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A. Coherent Neutrino-Nucleus Scattering

For mediator particles that are heavy compared to the typical momentum transfer q of
the CE‹NS process, the NSI can be parameterized as

LNSI = ≠2
Ô

2GF

ÿ

–,—,f

‹̄–L“µ‹—L

1
‘fL

–— f̄L“µfL + ‘fR
–— f̄R“µfR

2
, (1)

where –, — = e, µ, · indicate the neutrino flavor, f the fermion type, and L/R denote left
and right-handed components. Vector couplings are characterized by the spin-independent
combination ‘fV

–— = ‘fL
–— + ‘fR

–— , and axial-vector couplings by the orthogonal spin-dependent
combination ‘fA

–— = ‘fL
–— ≠ ‘fR

–— . For the CE‹NS process, the axial-vector contribution is
negligible in comparison to the vector contribution (due to spin cancellation), and will be
neglected in the remainder of this work. For mediators of mass mXÕ satisfying m2

XÕ .
q2 © 2mNER (where mN is the target mass, and ER its kinetic recoil energy), the Eq. (1)
NSI parameterization is altered by the onset of momentum dependence in the mediator’s
propagator. This creates a unique BSM signature in the recoil spectrum shape, which turns
up strongly as the energy ER decreases.

The di�erential cross-section for the CE‹NS scattering process for an incident neutrino
of energy E‹ can then be written as [15]

d‡

dER
= G2

F Q2
V

2fi
mN

A

1 ≠
A

mNER

E2
‹

B

+
3

1 ≠ ER

E‹

42B

F (q2) (2)

The function F (q2) is the nuclear form factor. It encodes the momentum dependence of the
interaction, and is given by the Fourier transform of the distribution of scattering sites in
the nucleus. In this work we adopt the standard spin-independent Helm form factor [16].
The vector charge for a nucleus consisting of Z protons and N neutrons incorporates both
SM and NSI contributions, and is given by

Q2
V ©

Ë
Z(gV

p + 2‘uV
–– + ‘d

––) + N(gV
n + ‘uV

–– + 2‘d
––)

È2

+
ÿ

– ”=—

Ë
Z(2‘uV

–— + ‘d
–—V ) + N(‘uV

–— + 2‘dV
–— )

È2
(3)

The charges gp
V = 1/2 ≠ 2sin2 ◊W and gV

n = ≠1/2 are the SM proton and neutron vector
couplings, and ◊W is the weak mixing angle.
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Basics of Coherent Elastic Neutrino-Nucleus Scattering

A. Coherent Neutrino-Nucleus Scattering

For mediator particles that are heavy compared to the typical momentum transfer q of
the CE‹NS process, the NSI can be parameterized as

LNSI = ≠2
Ô

2GF

ÿ

–,—,f

‹̄–L“µ‹—L

1
‘fL

–— f̄L“µfL + ‘fR
–— f̄R“µfR

2
, (1)

where –, — = e, µ, · indicate the neutrino flavor, f the fermion type, and L/R denote left
and right-handed components. Vector couplings are characterized by the spin-independent
combination ‘fV

–— = ‘fL
–— + ‘fR

–— , and axial-vector couplings by the orthogonal spin-dependent
combination ‘fA

–— = ‘fL
–— ≠ ‘fR

–— . For the CE‹NS process, the axial-vector contribution is
negligible in comparison to the vector contribution (due to spin cancellation), and will be
neglected in the remainder of this work. For mediators of mass mXÕ satisfying m2

XÕ .
q2 © 2mNER (where mN is the target mass, and ER its kinetic recoil energy), the Eq. (1)
NSI parameterization is altered by the onset of momentum dependence in the mediator’s
propagator. This creates a unique BSM signature in the recoil spectrum shape, which turns
up strongly as the energy ER decreases.

The di�erential cross-section for the CE‹NS scattering process for an incident neutrino
of energy E‹ can then be written as [15]
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The function F (q2) is the nuclear form factor. It encodes the momentum dependence of the
interaction, and is given by the Fourier transform of the distribution of scattering sites in
the nucleus. In this work we adopt the standard spin-independent Helm form factor [16].
The vector charge for a nucleus consisting of Z protons and N neutrons incorporates both
SM and NSI contributions, and is given by
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The charges gp
V = 1/2 ≠ 2sin2 ◊W and gV

n = ≠1/2 are the SM proton and neutron vector
couplings, and ◊W is the weak mixing angle.
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A. Coherent Neutrino-Nucleus Scattering

For mediator particles that are heavy compared to the typical momentum transfer q of
the CE‹NS process, the NSI can be parameterized as

LNSI = ≠2
Ô

2GF

ÿ

–,—,f

‹̄–L“µ‹—L

1
‘fL

–— f̄L“µfL + ‘fR
–— f̄R“µfR

2
, (1)

where –, — = e, µ, · indicate the neutrino flavor, f the fermion type, and L/R denote left
and right-handed components. Vector couplings are characterized by the spin-independent
combination ‘fV

–— = ‘fL
–— + ‘fR

–— , and axial-vector couplings by the orthogonal spin-dependent
combination ‘fA

–— = ‘fL
–— ≠ ‘fR

–— . For the CE‹NS process, the axial-vector contribution is
negligible in comparison to the vector contribution (due to spin cancellation), and will be
neglected in the remainder of this work. For mediators of mass mXÕ satisfying m2

XÕ .
q2 © 2mNER (where mN is the target mass, and ER its kinetic recoil energy), the Eq. (1)
NSI parameterization is altered by the onset of momentum dependence in the mediator’s
propagator. This creates a unique BSM signature in the recoil spectrum shape, which turns
up strongly as the energy ER decreases.

The di�erential cross-section for the CE‹NS scattering process for an incident neutrino
of energy E‹ can then be written as [15]
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The function F (q2) is the nuclear form factor. It encodes the momentum dependence of the
interaction, and is given by the Fourier transform of the distribution of scattering sites in
the nucleus. In this work we adopt the standard spin-independent Helm form factor [16].
The vector charge for a nucleus consisting of Z protons and N neutrons incorporates both
SM and NSI contributions, and is given by
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The charges gp
V = 1/2 ≠ 2sin2 ◊W and gV

n = ≠1/2 are the SM proton and neutron vector
couplings, and ◊W is the weak mixing angle.
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nuclear targets
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negligible in comparison to the vector contribution (due to spin cancellation), and will be
neglected in the remainder of this work. For mediators of mass mXÕ satisfying m2

XÕ .
q2 © 2mNER (where mN is the target mass, and ER its kinetic recoil energy), the Eq. (1)
NSI parameterization is altered by the onset of momentum dependence in the mediator’s
propagator. This creates a unique BSM signature in the recoil spectrum shape, which turns
up strongly as the energy ER decreases.

The di�erential cross-section for the CE‹NS scattering process for an incident neutrino
of energy E‹ can then be written as [15]
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interaction, and is given by the Fourier transform of the distribution of scattering sites in
the nucleus. In this work we adopt the standard spin-independent Helm form factor [16].
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SM and NSI contributions, and is given by
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The Standard Model coupling values show that the scattering goes roughly ~N2
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A. Coherent Neutrino-Nucleus Scattering

For mediator particles that are heavy compared to the typical momentum transfer q of
the CE‹NS process, the NSI can be parameterized as

LNSI = ≠2
Ô

2GF

ÿ

–,—,f

‹̄–L“µ‹—L

1
‘fL

–— f̄L“µfL + ‘fR
–— f̄R“µfR

2
, (1)

where –, — = e, µ, · indicate the neutrino flavor, f the fermion type, and L/R denote left
and right-handed components. Vector couplings are characterized by the spin-independent
combination ‘fV

–— = ‘fL
–— + ‘fR

–— , and axial-vector couplings by the orthogonal spin-dependent
combination ‘fA

–— = ‘fL
–— ≠ ‘fR

–— . For the CE‹NS process, the axial-vector contribution is
negligible in comparison to the vector contribution (due to spin cancellation), and will be
neglected in the remainder of this work. For mediators of mass mXÕ satisfying m2

XÕ .
q2 © 2mNER (where mN is the target mass, and ER its kinetic recoil energy), the Eq. (1)
NSI parameterization is altered by the onset of momentum dependence in the mediator’s
propagator. This creates a unique BSM signature in the recoil spectrum shape, which turns
up strongly as the energy ER decreases.

The di�erential cross-section for the CE‹NS scattering process for an incident neutrino
of energy E‹ can then be written as [15]
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F Q2
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2fi
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E2
‹

B
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42B

F (q2) (2)

The function F (q2) is the nuclear form factor. It encodes the momentum dependence of the
interaction, and is given by the Fourier transform of the distribution of scattering sites in
the nucleus. In this work we adopt the standard spin-independent Helm form factor [16].
The vector charge for a nucleus consisting of Z protons and N neutrons incorporates both
SM and NSI contributions, and is given by

Q2
V ©

Ë
Z(gV

p + 2‘uV
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––)
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– ”=—
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–— + 2‘dV
–— )

È2
(3)

The charges gp
V = 1/2 ≠ 2sin2 ◊W and gV

n = ≠1/2 are the SM proton and neutron vector
couplings, and ◊W is the weak mixing angle.
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In order to constrain the NSI between neutrinos and quarks, one may use data from the neutrino–nucleus ex-
periments NuTeV, CHARM and CDHS. From the combination of atmospheric and accelerator data from NuTeV,
CHARM and CDHS, the following limits on the non–universal vectorial and axial NSI parameters were derived [165]:

|✏dVµµ | < 0.042 , �0.072 < ✏dAµµ < 0.057 (90%C.L.). (36)

For the case of the flavor changing NSI couplings (with q = u, d)

|✏qVµ⌧ | < 0.007 , |✏qAµ⌧ | < 0.039 (90%C.L.). (37)

Under this category we include also the first observation of coherent neutrino–nucleus scattering observed at the
COHERENT experiment recently [126]. As discussed above, the COHERENT data have been used to constrain
neutrino NSI with quarks in Refs. [127, 130]. The combination of solar neutrino oscillation data with COHERENT
has been exploited to investigate the status of the solar degenerate solution LMA-D.

90% C.L. range origin Ref.

