Coherent Elastic Neutrino-Nucleus Scattering as a Probe of Z'

M.Abdullah, JBD, B. Dutta, G.L. Kane, S. Liao, and L. Strigari PRD 2018, 1803.01224

Coherent Elastic Neutrino-Nucleus Scattering: Standard Model Process

Basics of Coherent Elastic Neutrino-Nucleus Scattering

The Standard Model coupling values show that the scattering goes roughly $\sim N^2$

D.Z.Freedman, PRD 1974 V.B.Kopeliovich and L.L.Frankfurt, JETP Lett. 1974

Kinematics
OrientationMomentum Exchanged
The key elements are the exchanged momentum and the $\mathcal{O}(\text{HkeV})$ $q = \sqrt{2mE_R}$ $R = \frac{2mE_{\nu}^2\cos^2\theta}{(m+E_{\nu})^2 - E_{\nu}^2\cos^2\theta}$ An $\text{Pstacksingletecting this process lies with the Equipment of <math>m+2E_{\nu}$

$$E_{R,\max} = \frac{2E_{\nu}^2}{m + 2E_{\nu}}$$
$$\stackrel{m \to E_R}{\longrightarrow} E_R \approx 1 \text{keV}$$

A 5 MeV neutrino will elicit a \sim 1keV recoil in an A = 50 atom.

A 30 MeV neutrino gives a ~14-15keV recoil to Cs or I.

Low threshold detectors are needed.

(Electron recoil energy goes much higher)

Non-Standard Interactions

Non-Standard Interactions (NSI)

$$\mathcal{L}_{NSI} = -2\sqrt{2}G_F \sum_{\alpha,\beta,f} \bar{\nu}_{\alpha L} \gamma^{\mu} \nu_{\beta L} \left(\epsilon^{fL}_{\alpha\beta} \bar{f}_L \gamma_{\mu} f_L + \epsilon^{fR}_{\alpha\beta} \bar{f}_R \gamma_{\mu} f_R \right)$$

Four-Fermi style interaction in units of G_F

Non-Standard Interactions (NSI) for CENNS

$$\frac{d\sigma}{dE_R} = \frac{G_F^2 Q_V^2}{2\pi} m_N \left(1 - \left(\frac{m_N E_R}{E_\nu^2}\right) + \left(1 - \frac{E_R}{E_\nu}\right)^2 \right) F(q^2)$$

$$Q_V^2 \equiv \left[Z(g_p^V + 2\epsilon_{\alpha\alpha}^{uV} + \epsilon_{\alpha\alpha}^d) + N(g_n^V + \epsilon_{\alpha\alpha}^{uV} + 2\epsilon_{\alpha\alpha}^d) \right]^2$$

$$+ \sum_{\alpha \neq \beta} \left[Z(2\epsilon_{\alpha\beta}^{uV} + \epsilon_{\alpha\beta}^d V) + N(\epsilon_{\alpha\beta}^{uV} + 2\epsilon_{\alpha\beta}^{dV}) \right]^2$$

