sb} = \sigma_s$$
 Spectrum error

Usual histogram comparisson (Pearson's χ^2) gives

Usual histogram comparisson (Pearson's χ^2) gives $\chi^2 = \sum_i \left(\frac{N_i^{data} - N_i^{theo}}{\sqrt{N_i^{data}}}\right)^2$

Adding the a_i uncertainty:

Usual histogram comparisson (Pearson's
$$\chi^2$$
) gives

$$\chi^2 = \sum_i \left(\underbrace{\frac{N_i^{data} - N_i^{theo}}{\sqrt{N_i^{data}}}}_{\text{Visual data}} \right)^2 \xrightarrow{\text{Statistical Uncertainty}}$$

$$\chi^2 = \sum_i \left(\frac{N_i^{data} - (1 - a_i)N_i^{theo}}{\sqrt{N_i^{data}}} \right)^2 + \left(\frac{a_i}{\sigma_i} \right)^2$$

Usual histogram comparisson (Pearson's
$$\chi^2$$
) gives

$$\chi^2 = \sum_i \left(\underbrace{\frac{N_i^{data} - N_i^{theo}}{\sqrt{N_i^{data}}}}_{\text{Visual data}} \right)^2 \xrightarrow{\text{Statistical Uncertainty}}$$

$$\chi^2 = \sum_i \left(\frac{N_i^{data} - (1 - a_i) N_i^{theo}}{\sqrt{N_i^{data}}} \right)^2 + \left(\frac{a_i}{\sigma_i} \right)^2 \longrightarrow \sum_i \left(\frac{N_i^{data} - N_i^{theo}}{\sqrt{N_i^{data} + \sigma_i^2 (N_i^{theo})^2}} \right)^2$$

Usual histogram comparisson (Pearson's
$$\chi^2$$
) gives

$$\chi^2 = \sum_i \left(\underbrace{\frac{N_i^{data} - N_i^{theo}}{\sqrt{N_i^{data}}}}_{\text{Visual data}} \right)^2 \xrightarrow{\text{Statistical Uncertainty}}$$

$$\chi^2 = \sum_i \left(\frac{N_i^{data} - (1 - a_i) N_i^{theo}}{\sqrt{N_i^{data}}} \right)^2 + \left(\frac{a_i}{\sigma_i} \right)^2 \longrightarrow \sum_i \left(\frac{N_i^{data} - N_i^{theo}}{\sqrt{N_i^{data} + \sigma_i^2 (N_i^{theo})^2}} \right)^2$$

Notice, if $\sigma_i \to \infty$ one looses sensitivity $(\chi^2 \to 0)$

We need $\sigma_s \sim O(1)\%$

What we got (for $|\alpha_{21}|^2$):

What we got (for $|\alpha_{21}|^2$):

We need $\sigma_s \sim O(1)\%$

We need $\sigma_s \sim O(1)\%$

Spectrum error (σ_s)

Spectrum error (σ_s)

Spectrum error (σ_s)

Spectrum error (σ_s)

Setting a σ_s goal, we can get minimum requirements

similar for sterile neutrino!

similar for sterile neutrino!

The sensitivity is reasonable good if $L \sim 1 {\rm km}$

If it is possible to use two near detectors, we gain a very good improvement!

If it is possible to use two near detectors, we gain a very good improvement!

Conclusion:

Conclusion:

SBN can slightly improve NSI/Non-unitarity

Conclusion:

SBN can slightly improve NSI/Non-unitarity

LBNF We can probe NSI/Non-unitarity if $\sigma \sim O(1)\%$

Conclusion:

SBN can slightly improve NSI/Non-unitarity

LBNF We can probe NSI/Non-unitarity if $\sigma \sim O(1)\%$ (depending on detector size/location)

Conclusion:

SBN can slightly improve NSI/Non-unitarity

LBNF We can probe NSI/Non-unitarity if $\sigma \sim O(1)\%$ (depending on detector size/location)

Similar for sterile neutrino

Thanks for the supporters

Thanks

G. V. Stenico for SBN codes

Generalitat Valenciana

Ramón y Cajal

CONACyT and SNI (Mexico).

The Brazilian Physics Society (SBF) and the American Physical Society (APS)

jointly announce the

SBF-APS São Paulo School of Advanced Science on Experimental Neutrino Physics

December 3-14, 2018, University of Campinas (Unicamp), Campinas, SP, Brazil

Lecturers

Ettore Segreto, UNICAMP, Brazil (Scientific Coordinator)

Roberto Acciarri, FERMILAB, USA	Marcelo Guzzo, UNICAMP, Brazil
Jonathan Asaadi, UTA, USA	Ernesto Kemp, UNICAMP, Brazil
Ed Blucher, University of Chicago, USA	Ana Amelia B. Machado, UFABC, Brazil
Mary Bishai, BNL, USA	Franciole Marinho, UFSCAR, Brazil
Carla Bonifazi, UFRJ, Brazil	Celio A. Moura, UFABC, Brazil
Ines Gil Botella, CIEMAT, Spain	Luciano Pandola, INFN-LNS, Italy
Flavio Cavanna, FERMILAB, USA	Laura Paulucci, UFABC, Brazil
Justin Evans, Manchester, UK	Kate Scholberg, Duke University, USA
Renata Funchal, USP, Brazil	Michelle Stancari, FERMILAB, USA
Douglas Galante, LNLS, Brazil	Andrzej Szelc, Manchester, UK
Diego Garcia-Gamez, Manchester, UK	Francesco Vissani, INFN-LNGS, Italy

All lectures will be held in English

Additional information and Applications:

Deadline for registration: September 28, 2018

https://sites.google.com/site/spsasen/

Travel and lodging support available for up to 100 selected students/post-docs (50 from Brazil, 50 from abroad).

Organization: APS, SBF, UNICAMP, UFABC, UFSCAR

Funding: São Paulo Research Foundation (FAPESP), APS, UNICAMP