NSI with quarks

✏dLee [�0.3, 0.3] CHARM [128]

✏dRee [�0.6, 0.5] CHARM [128]

✏dVµµ [�0.042, 0.042] atmospheric + accelerator [165]

✏uVµµ [�0.044, 0.044] atmospheric + accelerator [165]

✏dAµµ [�0.072, 0.057] atmospheric + accelerator [165]

✏uAµµ [�0.094, 0.14] atmospheric + accelerator [165]

✏dV⌧⌧ [�0.075, 0.33] oscillation data + COHERENT [127]

✏uV⌧⌧ [�0.09, 0.38] oscillation data + COHERENT [127]

✏qV⌧⌧ [�0.037, 0.037] atmospheric [140]a

NSI with electrons

✏eLee [�0.021, 0.052] solar + KamLAND [131]

✏eRee [�0.07, 0.08] TEXONO [163]

✏eLµµ, ✏
eR
µµ [�0.03, 0.03] reactor + accelerator [128, 162]

✏eL⌧⌧ [�0.12, 0.06] solar + KamLAND [131]

✏eR⌧⌧ [�0.98, 0.23] solar + KamLAND and Borexino [131, 133]
[-0.25, 0.43] reactor + accelerator [162]

✏eV⌧⌧ [�0.11, 0.11] atmospheric [140]

a Bound adapted from ✏eV⌧⌧ .

TABLE II. Bounds on Flavor Diagonal NC NSI couplings

F. Summary of current bounds on NSI parameters

Here we summarize the current constraints on the NSI couplings from di↵erent experiments discussed throughout
this section. For more details about the assumptions considered in each case, we refer the reader to the previous
subsections as well as to the original references where the constraints have been calculated. The limits summarized
in Tables II, III and IV have been obtained assuming only one nonzero NSI coupling at a time.

Table II contains the limits on the flavor diagonal NC NSI couplings between neutrinos and electrons ✏eP↵↵ and
neutrinos and quarks ✏qP↵↵, with P = L,R, V,A being the chirality index and q = u, d. The table indicates the origin of
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the reported bound as well as the reference where it has been obtained as well. Most of the limits have been derived
from the combination of neutrino oscillation and detection or production experimental results. For instance, the joint
analysis of atmospheric neutrino data and accelerator measurements in NuTeV, CHARM and CDHS [165], or solar
and KamLAND data together with the recent bounds of COHERENT [127].10 In other cases the constraints reported
in the table come just from one type of experiment, as the limits derived only from CHARM [128], TEXONO [163]
or atmospheric data [140]. Note that, for the latter case, we have adapted the bound on ✏eV⌧⌧ reported in Ref. [140] to
the corresponding bound for quarks, ✏qV⌧⌧ .

Table III collects the limits of the flavor changing NC NSI couplings between neutrinos and electrons ✏eP↵� and

neutrinos and quarks ✏qP↵� , with the same conventions indicated above for P and q. As discussed before, in this case
most of the bounds also emerge from the complementarity of di↵erent types of experiments, as the combination
of reactor and accelerator non-oscillation experiments in Ref. [162]. On the other hand, the first analyses on NSI
obtained from IceCube data [142, 143] o↵er very strong bounds on ✏qVµ⌧ . This last constraint has also been adapted to
get the equivalent bound for NSI with electrons, ✏eVµ⌧ .

Finally, Table IV contains the limits on the neutrino CC NSI with quarks and electrons (semileptonic CC NSI)
and the CC NSI with leptons only (purely-leptonic CC NSI) in terms of the couplings ✏udP↵� and ✏ll

0P
↵� , respectively.

The former ones, have been discussed in the context of the neutrino production and detection in the Daya Bay
reactor experiment, as analyzed in Ref. [13]. Previous bounds on this type of NSI have been derived using the
negative searches for neutrino oscillations at short distances in the NOMAD experiment [166, 167], as reported in
the table [33]. Constraints on leptonic CC NSI using the results of the KARMEN experiment [168] as well as the
deviations of Fermi’s constant GF in the presence of these interactions, have also been obtained in Ref. [33]. We refer
the reader to that work for further details on the derivation of these constraints.

90% C.L. range origin Ref.

NSI with quarks

✏qLeµ [�0.023, 0.023] accelerator [112, 165]

✏qReµ [�0.036, 0.036] accelerator [112, 165]

✏uVeµ [�0.073, 0.044] oscillation data + COHERENT [127]

✏dVeµ [�0.07, 0.04] oscillation data + COHERENT [127]

✏qLe⌧ , ✏
qR
e⌧ [�0.5, 0.5] CHARM [128]

✏uVe⌧ [�0.15, 0.13] oscillation data + COHERENT [127]

✏dVe⌧ [�0.13, 0.12] oscillation data + COHERENT [127]

✏qLµ⌧ [�0.023, 0.023] accelerator [165]

✏qRµ⌧ [�0.036, 0.036] accelerator [165]

✏qVµ⌧ [�0.006, 0.0054] IceCube [143]

✏qAµ⌧ [�0.039, 0.039] atmospheric + accelerator [165]

NSI with electrons

✏eLeµ , ✏
eR
eµ [�0.13, 0.13] reactor + accelerator [162]

✏eLe⌧ [�0.33, 0.33] reactor + accelerator [162]

✏eRe⌧ [�0.28,�0.05] & [0.05, 0.28] reactor + accelerator [162]
[-0.19, 0.19] TEXONO [163]

✏eLµ⌧ , ✏
eR
µ⌧ [�0.10, 0.10] reactor + accelerator [128, 162]

✏eVµ⌧ [�0.018, 0.016] IceCube [143]a

a Bound adapted from ✏qVµ⌧ .

TABLE III. Bounds on Flavor changing NC NSI couplings

10 The bounds in [127] assume mediator mass to be heavier than ⇠ 50 MeV. As we shall discuss in the next section, these bounds do not
apply for mediator mass lighter than ⇠ 10 MeV.
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Figure 2: The 2� exclusion region in the (MZ0 , g) plane from the COHERENT data. The

2� allowed region that explains the discrepancy in the anomalous magnetic moment of the

muon (�aµ = (29± 9)⇥ 10�10 [10]) is shown for comparison.
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and the muon. Then the e↵ective charge in Eq. (3) can be written as

Q2
↵,NSI =


Z

✓
gVp +

3g2

2
p
2GF (Q2 +M2

Z0)

◆
+N

✓
gVn +

3g2

2
p
2GF (Q2 +M2

Z0)

◆�2
, (6)

where Q2 = 2MEr is the square of the momentum transfer.

To evaluate the statistical significance, we define

�2 =
X

i


N i

exp �N i
NSI(1 + ↵)

�i
stat

�2
+

✓
↵

�↵

◆2

, (7)

where N i
exp (N

i
NSI) is the number of observed (predicted) events per bin, �i

stat is the statistical

uncertainty, and the flux normalization uncertainty is �↵ = 0.28 [1]. We extract N i
exp and

�i
stat from the top right panel of Fig. 3 in Ref. [1], and consider 12 bins in the 6  PE < 30

range, and ignore the small background from prompt neutrons.

We scan over possible values of the coupling g and the mediator mass MZ0 , and show the

2� limits in the (MZ0 , g) plane in Fig. 2. The 2� allowed region that explains the discrepancy

in the anomalous magnetic moment of the muon [10] is also shown for comparison. We see

that a light mediator that can explain the discrepancy in the anomalous magnetic moment

of the muon is disfavored.

The shape of the limit curve in Fig. 2 can be understood from the propagator in Eq. (6),

in which the NSI contribution is proportional to g2

2MEr+M2
Z0
. For a very light mediator, i.e.,

MZ0 ⌧
p
2MEr ⇠ 50 MeV, the limit is only sensitive to the coupling g. Note that since the

momentum transfer in coherent forward scattering is zero, the NSI matter e↵ect for neutrino

propagation is sensitive to g2

M2
Z0

[14], and the constraint does not apply to matter NSI induced

by a very light mediator. For a heavy mediator, i.e., MZ0 �
p
2MEr, NSI do not change the

shape of the spectra, and the limit is dependent on the ratio g
MZ0

. There is also a degenerate

region that is not excluded by current data. Since the data are consistent with the SM, the

degenerate region can be understood by the relation, Q↵,NSI = �Q↵,SM, i.e.,

g2

M2
Z0

= �
4
p
2(ZgVp +NgVn )

3(Z +N)
GF , (8)

which holds for all Er bins when MZ0 �
p
2MEr. For a light mediator, the spectral shapes

are modified by NSI (see the solid lines in Fig. 1 for example), which breaks the degeneracy.

5

An example of a light mediator with 
universal flavor-conserving 
couplings to first-generation quarks, 
the muon, and neutrinos.

Constraints in the coupling-mass 
plane after COHERENT
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study of nuclear axial structure [67]. Reference [13] determines the neutron rms radius for CsI to 18%
using the 2017 CsI[Na] result, although without taking into account spectral shape uncertainties.

• A O(1 tonne) Ar or other future COHERENT recoil-sensitive detector would be sensitive to sub-GeV
particles postulated in some models as candidate dark matter [68, 69]. Such light, weakly-coupled
particles could be produced via pion decays in the 1-MW proton target and would interact coherently
with nuclei in the detector.

III. THE COHERENT EXPERIMENT

The COHERENT Collaboration has assembled a suite of detector technologies suitable for the observation
of CEvNS at the SNS. The SNS is the highest-flux pulsed, stopped-pion neutrino source currently available.
This e↵ort leverages the technological development within the dark-matter direct-detection community over
the last decade by deploying four mature low-threshold/low-background technologies (with five elemental
targets) capable of observing low-energy nuclear recoils: CsI[Na] scintillating crystal, p-type point-contact
(PPC) germanium detectors, single-phase liquid argon, and NaI[Tl] scintillating crystals. The use of targets
with widely varying numbers of neutrons provides a ready test of the N2 nature of the cross section and
allows a convenient cross-check on the measured cross section given that detectors are subject to systematic
response (quenching factor, QF) uncertainties. All four detector subsystems inhabit the Neutrino Alley
hallway where a background measurement campaign (see Sec. III B) has indicated very low beam-related
neutron backgrounds. In this section we will describe the properties of the SNS neutrino source, the results
of background measurements, and the detectors.