$$\nu(p) \qquad \qquad \nu(p')$$

$$\alpha = e, \mu, \tau$$

$$f = e, u, d$$

Γ

	90% C L range	origin			
				90% C.L. range	origin
	NSI with quarks		NSI with quarks		
ϵ^{dL}_{ee}	[-0.3, 0.3]	CHARM			
ϵ^{dR}_{ee}	[-0.6, 0.5]	CHARM	$\epsilon^{qL}_{e\mu}$	[-0.023, 0.023]	accelerator
ϵ^{dV}	[-0.042, 0.042]	atmospheric + accelerator	$\epsilon^{qR}_{e\mu}$	[-0.036, 0.036]	accelerator
$c \mu \mu \ \epsilon^{uV}$	[-0.044, 0.044]	atmospheric + accelerator	$\epsilon^{uV}_{e\mu}$	[-0.073, 0.044]	oscillation data + COHERENT
$c_{\mu\mu}$ $_{_{c}}dA$		atmospheric + accelerator	$\epsilon^{dV}_{e\mu}$	[-0.07, 0.04]	oscillation data + COHERENT
$\epsilon_{\mu\mu}^{\mu}$	[-0.072, 0.057]	atmospheric + accelerator	$\epsilon^{qL}_{e au},\epsilon^{qR}_{e au}$	[-0.5, 0.5]	CHARM
$\epsilon^{a n}_{\mu\mu}$	[-0.094, 0.14]	atmospheric + accelerator	$\epsilon^{uV}_{e au}$	[-0.15, 0.13]	oscillation data $+$ COHERENT
$\epsilon^{av}_{ au au}$	[-0.075, 0.33]	oscillation data $+$ COHERENT	$\epsilon^{dV}_{e au}$	[-0.13, 0.12]	oscillation data + COHERENT
$\epsilon^{uV}_{ au au}$	[-0.09, 0.38]	oscillation data $+$ COHERENT	$\epsilon^{qL}_{\mu\tau}$	[-0.023, 0.023]	accelerator
$\epsilon^{qV}_{ au au}$	[-0.037, 0.037]	atmospheric	$\epsilon^{qR}_{\mu au}$	[-0.036, 0.036]	accelerator
		NSI with electrons	$\epsilon^{qV}_{\mu au}$	[-0.006, 0.0054]	IceCube
			$\epsilon^{qA}_{\mu au}$	$\left[-0.039, 0.039 ight]$	atmospheric + accelerator
ϵ^{eL}_{ee}	[-0.021, 0.052]	solar + KamLAND		NSI wi	ith electrons
ϵ^{eR}_{ee}	$\left[-0.07, 0.08\right]$	TEXONO	eL eR		
$\epsilon^{eL}_{\mu\mu}, \epsilon^{eR}_{\mu\mu}$	[-0.03, 0.03]	reactor + accelerator	$\epsilon_{e\mu}^{eL}, \epsilon_{e\mu}^{e\mu}$	[-0.13, 0.13]	reactor + accelerator
-μμ, -μμ eL			$\epsilon^{eL}_{e au}$	[-0.33, 0.33]	reactor + accelerator
$\epsilon_{ au au}^{\circ B}$	[-0.12, 0.06]	solar + KamLAND	$\epsilon^{eR}_{e au}$	[-0.28, -0.05] & [0.05, 0.28]	reactor + accelerator
$\epsilon^{eR}_{ au au}$	[-0.98, 0.23]	solar + KamLAND and Borexino	oI oB	[-0.19, 0.19]	TEXONO
	[-0.25, 0.43]	reactor + accelerator	$\epsilon^{eL}_{\mu\tau}, \epsilon^{eR}_{\mu\tau}$	[-0.10, 0.10]	reactor + accelerator
$\epsilon^{eV}_{\tau\tau}$	[-0.11, 0.11]	atmospheric	$\epsilon^{ev}_{\mu au}$	[-0.018, 0.016]	IceCube

Y.Farzan and M.Tortola, Front.In Phys. 2018, 1710.09360

Non-Standard Interactions (NSI): light mediators

 $\mathcal{M} \propto \frac{g_X^2}{q^2 - M_Y^2}$

When the mediator mass is

$$M_X^2 \ll q^2 \Longrightarrow \frac{g_X^2}{q^2}$$

there is a momentumdependent interaction which produce increased rates at low energy

Direct interactions or via mixing

$$Q_{\alpha,\text{NSI}}^2 = \left[Z \left(g_p^V + \frac{3g^2}{2\sqrt{2}G_F(Q^2 + M_{Z'}^2)} \right) + N \left(g_n^V + \frac{3g^2}{2\sqrt{2}G_F(Q^2 + M_{Z'}^2)} \right) \right]^2$$

J.Liao and D. Marfatia, PLB (2017) 1708.04255

Experimental Programs

Nuclear	Technology	Mass	Distance from	Recoil
target		(kg)	source (m)	threshold (keVnr)
CsI[Na]	Scintillating crystal	14.6	19.3	6.5
Ge	HPGe PPC	10	22	5
LAr	Single-phase	22	29	20
NaI[Tl]	Scintillating crystal	$185^{*}/2000$	28	13