A. Neutrinos at the Spallation Neutron Source

A stopped-pion beam has several advantages for CEvNS detection. First, the relatively high energies
enhance the cross section (/ E2) while still benefiting from coherence; cross sections at stopped-pion energies
(up to 50 MeV) are about two orders of magnitude higher than at reactor energies (⇠3 MeV). Second, recoil
energies (few to tens of keV) bring detection of CEvNS within easy reach of the current generation of low-
threshold detectors. Finally, the di↵erent flavor content of the SNS flux (⌫

µ

, ⌫
e

and ⌫̄
µ

) means that physics
sensitivity is complementary to that for reactor experiments (which have ⌫̄

e

only).
The SNS produces an intense, isotropic stopped-pion neutrino flux, with a sharply-pulsed timing struc-

ture that is highly beneficial for background rejection and precise characterization of the backgrounds not
associated with the beam [70]. See Fig. 6.

neutrino energy (MeV)
0 50 100 150 200 250 300

a.
u.

µν

µν

eν

(a)SNS neutrino energy spectrum.

time from POT onset (ns)
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

a.
u.

µνPrompt 

µν and eνDelayed 

(b)SNS neutrino timing distribution.

FIG. 6: (a) Expected ⌫ spectrum at the SNS, showing the very low level of decay-in-flight and other non-decay-at-rest
flux, in arbitrary units; the integral is 4.3⇥107 neutrinos/cm2/s at 20 m. (b) Time structure for prompt and delayed
neutrinos due to the 60-Hz pulses. “Prompt” refers to neutrinos from pion decay, and “delayed” refers to neutrinos
from muon decay.
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the nucleosynthesis of heavy elements in supernovae [22, 23].
The COHERENT liquid-scintillator-cell measurement inside the CsI shielding favors a non-zero NIN signal

at 2.9� [1], although it also suggests a smaller cross section than from theoretical expectation. Dedicated
apparatuses for NIN measurement containing liquid-scintillator detectors surrounded by lead or other target
materials and further surrounded by a muon veto and neutron moderator were designed and deployed to the
SNS basement in September 2015 (see Figure 9). These detector systems, currently running with lead and
iron, are expected to continue operation through the lifetime of the experiment. COHERENT will use these
to measure the production cross sections of NINs in lead, iron, and copper at the SNS, both to evaluate the
NIN background for CEvNS and as independent physics measurements.

(a) (b)

FIG. 9: (a) Schematic drawing of the detectors to measure the neutrino-induced neutron cross section on Pb, Fe, and
Cu. (b) The imperfectly-named “Neutrino Cubes,” or “NIN Cubes,” modular neutrino-induced neutron experiments.

C. Detector Subsystems

The COHERENT Collaboration is deploying four detector subsystems, each containing di↵erent target
nuclei (summarized in Tab. I). The timing resolution of all four detector subsystems is su�cient to allow
the observation of the characteristic 2.2-µs lifetime of muon-decay neutrinos, a further cross-check that any
interactions are due to neutrinos from the SNS. The technologies are mature and all are presently used for
direct dark-matter detection or other low-threshold experiments.

Fig. 10 shows the current COHERENT siting in Neutrino Alley.

Nuclear Technology Mass Distance from Recoil
target (kg) source (m) threshold (keVnr)
CsI[Na] Scintillating crystal 14.6 19.3 6.5

Ge HPGe PPC 10 22 5
LAr Single-phase 22 29 20

NaI[Tl] Scintillating crystal 185⇤/2000 28 13

TABLE I: Parameters for the four COHERENT detector subsystems. ⇤NaI[Tl] deployed in high-threshold mode is
described in Sec. III C 4.

1. CsI[Na] Detector Subsystem

CsI[Na] scintillators (cesium iodide crystals doped with sodium) present several advantages for a CEvNS
measurement. This mature technology combines su�ciently low thresholds with large neutron numbers (N =
74, 78) that make an observation of this process at the SNS feasible. Both recoiling species are essentially
indistinguishable due to their very similar mass, greatly simplifying understanding the detector response. CsI
is a rugged, room-temperature detector material, and is also relatively inexpensive (⇠ $1/g). These detectors

prompt

delayed
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FIG. 10: Siting of existing and near-future planned detectors in Neutrino Alley.

have several other practical advantages. CsI[Na] exhibits a high light yield of 64 photons/keVee (electron-
equivalent energy deposition) and has the best match to the response curve of bialkali photomultipliers of
any scintillator material. CsI[Na] also lacks the excessive afterglow (phosphorescence) that is characteristic
of CsI[Tl] [84], an important feature in a search involving small scintillation signals in a detector operated
at ground level. The quenching factor for nuclear recoils (the fraction of the recoil energy that is detectable
as scintillation) in this material over the energy region of interest has been carefully characterized [84],
using the methods described in [31]. The quenching factor has been measured by the Collaboration using
quasi-monochromatic neutron beams [1].

FIG. 11: The installation of the 14.6-kg, low-background CsI[Na] at the SNS (featuring B. Scholz [85] and G. Rich [86]).
Successive layers of shielding include (inside-to-out): 7.62 cm HDPE, 15 cm of lead, a 5-cm thick muon veto and 10
cm of water neutron moderator.

A 14.57-kg CsI[Na] detector and shielding (Fig. 11) was characterized at the University of Chicago and

G.C. Rich - Neutrino 2018 - 2018 Jun 7
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FIG. 4: Top: result from [1] with initial constraints on two of the NSI ✏ parameters, showing also the constraint
from the CHARM experiment [35]. Bottom left: same with realistic assumptions for COHERENT’s detector suite
for the next three years. Assumptions on mass, distance and threshold are given in Table I (assuming 2 tonnes of
NaI, 23Na component only, first 1000 ns of the beam window for Na and first 6000 ns for the others). The black
shows the result from a combined fit. Bottom right: predicted sensitivity obtained with the COHERENT detector
materials, with 5% uncertainties on flux and event rates and assuming systematically-limited measurements.

detectors; DAMA/LIBRA [49], DMIce [50], SABRE [51] and COSINE [52] use NaI detectors; and the
KIMS collaboration is conducting a WIMP search with CsI[Tl] crystals [53]. By utilizing the intense SNS
neutrino source, COHERENT can provide detector-specific response information for CEvNS interactions as
a supplement to other low-energy calibration techniques. A further constraint on cross-section uncertainty
is a↵orded by the presence of higher-energy (⇠> 10 MeV) neutrinos in the SNS beam: these neutrinos will be
a unique probe of nuclear form factors.

D. Future Physics with CEvNS

Beyond the scope of this first suite of detectors, a successful CEvNS program will enable new endeavors
addressing further physics questions in the long term.

Of particular note is that the weak mixing angle (✓
W

) appears in the vector coupling factors of Eq. 1. It
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FIG. 4: Top: result from [1] with initial constraints on two of the NSI ✏ parameters, showing also the constraint
from the CHARM experiment [35]. Bottom left: same with realistic assumptions for COHERENT’s detector suite
for the next three years. Assumptions on mass, distance and threshold are given in Table I (assuming 2 tonnes of
NaI, 23Na component only, first 1000 ns of the beam window for Na and first 6000 ns for the others). The black
shows the result from a combined fit. Bottom right: predicted sensitivity obtained with the COHERENT detector
materials, with 5% uncertainties on flux and event rates and assuming systematically-limited measurements.

detectors; DAMA/LIBRA [49], DMIce [50], SABRE [51] and COSINE [52] use NaI detectors; and the
KIMS collaboration is conducting a WIMP search with CsI[Tl] crystals [53]. By utilizing the intense SNS
neutrino source, COHERENT can provide detector-specific response information for CEvNS interactions as
a supplement to other low-energy calibration techniques. A further constraint on cross-section uncertainty
is a↵orded by the presence of higher-energy (⇠> 10 MeV) neutrinos in the SNS beam: these neutrinos will be
a unique probe of nuclear form factors.

D. Future Physics with CEvNS

Beyond the scope of this first suite of detectors, a successful CEvNS program will enable new endeavors
addressing further physics questions in the long term.

Of particular note is that the weak mixing angle (✓
W

) appears in the vector coupling factors of Eq. 1. It
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of the product of neutrino flux, exposure time, and detector mass. Projected mass exclusions at 95% confidence
(statistical only, single-sided) for each benchmark model are provided as a function of the detector recoil threshold
T th

R

in Fig. (4). The benchmark early phase detector is composed of 72Ge and 28Si in roughly a 2:1 mass ratio,
with a combined mass of 30 kg, operating for a one-year continuous exposure, at 1 m from core. Bounds are in the
range of 1.8 to 2.4 TeV for most models, reaching above 4 TeV for the strongly-coupled B � L model. Expanding
upon this example, scaling up to 5 ton-years or 100 ton-years would increase the bounds by factors of almost 4 and
8, respectively. This suggests that a low threshold CE⌫NS measurement could be competitive with the foreseeable
collider reach, and even substantially exceed it, given su�cient scaling of the experiment.

However, a full analysis of the Z 0 scale bounds from CE⌫NS will necessarily be dominated by statistical uncertainties.
Although detection e�ciency above threshold and within the fiducial volume approaches 100%, with controllable
backgrounds, and vanishing pile-up (milli-second recovery time), the dominant uncertainty will be propagated from
errors in the reactor thermal power, and from the extrapolation of this power into the associated anti-neutrino
spectrum. Uncertainty estimates on the order of 2% are typical, although it may be possible to reduce this to around
a half of a percent (cf. Ref. [46]).
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FIG. 4: Sensitivity to Z0
in di↵erent models.

In Fig. (5), we show the BSM event fraction for various Z 0 models, as a function of MZ0 , which should not be
less than the order of the anticipated systematic uncertainties. Such fixed percentile errors will do more damage in
the large detector mass and high luminosity regimes, where statistical fluctuations are tailing o↵ as a percentage of
events. This does not, however, imply that additional statistical resolution is without benefit. Since various Z 0 models
couple distinctly to up and down quarks, di↵erential and rational event counts in detectors with contrasting atomic
and mass numbers, such as 72Ge and 28Si, can be very sensitive to deviations from the standard model in a manner
that cancels leading systematic uncertainties. This sensitivity to the existence and mode of new Z 0 or µ⌫ physics,
even more so than the scale, is a key distinguishing benefit nuclear recoil detectors over other approaches [32], as will
be further elaborated in the final section.

We close this section by noting that ATLAS [47] has recently reported excesses in searches for massive resonances
decaying into a pair of weak gauge bosons, and CMS [48] also has reported a diboson excess. One suitable explanation
exists in the context of a leptophobic SU(2)L⇥SU(2)R⇥U(1)B�L model [49]. The prediction arising from this model
is a 3-5 TeV Z 0 that couples to SM leptons as shown in Ref. [49]. This sort of field is potentially well-suited for
study via the CE⌫NS approach, especially with regards to the probing its characteristic mode of coupling to up-
and down-quarks. Such complementary approaches are very useful in establishing a particular model of new physics.
However, even in the absence of new physics, a first detection of the CE⌫NS process (which is of substantial interest
in its own right), and the accumulation of additional statistical resolution, will allow for the SM neutrino interactions
to be studied in fine detail. Such observations are independent of the inverse �-decay detection mode, and provide
access to those portions of the neutrino spectrum that are below the kinematic threshold for this process.
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First rate analysis
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Definition of cuts from reactor OFF time:
- energy scale calibration
- quality cuts (noise/spurious event red.)
- conservative ROI for CEνNS window
  (individual for every detector)

Definition of efficiencies:
- active volume: (96+-2)% 
- muon AC ind. trg. Efficiency: (98+-1)%
- threshold trg. Efficiency
  (individual for every detector)

Rate comparison (all detectors):

→ Observed excess of events is consistent with expected CEνNS signal range

Some systematics
still under study

3.85kg active mass Germanium detector with a <300 eVee threshold
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Kinetic Mixing Portal

Extend the SM by an extra U(1) 
which introduces a new field 

6

Z 0
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(a)
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�/Z
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q q

(b)

FIG. 1: Neutrino nucleus scattering diagrams. Fig. 1(a) is for dark hypercharge and dark Z bosons and Fig. 1(b) is
for the L

µ

� L
⌧

model.

for high values of m
Z

0 the CE⌫NS limits become independent of the exposure and detector material. This e↵ect is
due to the nature of the Z 0 coupling as well as the high luminosity compared to the assumed systematic uncertainty.

In the dark Z 0 scenario the ratio of BSM to SM couplings to protons and neutrons are identical and equal to
0.27(✏

Z

/m
Z

0)2, which limits the distinguishing power of detectors with di↵erent proton and neutron content. Coupled
with the fact that the number of expected events is su�ciently large for the systematic uncertainty to dominate the
statistical uncertainty, this leads to the merger of limits from di↵erent detectors and exposures. Note that the same
cannot be said about the dark hypercharge scenario. In this case, the relative couplings to protons and neutrons are
�3.3(✏

Z

/m
Z

0)2 and 0.06(✏
Z

/m
Z

0)2 respectively which significantly enhances the reach when di↵erent detectors are
combined.

This can also be demonstrated using Eq. (14). After maximizing the expression with respect to the nuisance

parameter � and defining k ⌘ N
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N
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+N
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, we get:
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where in the second line we used the fact that 1/�2 is small compared to N
exp

. As mentioned earlier, the Z 0 coupling
relative to the Z coupling is universal in the dark Z scenario which means that k is the same for all detectors and
energy bins at the high M

Z

0 region. Therefore, Eq. (16) can be solved for k to give

k =
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In other words, k, and hence ✏
Z

is independent of the exposure. This argument breaks down for the dark hypercharge
case due to the detector dependence on k.

Finally, in Fig. 4, we show the limit g
Z

0 as a function ofM
Z

0 for the case of L
µ

-L
⌧

models using current and projected
COHERENT results and contrast it against limits from Borexino and CCFR. We find the three experiments to be
complementary, and in the mass window 4MeV . m

Z

0 . 100 MeV the future COHERENT projections provide the
strongest limits (g0

Z

 1�9⇥10�4). Note that reactor, fixed target, and atomic parity violation experiments present
poor limits in this scenario since they require electron flavor couplings.

We will examine the cases
where the new field has
only loop induced couplings to
SM fields, as well as
tree level couplings
with neutrinos.

1
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III. KINETIC AND MASS MIXING

We will now examine how such couplings could arise in mixing scenarios first examined in [5]. Let us consider the
SM hypercharge gauge group U(1)

Y

with gauge field B and a dark abelian gauge group U(1)
X

with gauge field X
and suppose we have the following gauge kinetic terms

L
gauge

= �1

4
Fµ⌫

a

F
aµ⌫

� 1

4
Fµ⌫

b

F
bµ⌫

� ✏

2
Fµ⌫

a

F
bµ⌫

(4)

where ✏ parameterizes the mixing of the two U(1)s. The mixing can be generated by a loop of heavy fields charged

under both groups. For fields with masses m and m0 and gauge couplings g
Y

and g
X

we get ✏ ⇠ g

Y

g

X

12⇡

2 log m

02

m

2 . For
O(1) couplings and a mass di↵erence of a factor of 10 or less, this restricts us in the range ✏ . 10�2. One can remove
the mixing term by a field redefinition: B

µ

! B
µ

+ ✏X
µ

which induces new couplings of X to the SM fermions. Note
that this leads to non-diagonal terms in the Z �X mass matrix. Such mass-mixing can be controlled by introducing
additional mass mixing from an extended Higgs sector of whose details we remain oblivious [30, 31].

Accounting for the diagonalization of both the kinetic and mass terms, as well as the SM electroweak rotation, the
mass eigenstates A, Z and Z 0 can be expressed in terms of B

µ

, W 3

µ

and X
µ

by the following transformation matrix:
0

@
B

µ

W 3

µ

X
µ

1

A =

0

@
cos ✓

w

�✏ sin↵� sin ✓
w

cos↵ sin ✓
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sin↵� ✏ cos↵
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w
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w

cos↵ � cos ✓
w

sin↵
0 sin↵ cos↵

1

A

0

@
A

µ

Z
µ

Z 0
µ

1

A , (5)

where the angle ↵, which has implicit dependence on ✏, controls the Z � Z 0 mass mixing. Note that the photon
remains massless to all orders in the mixing parameters.

From this we can infer the Z 0-fermion-antifermion coupling to be:

�ig

cos ✓
w

[cos↵(tan↵� ✏ sin ✓
w

)]


T 3

L

� (tan↵� ✏ / sin ✓
w

)

tan↵� ✏ sin ✓
w

sin2 ✓
w

Q

�
, (6)

where g is the SM SU(2) gauge coupling. If we assume ↵ to be small and define ✏
B

⌘ cos↵(tan↵ � ✏ sin ✓
w

), the
coupling becomes proportional to the hypercharge, and we refer to Z 0 as a dark hypercharge gauge boson. Explicitly,
the coupling is given by:

ig tan ✓
w

(Y
f

/2) ✏
B

, (7)

where Y
f

is the hypercharge of the SM fermion f . If, instead, we choose ✏ to be zero and define ✏
z

⌘ sin↵, then the
Z 0 coupling reduces to

�ig

cos ✓
w

✏
z

⇥
T 3

L

� sin ✓2
w

Q
⇤
, (8)

and we call it a dark Z boson. The case usually referred into in the literature as the dark photon corresponds to
setting tan↵ = ✏ sin ✓

w

and will not be discussed in this work since it generates no couplings between the Z 0 and
neutrinos.

Another interesting possibility for probing new physics models is when the SM is extended with a non-universal
U(1) gauge symmetry associated with U(1)

L

µ

�L

⌧

. This symmetry has been discussed in various contexts including
the flavor structures of neutrinos [32, 33], lepton flavor violating Higgs decays [34], dark matter, and the recently
reported flavor non-universality in B decays [35]. This symmetry leads to interactions in the Lagrangian of the form:
L
int

� g
Z

0Q
↵�

(l̄
↵

�µl
�

+ ⌫̄
L↵

�µ⌫
L�

)Z 0
µ

, where, as before, Z 0 is the new gauge boson, g
Z

0 is the new gauge coupling,
and Q

↵�

= diag(0, 1,�1) gives the U(1)
L

µ

�L

⌧

charges. It is possible to extend this symmetry to the quark sector as
well.

At low energies, muon and tau loops generate kinetic mixing between the SM photon and Z 0 of strength ✏ /
(8eg

Z

0)/(48⇡2)log(m
⌧

/m
µ

) [36, 37] (the µ and ⌧ leptons can be replaced by second and third generation quarks if
the symmetry is also extended to the second-third generation quark sector). Since this is generated at low energy,
the diagonalization is done after electroweak symmetry breaking and results in a Z 0 coupling to the first generation
quarks equal to ✏Q. While this mixing is suppressed by a loop factor, this is compensated for by the direct coupling
to neutrinos in ⌫

µ

scattering experiments.
A diagrammatic representation of the three scenarios is shown in Fig.(1). Fig. 1(a) is associated with the dark

Z and dark hypercharge cases where the blobs contain the high energy physics responsible for the mixing ✏. Fig
1(b) corresponds to the L

µ

� L
⌧

case where the new gauge boson provides a direct coupling to a muon neutrino but
communicates with first generations quarks through lepton loops. (⌫

µ

or ⌫̄
µ

are the relevant particles for the CE⌫NS
process generated from the decay of charged pions, such as utilized by the COHERENT collaboration).
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to be stronger than future COHERENT measurements for Z 0 masses in the sub-10 MeV range.
The outline of this paper is as follows: In Sec. II we review the CE⌫NS process, in Sec. III we present the details of

kinetic and mass mixing, in Sec. IV we briefly outline the existing bounds, in Sec. V we explain our numerical setup,
in Sec.VI we present the results from current and projected measurements, and we summarize our results in Sec. VII.

II. COHERENT ELASTIC NEUTRINO-NUCLEUS SCATTERING

CE⌫NS occurs whenever the momentum transfer between the neutrino and the nucleus is smaller than or comparable
to the inverse size of the nucleus, which takes place for incident neutrino energies of E

⌫

. O(50) MeV. For such low
energies, the neutrino e↵ectively “sees” the entire nucleus rather than the individual components, leading to an
enhancement in the scattering cross section that scales approximately as the square of the number of neutrons. The
neutron number is dominant because the proton coupling that contributes to the CE⌫NS process is more than an
order of magnitude smaller than the neutron coupling.

In the SM, the di↵erential cross-section for a neutrino scattering o↵ of a target electron or quark of mass m through
a Z exchange is
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where G
F

is the Fermi constant, E
R

is the recoil energy, E
⌫

is the incident neutrino energy, (g
v

, g
a

) = (T
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em
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) are the vector and axial-vector couplings to the Z-boson, T
3

is the third component of the weak
isospin, Q

em

is the electromagnetic charge, and ✓
W

is the weak mixing angle (T
3e

= �1/2 in our convention). There
is also a contribution from neutrinos scattering o↵ electrons due to the the charged-current t-channel exchange of a
W -boson. In order to account for the full momentum dependence of the nuclear scattering interaction, the di↵erential
cross-section must be multiplied by a form factor. In the present work we use the standard Helm form factor [28].