Akimov et al. 1803.09183

Akimov et al. Science (2017) 1708.01294

Akimov et al. 1803.09183

Current NSI bounds

Projected

NSI bounds

Mitchell Institute Neutrino Experiment at Reactor

Very low threshold SuperCDMS style germanium and silicon detectors fabricated at Texas A&M sited near at 4.5-5.5m from a moveable nuclear reactor core

From CONUS collaboration slides at Neutrino 2018, Werner Maneschg presenter

3.9GW reactor in Brokdorf, Germany

 $2.4 \times 10^{13} \, \mathrm{cm}^{-2} \mathrm{s}^{-1}$ at 17m

3.85kg active mass Germanium detector with a <300 eVee threshold

	counts	$counts/(d \cdot kg)$ (*)	
reactor OFF (114 kg*d)	582		
reactor ON (112 kg*d)	653		
ON-OFF (exposure corr.)	84	0.94	
Significance	2.4 σ	2.3 σ	Some systematics

(*) Including stat. uncertainty and above efficiencies

NSI: Mixing Effects with a Light Mediator

Kinetic Mixing Portal

Extend the SM by an extra U(1) which introduces a new field

We will examine the cases where the new field has only loop induced couplings to SM fields, as well as tree level couplings with neutrinos.

The new gauge group induces a kinetic mixing term in the Lagrangian

$$L_{gauge} = -\frac{1}{4} F_a^{\mu\nu} F_{a\mu\nu} - \frac{1}{4} F_b^{\mu\nu} F_{b\mu\nu} - \frac{\epsilon}{2} F_a^{\mu\nu} F_{b\mu\nu}$$

 ϵ Parameterizes the mixing between the hypercharge and new group

Bounds are placed in the coupling-mass plane

For some models there also exist direct couplings to SM fields

$$\mathcal{L} \supset Z'_{\mu}(g'_{\nu}\bar{\nu}_{L}\gamma^{\mu}\nu_{L} + g'_{f,v}\bar{f}\gamma^{\mu}f + g'_{f,a}\bar{f}\gamma^{\mu}\gamma^{5}f)$$

After a field redefinition

$$B_{\mu} \to B_{\mu} - \epsilon X_{\mu}$$

Canonical kinetic terms are recovered

$$L_{gauge} = -\frac{1}{4} F_a^{\mu\nu} F_{a\mu\nu} - \frac{1}{4} F_b^{\mu\nu} F_{b\mu\nu}$$

 $Z'\bar{f}f$ couplings arise from the covariant derivative term:

 $i\bar{\psi}\gamma^{\mu}D_{\mu}\psi = i\bar{\psi}\left(\partial_{\mu} + igT^{3}W_{\mu}^{3} + ig'Q_{Y}B_{\mu} + i(g_{X}Q_{X} - g'\epsilon Q_{Y})X_{\mu}\right)\psi$

S. Gopalakrishna, S.Jung, and J.D. Wells, PRD (2008), 0801.3456 M. Lindner, F.S. Queiroz, W. Rodejohann, and Xun-Jie Xu, JHEP (2018), 1803.00060 ...many others

Rotate to the mass basis

$$\begin{pmatrix} B_{\mu} \\ W_{\mu}^{3} \\ X_{\mu} \end{pmatrix} = \begin{pmatrix} \cos \theta_{w} & -\epsilon \sin \alpha - \sin \theta_{w} \cos \alpha & \sin \theta_{w} \sin \alpha - \epsilon \cos \alpha \\ \sin \theta_{w} & \cos \theta_{w} \cos \alpha & -\cos \theta_{w} \sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} A_{\mu} \\ Z_{\mu} \\ Z'_{\mu} \end{pmatrix}$$