The SM cross-section above can be modified if there exists a new mediating particle which couples to neutrinos
and either electrons or quarks. Let us consider a new vector particle Z 0

µ

with the following interaction terms in the
Lagrangian:
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where g0
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, and g0
f,a

are constants associated with new physics. The e↵ects of this new field can be accommodated
by a redefinition of the couplings in Eq. (1):
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where q2 is the momentum trasnfer and the (�) sign applies for the case of antineutrino scattering. Although only
new vector mediators are considered here, one can introduce other types of mediators and associated couplings, e.g.,
the mediator could be of scalar and/or pseudoscalar type [13, 19, 21].

To-date the CE⌫NS process has only been measured by the COHERENT collaboration. The dominant portion
of the neutrino source is a prompt flux of ⌫

µ

of energy 30 MeV from ⇡+ ! µ+ + ⌫
µ

decays, with sub-dominant
components from delayed ⌫

e

and ⌫̄
µ

fluxes originating from the µ+ decay (the form of the energy distributions for
these neutrino beams are given, for example, in [29]). The first detection of the CE⌫NS process was obtained with
a 14.6 kg array of CsI scintillators with a 4.25 keV detection threshold. The COHERENT collaboration plans to
implement a ton-scale liquid argon detector and a ton-scale array of NaI scintillators [16] which will be used for the
projections in the current work.

Nuclear reactor facilities aim to detect the CE⌫NS process with a ⌫̄
e

flux with energies ⇠ 1 MeV. These neutrinos
will produce sub-keV nuclear recoils, necessitating the use of low threshold detector technology such as that developed
for dark matter direct detection experiments. The CE⌫NS scattering rate per target mass at the proposed reactor
experiments is projected to be a few orders of magnitude greater than that measured by the COHERENT experiment.
This is due to reactor neutrino fluxes which are roughly 5-6 orders of magnitude greater than that of COHERENT.
However this flux advantage is mitigated because the scattering rate is proportional to the square of the incident
neutrino energy. With reactors producing a neutrino source of roughly 20 times smaller energy than at COHERENT,
this will relatively reduce the scattering rate by a factor of about 400. The projected ton-scale targets at COHERENT
will help to partially o↵set this comparative rate deficiency, as reactor experiments expect to deploy detectors of total
mass of O(10) kg. For the projections in the present work we will utilize cryogenic Ge and Si with 100 eV nuclear
recoil thresholds, and a total exposure of 100 kg·yr.
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We will now examine how such couplings could arise in mixing scenarios first examined in [5]. Let us consider the
SM hypercharge gauge group U(1)

Y

with gauge field B and a dark abelian gauge group U(1)
X

with gauge field X
and suppose we have the following gauge kinetic terms
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where ✏ parameterizes the mixing of the two U(1)s. The mixing can be generated by a loop of heavy fields charged
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and g
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O(1) couplings and a mass di↵erence of a factor of 10 or less, this restricts us in the range ✏ . 10�2. One can remove
the mixing term by a field redefinition: B

µ

! B
µ

+ ✏X
µ

which induces new couplings of X to the SM fermions. Note
that this leads to non-diagonal terms in the Z �X mass matrix. Such mass-mixing can be controlled by introducing
additional mass mixing from an extended Higgs sector of whose details we remain oblivious [30, 31].

Accounting for the diagonalization of both the kinetic and mass terms, as well as the SM electroweak rotation, the
mass eigenstates A, Z and Z 0 can be expressed in terms of B
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, W 3
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and X
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by the following transformation matrix:
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where the angle ↵, which has implicit dependence on ✏, controls the Z � Z 0 mass mixing. Note that the photon
remains massless to all orders in the mixing parameters.

From this we can infer the Z 0-fermion-antifermion coupling to be:
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where g is the SM SU(2) gauge coupling. If we assume ↵ to be small and define ✏
B

⌘ cos↵(tan↵ � ✏ sin ✓
w

), the
coupling becomes proportional to the hypercharge, and we refer to Z 0 as a dark hypercharge gauge boson. Explicitly,
the coupling is given by:
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and we call it a dark Z boson. The case usually referred into in the literature as the dark photon corresponds to
setting tan↵ = ✏ sin ✓

w

and will not be discussed in this work since it generates no couplings between the Z 0 and
neutrinos.

Another interesting possibility for probing new physics models is when the SM is extended with a non-universal
U(1) gauge symmetry associated with U(1)

L

µ

�L

⌧

. This symmetry has been discussed in various contexts including
the flavor structures of neutrinos [32, 33], lepton flavor violating Higgs decays [34], dark matter, and the recently
reported flavor non-universality in B decays [35]. This symmetry leads to interactions in the Lagrangian of the form:
L
int

� g
Z

0Q
↵�

(l̄
↵

�µl
�

+ ⌫̄
L↵

�µ⌫
L�

)Z 0
µ

, where, as before, Z 0 is the new gauge boson, g
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0 is the new gauge coupling,
and Q
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= diag(0, 1,�1) gives the U(1)
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µ
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charges. It is possible to extend this symmetry to the quark sector as
well.

At low energies, muon and tau loops generate kinetic mixing between the SM photon and Z 0 of strength ✏ /
(8eg

Z

0)/(48⇡2)log(m
⌧

/m
µ

) [36, 37] (the µ and ⌧ leptons can be replaced by second and third generation quarks if
the symmetry is also extended to the second-third generation quark sector). Since this is generated at low energy,
the diagonalization is done after electroweak symmetry breaking and results in a Z 0 coupling to the first generation
quarks equal to ✏Q. While this mixing is suppressed by a loop factor, this is compensated for by the direct coupling
to neutrinos in ⌫

µ

scattering experiments.
A diagrammatic representation of the three scenarios is shown in Fig.(1). Fig. 1(a) is associated with the dark

Z and dark hypercharge cases where the blobs contain the high energy physics responsible for the mixing ✏. Fig
1(b) corresponds to the L

µ

� L
⌧

case where the new gauge boson provides a direct coupling to a muon neutrino but
communicates with first generations quarks through lepton loops. (⌫

µ

or ⌫̄
µ

are the relevant particles for the CE⌫NS
process generated from the decay of charged pions, such as utilized by the COHERENT collaboration).
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We will now examine how such couplings could arise in mixing scenarios first examined in [5]. Let us consider the
SM hypercharge gauge group U(1)

Y

with gauge field B and a dark abelian gauge group U(1)
X

with gauge field X
and suppose we have the following gauge kinetic terms
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where ✏ parameterizes the mixing of the two U(1)s. The mixing can be generated by a loop of heavy fields charged

under both groups. For fields with masses m and m0 and gauge couplings g
Y

and g
X
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O(1) couplings and a mass di↵erence of a factor of 10 or less, this restricts us in the range ✏ . 10�2. One can remove
the mixing term by a field redefinition: B

µ

! B
µ

+ ✏X
µ

which induces new couplings of X to the SM fermions. Note
that this leads to non-diagonal terms in the Z �X mass matrix. Such mass-mixing can be controlled by introducing
additional mass mixing from an extended Higgs sector of whose details we remain oblivious [30, 31].

Accounting for the diagonalization of both the kinetic and mass terms, as well as the SM electroweak rotation, the
mass eigenstates A, Z and Z 0 can be expressed in terms of B

µ

, W 3
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and X
µ

by the following transformation matrix:
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where the angle ↵, which has implicit dependence on ✏, controls the Z � Z 0 mass mixing. Note that the photon
remains massless to all orders in the mixing parameters.

From this we can infer the Z 0-fermion-antifermion coupling to be:
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where g is the SM SU(2) gauge coupling. If we assume ↵ to be small and define ✏
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⌘ cos↵(tan↵ � ✏ sin ✓
w

), the
coupling becomes proportional to the hypercharge, and we refer to Z 0 as a dark hypercharge gauge boson. Explicitly,
the coupling is given by:
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and we call it a dark Z boson. The case usually referred into in the literature as the dark photon corresponds to
setting tan↵ = ✏ sin ✓

w

and will not be discussed in this work since it generates no couplings between the Z 0 and
neutrinos.

Another interesting possibility for probing new physics models is when the SM is extended with a non-universal
U(1) gauge symmetry associated with U(1)

L

µ

�L

⌧

. This symmetry has been discussed in various contexts including
the flavor structures of neutrinos [32, 33], lepton flavor violating Higgs decays [34], dark matter, and the recently
reported flavor non-universality in B decays [35]. This symmetry leads to interactions in the Lagrangian of the form:
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charges. It is possible to extend this symmetry to the quark sector as
well.

At low energies, muon and tau loops generate kinetic mixing between the SM photon and Z 0 of strength ✏ /
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) [36, 37] (the µ and ⌧ leptons can be replaced by second and third generation quarks if
the symmetry is also extended to the second-third generation quark sector). Since this is generated at low energy,
the diagonalization is done after electroweak symmetry breaking and results in a Z 0 coupling to the first generation
quarks equal to ✏Q. While this mixing is suppressed by a loop factor, this is compensated for by the direct coupling
to neutrinos in ⌫

µ

scattering experiments.
A diagrammatic representation of the three scenarios is shown in Fig.(1). Fig. 1(a) is associated with the dark

Z and dark hypercharge cases where the blobs contain the high energy physics responsible for the mixing ✏. Fig
1(b) corresponds to the L

µ
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case where the new gauge boson provides a direct coupling to a muon neutrino but
communicates with first generations quarks through lepton loops. (⌫
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or ⌫̄
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are the relevant particles for the CE⌫NS
process generated from the decay of charged pions, such as utilized by the COHERENT collaboration).
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that this leads to non-diagonal terms in the Z �X mass matrix. Such mass-mixing can be controlled by introducing
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where the angle ↵, which has implicit dependence on ✏, controls the Z � Z 0 mass mixing. Note that the photon
remains massless to all orders in the mixing parameters.
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and we call it a dark Z boson. The case usually referred into in the literature as the dark photon corresponds to
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III. KINETIC AND MASS MIXING

We will now examine how such couplings could arise in mixing scenarios first examined in [5]. Let us consider the
SM hypercharge gauge group U(1)

Y

with gauge field B and a dark abelian gauge group U(1)
X

with gauge field X
and suppose we have the following gauge kinetic terms
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where ✏ parameterizes the mixing of the two U(1)s. The mixing can be generated by a loop of heavy fields charged

under both groups. For fields with masses m and m0 and gauge couplings g
Y

and g
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we get ✏ ⇠ g
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2 . For
O(1) couplings and a mass di↵erence of a factor of 10 or less, this restricts us in the range ✏ . 10�2. One can remove
the mixing term by a field redefinition: B

µ

! B
µ

+ ✏X
µ

which induces new couplings of X to the SM fermions. Note
that this leads to non-diagonal terms in the Z �X mass matrix. Such mass-mixing can be controlled by introducing
additional mass mixing from an extended Higgs sector of whose details we remain oblivious [30, 31].

Accounting for the diagonalization of both the kinetic and mass terms, as well as the SM electroweak rotation, the
mass eigenstates A, Z and Z 0 can be expressed in terms of B
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where the angle ↵, which has implicit dependence on ✏, controls the Z � Z 0 mass mixing. Note that the photon
remains massless to all orders in the mixing parameters.

From this we can infer the Z 0-fermion-antifermion coupling to be:
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where g is the SM SU(2) gauge coupling. If we assume ↵ to be small and define ✏
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⌘ cos↵(tan↵ � ✏ sin ✓
w

), the
coupling becomes proportional to the hypercharge, and we refer to Z 0 as a dark hypercharge gauge boson. Explicitly,
the coupling is given by:
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where Y
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is the hypercharge of the SM fermion f . If, instead, we choose ✏ to be zero and define ✏
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⌘ sin↵, then the
Z 0 coupling reduces to
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and we call it a dark Z boson. The case usually referred into in the literature as the dark photon corresponds to
setting tan↵ = ✏ sin ✓

w

and will not be discussed in this work since it generates no couplings between the Z 0 and
neutrinos.

Another interesting possibility for probing new physics models is when the SM is extended with a non-universal
U(1) gauge symmetry associated with U(1)

L

µ

�L

⌧

. This symmetry has been discussed in various contexts including
the flavor structures of neutrinos [32, 33], lepton flavor violating Higgs decays [34], dark matter, and the recently
reported flavor non-universality in B decays [35]. This symmetry leads to interactions in the Lagrangian of the form:
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and Q
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= diag(0, 1,�1) gives the U(1)
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charges. It is possible to extend this symmetry to the quark sector as
well.

At low energies, muon and tau loops generate kinetic mixing between the SM photon and Z 0 of strength ✏ /
(8eg

Z

0)/(48⇡2)log(m
⌧

/m
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) [36, 37] (the µ and ⌧ leptons can be replaced by second and third generation quarks if
the symmetry is also extended to the second-third generation quark sector). Since this is generated at low energy,
the diagonalization is done after electroweak symmetry breaking and results in a Z 0 coupling to the first generation
quarks equal to ✏Q. While this mixing is suppressed by a loop factor, this is compensated for by the direct coupling
to neutrinos in ⌫

µ

scattering experiments.
A diagrammatic representation of the three scenarios is shown in Fig.(1). Fig. 1(a) is associated with the dark

Z and dark hypercharge cases where the blobs contain the high energy physics responsible for the mixing ✏. Fig
1(b) corresponds to the L

µ

� L
⌧

case where the new gauge boson provides a direct coupling to a muon neutrino but
communicates with first generations quarks through lepton loops. (⌫

µ

or ⌫̄
µ

are the relevant particles for the CE⌫NS
process generated from the decay of charged pions, such as utilized by the COHERENT collaboration).

A few cases of interest:

Dark Hypercharge:    small mixing       with the definition: 
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and g
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the mixing term by a field redefinition: B
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+ ✏X
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which induces new couplings of X to the SM fermions. Note
that this leads to non-diagonal terms in the Z �X mass matrix. Such mass-mixing can be controlled by introducing
additional mass mixing from an extended Higgs sector of whose details we remain oblivious [30, 31].

Accounting for the diagonalization of both the kinetic and mass terms, as well as the SM electroweak rotation, the
mass eigenstates A, Z and Z 0 can be expressed in terms of B
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where the angle ↵, which has implicit dependence on ✏, controls the Z � Z 0 mass mixing. Note that the photon
remains massless to all orders in the mixing parameters.
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where g is the SM SU(2) gauge coupling. If we assume ↵ to be small and define ✏
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), the
coupling becomes proportional to the hypercharge, and we refer to Z 0 as a dark hypercharge gauge boson. Explicitly,
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and we call it a dark Z boson. The case usually referred into in the literature as the dark photon corresponds to
setting tan↵ = ✏ sin ✓

w

and will not be discussed in this work since it generates no couplings between the Z 0 and
neutrinos.

Another interesting possibility for probing new physics models is when the SM is extended with a non-universal
U(1) gauge symmetry associated with U(1)
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µ
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⌧

. This symmetry has been discussed in various contexts including
the flavor structures of neutrinos [32, 33], lepton flavor violating Higgs decays [34], dark matter, and the recently
reported flavor non-universality in B decays [35]. This symmetry leads to interactions in the Lagrangian of the form:
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) [36, 37] (the µ and ⌧ leptons can be replaced by second and third generation quarks if
the symmetry is also extended to the second-third generation quark sector). Since this is generated at low energy,
the diagonalization is done after electroweak symmetry breaking and results in a Z 0 coupling to the first generation
quarks equal to ✏Q. While this mixing is suppressed by a loop factor, this is compensated for by the direct coupling
to neutrinos in ⌫

µ

scattering experiments.
A diagrammatic representation of the three scenarios is shown in Fig.(1). Fig. 1(a) is associated with the dark

Z and dark hypercharge cases where the blobs contain the high energy physics responsible for the mixing ✏. Fig
1(b) corresponds to the L

µ

� L
⌧

case where the new gauge boson provides a direct coupling to a muon neutrino but
communicates with first generations quarks through lepton loops. (⌫

µ

or ⌫̄
µ

are the relevant particles for the CE⌫NS
process generated from the decay of charged pions, such as utilized by the COHERENT collaboration).
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and we call it a dark Z boson. The case usually referred into in the literature as the dark photon corresponds to
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and will not be discussed in this work since it generates no couplings between the Z 0 and
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Another interesting possibility for probing new physics models is when the SM is extended with a non-universal
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the symmetry is also extended to the second-third generation quark sector). Since this is generated at low energy,
the diagonalization is done after electroweak symmetry breaking and results in a Z 0 coupling to the first generation
quarks equal to ✏Q. While this mixing is suppressed by a loop factor, this is compensated for by the direct coupling
to neutrinos in ⌫

µ

scattering experiments.
A diagrammatic representation of the three scenarios is shown in Fig.(1). Fig. 1(a) is associated with the dark

Z and dark hypercharge cases where the blobs contain the high energy physics responsible for the mixing ✏. Fig
1(b) corresponds to the L

µ
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case where the new gauge boson provides a direct coupling to a muon neutrino but
communicates with first generations quarks through lepton loops. (⌫
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are the relevant particles for the CE⌫NS
process generated from the decay of charged pions, such as utilized by the COHERENT collaboration).
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FIG. 1: Neutrino nucleus scattering diagrams. Fig. 1(a) is for dark hypercharge and dark Z bosons and Fig. 1(b) is
for the L

µ

� L
⌧

model.

for high values of m
Z

0 the CE⌫NS limits become independent of the exposure and detector material. This e↵ect is
due to the nature of the Z 0 coupling as well as the high luminosity compared to the assumed systematic uncertainty.

In the dark Z 0 scenario the ratio of BSM to SM couplings to protons and neutrons are identical and equal to
0.27(✏
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/m
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0)2, which limits the distinguishing power of detectors with di↵erent proton and neutron content. Coupled
with the fact that the number of expected events is su�ciently large for the systematic uncertainty to dominate the
statistical uncertainty, this leads to the merger of limits from di↵erent detectors and exposures. Note that the same
cannot be said about the dark hypercharge scenario. In this case, the relative couplings to protons and neutrons are
�3.3(✏
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Z

0)2 and 0.06(✏
Z
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0)2 respectively which significantly enhances the reach when di↵erent detectors are
combined.
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where in the second line we used the fact that 1/�2 is small compared to N
exp

. As mentioned earlier, the Z 0 coupling
relative to the Z coupling is universal in the dark Z scenario which means that k is the same for all detectors and
energy bins at the high M
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0 region. Therefore, Eq. (16) can be solved for k to give
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In other words, k, and hence ✏
Z

is independent of the exposure. This argument breaks down for the dark hypercharge
case due to the detector dependence on k.

Finally, in Fig. 4, we show the limit g
Z

0 as a function ofM
Z

0 for the case of L
µ

-L
⌧

models using current and projected
COHERENT results and contrast it against limits from Borexino and CCFR. We find the three experiments to be
complementary, and in the mass window 4MeV . m

Z

0 . 100 MeV the future COHERENT projections provide the
strongest limits (g0

Z

 1�9⇥10�4). Note that reactor, fixed target, and atomic parity violation experiments present
poor limits in this scenario since they require electron flavor couplings.
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III. KINETIC AND MASS MIXING

We will now examine how such couplings could arise in mixing scenarios first examined in [5]. Let us consider the
SM hypercharge gauge group U(1)

Y

with gauge field B and a dark abelian gauge group U(1)
X

with gauge field X
and suppose we have the following gauge kinetic terms

L
gauge

= �1

4
Fµ⌫

a

F
aµ⌫

� 1

4
Fµ⌫

b

F
bµ⌫

� ✏

2
Fµ⌫

a

F
bµ⌫

(4)

where ✏ parameterizes the mixing of the two U(1)s. The mixing can be generated by a loop of heavy fields charged

under both groups. For fields with masses m and m0 and gauge couplings g
Y

and g
X

we get ✏ ⇠ g

Y

g

X

12⇡

2 log m

02

m

2 . For
O(1) couplings and a mass di↵erence of a factor of 10 or less, this restricts us in the range ✏ . 10�2. One can remove
the mixing term by a field redefinition: B

µ

! B
µ

+ ✏X
µ

which induces new couplings of X to the SM fermions. Note
that this leads to non-diagonal terms in the Z �X mass matrix. Such mass-mixing can be controlled by introducing
additional mass mixing from an extended Higgs sector of whose details we remain oblivious [30, 31].