One finds the $Z' \overline{f} f$ coupling term: $\frac{-ig}{\cos \theta_w} \left[\cos \alpha (\tan \alpha - \epsilon \sin \theta_w) \right] \left[T_L^3 - \frac{(\tan \alpha - \epsilon / \sin \theta_w)}{\tan \alpha - \epsilon \sin \theta_w} \sin^2 \theta_w Q \right]$

Given in terms of the Z-Z' mixing angle α

A few cases of interest:

small mixing α with the definition: Dark Hypercharge: $\epsilon_B \equiv \cos \alpha (\tan \alpha - \epsilon \sin \theta_w)$ $Z' \overline{f} f$ coupling term: $ig \tan \theta_w (Y_f/2) \epsilon_B$ Dark Z: $\epsilon = 0$ $\epsilon_z \equiv \sin \alpha$ $\frac{-ig}{\cos\theta_w} \epsilon_z \left[T_L^3 - \sin\theta_w^2 Q \right]$ $Z' \overline{f} f$ coupling term: $U(1)_{L_{\mu}-L_{\tau}}$ (g-2)_{μ}, *B* decay anomalies, HE ν , DM X.G.He, G.C.Joshi, J.H.Lew, and R.R.Volkas, PRD (1991)

 $\mathcal{L}_{int} \supset g_{Z'} Q_{\alpha\beta} (\bar{l}_{\alpha} \gamma^{\mu} l_{\beta} + \bar{\nu}_{L\alpha} \gamma^{\mu} \nu_{L\beta}) Z'_{\mu}$

Dark Z and dark hypercharge

Bounds

Numerical Approach

$$\chi^{2} = \sum_{\text{bins,detectors}} \frac{\left(N_{exp} - (1+\beta) N_{pred}\right)^{2}}{N_{bg} + N_{exp}} + \left(\frac{\beta}{\sigma_{\beta}}\right)^{2}$$

 N_{exp} Number of expected (SM) events

 N_{pred} Number of predicted (BSM) events

- β Nuisance parameter
- σ_{β} Fractional systematic uncertainty (0.1)
 - 2σ or discovery sensitivity at 95% probability

Numerical Approach

Bounds are made using the current COHERENT data with 14.6 kg of CsI crystals with 4.25 keV thresholds.

Projections for the SNS are made using 1 ton of LAr and 1 ton of NaI with a 2 keV threshold for each target.

Projections for reactor are made using a 1 MW at 1m (or 1 GW at 30 m) with 100 eVnr thresholds for cryogenic Ge and Si detectors.

Beam dump experiments: E137 (20GeV) E141 (9GeV) E774 (275GeV) (Bjorken et al. PRD 1988, Riordan et al. PRL 1987, Bross et al. PRL 1991)

Neutral pion decay: NA48/2 (Batley et al. PLB 2015, 1504.00607, Ilten, Soreq, Williams, and Xue 1801.04847, Bjorken, Essig, Schuster, and Toro, PRD 2009, 0906.0580, Harnik, Kopp, and Machado, JCAP 2012, 1202.6073) Atomic Parity Violation: ¹³³Cs transitions (S.G.Porsev, K.Beloy, and A.Derevianko, PRD 2010, 1006.4193, H. Davoudiasl, H.-S. Lee, and W.J. Marciano, PRD 2012, 1203.2947)

Solar neutrino measurements from Borexino, M. Agostini et al. (Borexino) (2017), 1707.09279

Neutrino Trident measurements from CHARM-II (Geiregat et al. PLB 1990) and CCFR (Mishra et al. (CCFR) PRL 1991) Theory limits from Altmannshofer, Gori, Pospelov, and Yavin, PRD 2014, 1403.1269 and PRL 2014, 1406.2332

Additional Bounds (current)

Additional Bounds (future)

Summary

Coherent Elastic Neutrino-Nucleus Scattering is already able to set interesting limits on BSM physics.

Complementarity from stopped-pion sources and reactors, as well as a variety of target materials will be able to provide coverage in numerous models.

There is great potential in the near future for significantly increasing the reach of the coherent scattering experiments and new theoretical explorations.