Accounting for the diagonalization of both the kinetic and mass terms, as well as the SM electroweak rotation, the
mass eigenstates A, Z and Z 0 can be expressed in terms of B

µ

, W 3

µ

and X
µ

by the following transformation matrix:
0

@
B

µ

W 3

µ

X
µ

1

A =

0

@
cos ✓

w

�✏ sin↵� sin ✓
w

cos↵ sin ✓
w

sin↵� ✏ cos↵
sin ✓

w

cos ✓
w

cos↵ � cos ✓
w

sin↵
0 sin↵ cos↵

1

A

0

@
A

µ

Z
µ

Z 0
µ

1

A , (5)

where the angle ↵, which has implicit dependence on ✏, controls the Z � Z 0 mass mixing. Note that the photon
remains massless to all orders in the mixing parameters.

From this we can infer the Z 0-fermion-antifermion coupling to be:

�ig

cos ✓
w

[cos↵(tan↵� ✏ sin ✓
w

)]


T 3

L

� (tan↵� ✏ / sin ✓
w

)

tan↵� ✏ sin ✓
w

sin2 ✓
w

Q

�
, (6)

where g is the SM SU(2) gauge coupling. If we assume ↵ to be small and define ✏
B

⌘ cos↵(tan↵ � ✏ sin ✓
w

), the
coupling becomes proportional to the hypercharge, and we refer to Z 0 as a dark hypercharge gauge boson. Explicitly,
the coupling is given by:

ig tan ✓
w

(Y
f

/2) ✏
B

, (7)

where Y
f

is the hypercharge of the SM fermion f . If, instead, we choose ✏ to be zero and define ✏
z

⌘ sin↵, then the
Z 0 coupling reduces to

�ig

cos ✓
w

✏
z

⇥
T 3

L

� sin ✓2
w

Q
⇤
, (8)

and we call it a dark Z boson. The case usually referred into in the literature as the dark photon corresponds to
setting tan↵ = ✏ sin ✓

w

and will not be discussed in this work since it generates no couplings between the Z 0 and
neutrinos.

Another interesting possibility for probing new physics models is when the SM is extended with a non-universal
U(1) gauge symmetry associated with U(1)

L

µ

�L

⌧

. This symmetry has been discussed in various contexts including
the flavor structures of neutrinos [32, 33], lepton flavor violating Higgs decays [34], dark matter, and the recently
reported flavor non-universality in B decays [35]. This symmetry leads to interactions in the Lagrangian of the form:
L
int

� g
Z

0Q
↵�

(l̄
↵

�µl
�

+ ⌫̄
L↵

�µ⌫
L�

)Z 0
µ

, where, as before, Z 0 is the new gauge boson, g
Z

0 is the new gauge coupling,
and Q

↵�

= diag(0, 1,�1) gives the U(1)
L

µ

�L

⌧

charges. It is possible to extend this symmetry to the quark sector as
well.

At low energies, muon and tau loops generate kinetic mixing between the SM photon and Z 0 of strength ✏ /
(8eg

Z

0)/(48⇡2)log(m
⌧

/m
µ

) [36, 37] (the µ and ⌧ leptons can be replaced by second and third generation quarks if
the symmetry is also extended to the second-third generation quark sector). Since this is generated at low energy,
the diagonalization is done after electroweak symmetry breaking and results in a Z 0 coupling to the first generation
quarks equal to ✏Q. While this mixing is suppressed by a loop factor, this is compensated for by the direct coupling
to neutrinos in ⌫

µ

scattering experiments.
A diagrammatic representation of the three scenarios is shown in Fig.(1). Fig. 1(a) is associated with the dark

Z and dark hypercharge cases where the blobs contain the high energy physics responsible for the mixing ✏. Fig
1(b) corresponds to the L

µ

� L
⌧

case where the new gauge boson provides a direct coupling to a muon neutrino but
communicates with first generations quarks through lepton loops. (⌫

µ

or ⌫̄
µ

are the relevant particles for the CE⌫NS
process generated from the decay of charged pions, such as utilized by the COHERENT collaboration).



Bounds



Fixed Target Experiments
E137, E141, E774, NA48/2

Atomic Parity Violation

133Cs transitions (S.G.Porsev, K.Beloy, and A.Derevianko, PRD 
2010, 1006.4193, H. Davoudiasl, H.-S. Lee, and W.J. Marciano, 
PRD 2012, 1203.2947)
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FIG. 2. Diagram of the neutrino-electron scattering process.
The one-loop �-Z0 mixing "⌫e, which is expressed with a
shaded blob, is given in Eq. (6).

given from this process is available only in the parameter
region of MZ0

> 2mµ, and we show the 90% C.L. , which
is provided in Ref. [85], in Fig. 1.

Let us briefly mention the constraints from the Z

0

search in meson decays. The light Z

0 can be produced
from a muon in the final state in decays of mesons.
The search for the Z

0 in the charged kaon decay pro-
cess K

+ ! µ

+

⌫µZ
0 followed by Z

0 ! ⌫⌫̄ [86, 87] put
the bound on the gauge coupling as gZ0 . 10�2 in the
relevant range of MZ0 [72], which is much weaker than
the other constraints listed above.

Finally, we make comments on light dark photon
searches at the electron and proton beam dumps, in
which a pair of the charged leptons (mainly electrons)
produced in the decay of the dark photon is hunted as
the signal event. Since the Z

0 in the minimal Lµ � L⌧
model decays mainly to a pair of neutrinos and the de-
cay branching ratio to an electron pair is negligibly small,
the constraints from the beam dump experiments are not
applicable to the minimal Lµ�L⌧ model [26]. The fixed-
target muon beam experiment planned by the authors of
Ref. [88] will allow us to examine the whole parameter
region favored by the muon anomalous magnetic moment
in the Lµ � L⌧ model.

C. Motivation to the light Z0

As is well known, there is a long-standing discrepancy
between the experimental measurement [89] and the SM
predictions [90–94] of the magnetic moment of muons,
which is evaluated as

�aµ = a

exp

µ � a

SM

µ = (28.7± 8.0) · 10�10

, (8)

in terms of aµ ⌘ (gµ � 2)/2. The new interaction with
muons, which is introduced in Eq. (1), provides an extra

contribution to aµ, which is calculated as [8, 9]6

a

Z0

µ =
g

2

Z0

8⇡2

Z
1

0

2m2

µx
2(1� x)

x

2

m

2

µ + (1� x)M2

Z0
dx. (9)

The parameter region on which the Z

0 contribution re-
solves the discrepancy in the muon anomalous magnetic
moment at 2� is indicated with the red band (labeled
with g � 2) in Fig. 1. After the constraints listed in the
previous subsection are taken into consideration, a nar-
row window of the parameter region

MZ0 ' [5 · 10�3

, 2 · 10�1] GeV

gZ0 ' [3 · 10�4

, 1 · 10�3] (10)

which is favored by the muon g � 2, is still allowed.
It is interesting to point out that the Z

0 lies on the
parameter region of Eq. (10), resonantly enhancing the
scattering of high-energy cosmic neutrinos on the cosmic
neutrino background, and the scattering can leave char-
acteristic absorption lines in the cosmic neutrino spec-
trum observed at the Earth [23]. The IceCube exper-
iment reported a gap in the cosmic neutrino spectrum
between 400 TeV and 1 PeV [95],7 and it was demon-
strated in Ref. [26] that the IceCube gap and the dis-
crepancy in the muon anomalous magnetic moment can
be simultaneously resolved by the Lµ � L⌧ force with a
set of the parameters in the range of Eq. (10).

III. LIGHT Z0 SEARCH AT BELLE-II

We study the feasibility to detect the Z

0 at the future
Belle-II experiment, which is an electron-positron col-
lider with the center-of-mass energy of

p
s=10.58 GeV

designed to achieve the integrated luminosity of 50 ab�1

by the middle of the next decade. Although the observa-
tion of the muon anomalous magnetic moment favors the
parameter region shown in Eq. (10), for the sake of com-
pleteness, we broaden our scope of MZ0 to [0, 10] GeV,
which is the mass range possible to be explored at the
Belle-II experiment.

A. Signal: e+e� ! �Z0, Z0 ! ⌫⌫̄

With the interaction given in Eq. (1), the Z

0 is pro-
duced on its mass shell through the diagram shown in

6 The introduction of the tree-level kinetic mixing "tree changes the
gauge coupling for muon from gZ0 to e"tree + gZ0 . The region
excluded by the CCFR and BABAR experiments and the region
favored by muon g� 2 shown in Fig. 1 are shifted by this change
of the coupling. The cross section of the neutrino-electron scat-
tering process at Borexino is multiplied by |"tree + "⌫e|2/|"⌫e|2.
For more discussion on the parameter region of the Lµ � L⌧
model with the tree-level kinetic mixing, see Ref. [79].

7 In the four-year IceCube data [96] the gap becomes narrower
but still exists.

Borexino

sions. Constraints from past experiments and from neu-
trino emission by SN 1987A are presented in Section III.
In Section IV, we describe the five new experimental sce-
narios and estimate the limiting backgrounds. We con-
clude in Section V with a summary of the prospects for
new experiments. More detailed formulas, which we use
to calculate our expected search reaches, and a more de-
tailed discussion of some of the backgrounds, are given
in Appendices A, B, and C .

II. THE PHYSICS OF NEW U(1) VECTORS IN
FIXED TARGET COLLISIONS

A. Theoretical Preliminaries

Consider the Lagrangian

L = L
SM

+ ✏

Y

F

Y,µ⌫

F

0
µ⌫

+
1
4
F

0,µ⌫

F

0
µ⌫

+ m

2

A

0A
0µ

A

0
µ

, (3)

where L
SM

is the Standard Model Lagrangian, F

0
µ⌫

=
@

[µ

A

0
⌫]

, and A

0 is the gauge field of a massive dark U(1)0

gauge group [1]. The second term in (3) is the kinetic
mixing operator, and ✏ ⇠ 10�8 � 10�2 is naturally gen-
erated by loops at any mass scale of heavy fields charged
under both U(1)0 and U(1)

Y

; the lower end of this range
is obtained if one or both U(1)’s are contained in grand-
unified (GUT) groups, since then ✏ is only generated by
two-or three-loop GUT-breaking e↵ects.

A simple way of analyzing the low-energy e↵ects of the
A

0 is to treat kinetic mixing as an insertion of p

2

g

µ⌫

�p

µ

p

⌫

in Feynman diagrams, making it clear that the A

0 couples
to the electromagnetic current of the Standard Model
through the photon. This picture also clarifies, for ex-
ample, that new interactions induced by kinetic mixing
must involve a massive A

0 propagator, and that e↵ects
of mixing with the Z-boson are further suppressed by
1/m

2

Z

. Equivalently, one can redefine the photon field
A

µ ! A

µ+✏A

0µ as in [37], which removes the kinetic mix-
ing term and generates a coupling eA

µ

J

µ

EM

� ✏eA

0
µ

J

µ

EM

of the new gauge boson to electrically charged particles
(here ✏ ⌘ ✏

Y

cos ✓

W

). Note that this does not induce
electromagnetic millicharges for particles charged under
the A

0. The parameters of concern in this paper are ✏

and m

A

0 .
We now explain the orange stripe in Figure 1 — see

[3, 4, 5] for more details. In a supersymmetric theory,
the kinetic mixing operator induces a mixing between
the D-terms associated with U(1)0 and U(1)

Y

. The hy-
percharge D-term gets a vacuum expectation value from
electroweak symmetry breaking and induces a weak-scale
e↵ective Fayet-Iliopoulos term for U(1)0. Consequently,
the Standard Model vacuum can break the U(1)0 in the
presence of light U(1)0-charged degrees of freedom, giving
the A

0 a mass,

m

A

0 ⇠ p✏g

D

p
g

Y

m

W

g

2

, (4)

e�e�

Z

A0

�

FIG. 2: A

0 production by bremsstrahlung o↵ an incoming
electron scattering o↵ protons in a target with atomic number
Z.
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FIG. 3: (a) �

⇤ and (b) Bethe-Heitler trident reactions that
comprise the primary QED background to A

0 ! `

+
`

� search
channels.

where g

D

, g

Y

, and g

2

are the the U(1)0, U(1)
Y

, and
Standard Model SU(2)

L

gauge couplings, respectively,
and m

W

is the W-boson mass. Equation (4) relates
✏ and m

A

0 as indicated by the orange stripe in Figure
1 for g

D

⇠ 0.1 � 1. This region is not only theoret-
ically appealing, but also roughly corresponds to the
region in which the annual modulation signal observed
by DAMA/LIBRA can be explained by dark matter,
charged under the U(1)0, scattering inelastically o↵ nuclei
through A

0 exchange. We therefore include these lines for
reference in our plots.

B. A

0 Production in Fixed-Target Collisions

A

0 particles are generated in electron collisions on a
fixed target by a process analogous to ordinary pho-
ton bremsstrahlung, see Figure 2. This can be reli-
ably estimated in the Weizsäcker-Williams approxima-
tion (see Appendix A for more details) [38, 39, 40].
When the incoming electron has energy E

0

, the di↵er-
ential cross-section to produce an A

0 of mass m

A

0 with
energy E

A

0 ⌘ xE

0

is

d�

dxd cos ✓

A

0
⇡ 8Z

2

↵

3

✏

2

E

2

0

x

U

2

Log
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(1� x +

x

2

2
)� x(1� x)m2

A

0

�
E

2

0

x ✓

2

A

0

�

U

2

�
(5)

where Z is the atomic number of the target atoms,
↵ ' 1/137, ✓

A

0 is the angle in the lab frame between the
emitted A

0 and the incoming electron, the Log (⇠ 5� 10

3
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2 . For
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which induces new couplings of X to the SM fermions. Note
that this leads to non-diagonal terms in the Z �X mass matrix. Such mass-mixing can be controlled by introducing
additional mass mixing from an extended Higgs sector of whose details we remain oblivious [30, 31].

Accounting for the diagonalization of both the kinetic and mass terms, as well as the SM electroweak rotation, the
mass eigenstates A, Z and Z 0 can be expressed in terms of B
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where the angle ↵, which has implicit dependence on ✏, controls the Z � Z 0 mass mixing. Note that the photon
remains massless to all orders in the mixing parameters.

From this we can infer the Z 0-fermion-antifermion coupling to be:
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where g is the SM SU(2) gauge coupling. If we assume ↵ to be small and define ✏
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), the
coupling becomes proportional to the hypercharge, and we refer to Z 0 as a dark hypercharge gauge boson. Explicitly,
the coupling is given by:
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where Y
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is the hypercharge of the SM fermion f . If, instead, we choose ✏ to be zero and define ✏
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and we call it a dark Z boson. The case usually referred into in the literature as the dark photon corresponds to
setting tan↵ = ✏ sin ✓

w

and will not be discussed in this work since it generates no couplings between the Z 0 and
neutrinos.

Another interesting possibility for probing new physics models is when the SM is extended with a non-universal
U(1) gauge symmetry associated with U(1)
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. This symmetry has been discussed in various contexts including
the flavor structures of neutrinos [32, 33], lepton flavor violating Higgs decays [34], dark matter, and the recently
reported flavor non-universality in B decays [35]. This symmetry leads to interactions in the Lagrangian of the form:
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�µ⌫
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)Z 0
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, where, as before, Z 0 is the new gauge boson, g
Z

0 is the new gauge coupling,
and Q

↵�

= diag(0, 1,�1) gives the U(1)
L

µ

�L

⌧

charges. It is possible to extend this symmetry to the quark sector as
well.

At low energies, muon and tau loops generate kinetic mixing between the SM photon and Z 0 of strength ✏ /
(8eg

Z

0)/(48⇡2)log(m
⌧

/m
µ

) [36, 37] (the µ and ⌧ leptons can be replaced by second and third generation quarks if
the symmetry is also extended to the second-third generation quark sector). Since this is generated at low energy,
the diagonalization is done after electroweak symmetry breaking and results in a Z 0 coupling to the first generation
quarks equal to ✏Q. While this mixing is suppressed by a loop factor, this is compensated for by the direct coupling
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µ

scattering experiments.
A diagrammatic representation of the three scenarios is shown in Fig.(1). Fig. 1(a) is associated with the dark

Z and dark hypercharge cases where the blobs contain the high energy physics responsible for the mixing ✏. Fig
1(b) corresponds to the L

µ

� L
⌧

case where the new gauge boson provides a direct coupling to a muon neutrino but
communicates with first generations quarks through lepton loops. (⌫

µ

or ⌫̄
µ

are the relevant particles for the CE⌫NS
process generated from the decay of charged pions, such as utilized by the COHERENT collaboration).
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FIG. 1. The leading order contribution of the Z0 to neutrino
trident production (another diagram with µ+ and µ� reversed
is not shown). Other contributions at the same order in g0

are further suppressed by the Fermi scale.

is not directly relevant for our work, and thus we suppress
any additional pieces in (1) related to the corresponding
Higgs sector.

This model contributes to the neutrino trident pro-
duction at lowest order through the diagram shown in
Fig. 1. This contribution interferes with the SM contri-
bution coming from W

±
/Z exchange. In order to gain

insight into the di↵erent contributions, in what follows
we provide analytical results using the equivalent pho-
ton approximation (EPA) [14, 15]. Under the EPA, the
full cross-section of a muon-neutrino scattering with a
nucleus N is related to the cross-section of the neutrino
scattering with a real photon through,
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Here, P (q2, s) is the probability of creating a virtual pho-
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p
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bility is given by [16]
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2
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2(q2) , (3)

where Ze and F (q2) are the charge and the electromag-
netic form-factor of the nucleus, respectively. The in-
tegral over s is done from 4m2 to 2E⌫q, with the muon
mass m and the neutrino energy E⌫ . The q integral has a
lower limit of 4m2

/(2E⌫) and the upper limit is regulated
by the exponential form-factor. We thus concentrate on
the computation of the cross-section �(⌫µ� ! ⌫µµ

+
µ

�).
Computations of the full ⌫µN ! ⌫µNµ

+
µ

� process have
been performed in [17–22] in the context of the V-A the-
ory and of the SM.

We begin with the di↵erential cross-section for the
⌫� ! ⌫µ

+
µ

� sub-process associated with a pure V-A
charged interaction between neutrinos and muons. It is
given symbolically by
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where GF =
p

2g2/(8M2
W

) is the Fermi constant. The
3-body phase-space (with correction of a typo in the cor-
responding expression of ref. [23]) is given by
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dt
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2⇡
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4⇡
, (5)

where ` = (p+ + p�)2 is the square of the invariant
mass of the µ

+
µ

� pair, ⌦0 is the solid angle with re-
spect to the photon four-vector in the µ

+
µ

� rest-frame,
v =

p
1 � 4m2

/` is the velocity of each muon in that
frame, and t ⌘ 2k · q. M1 and M2 in (4) are the neutrino
and the muon-pair blocks in the amplitude, that form
the total amplitude according to M = GFep

2
M1M2. The

factor of 1/2 in (4) originates from the average over the
incoming photon polarizations.

Using M1,2 explicitly, and summing over spins and po-
larizations, we get (in agreement with result of ref. [16])
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where A = (p� � q)2 � m

2 and B = (q � p+)2 � m

2.
The result for the full SM contribution together with the
Z0 vector-boson exchange can be obtained from the V-A
matrix-element contribution, if we neglect terms propor-
tional to the muon mass. The full square of the matrix-
element is defined as in Eq. (6) but with,
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Here, k is the momentum of the exchanged Z0 and the SM
coe�cients of the vector and axial-vector currents in the
interaction of muon-neutrinos with muons are CV = 1

2 +
2 sin2

✓W , CA = 1
2 , with ✓W being the weak mixing angle.

The second line in Eq. (7) features the Z0 contribution
with the vector-current coe�cient defined as,

C
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V

= 4
M

2
W

m

2
Z0

g

02

g

2
=

v

2
SM

v

2
Z0

, (8)

where vSM = 246 GeV is the SM Higgs vacuum expecta-
tion value and v

Z0 = mZ0
/g

0.

Neutrino Trident
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C. Atomic parity violation

Another powerful probe for our models comes from atomic parity violation. The 6S
1/2

� 7S
1/2

nuclear transition
in 133Cs is only allowed by the parity violation furnished by the electroweak force and has been measured by multiple
collaborations to great precision [51][52][53][54]. The result can be expressed as a value of the nuclear weak charge
defined as Q

w

= �N + Z(1� 4 sin2 ✓
w

) and compared to the SM prediction [55][56][57]:

QSM

w

(133
55

Cs) = �73.16(5) (12)

Qexp

w

(133
55

Cs) = �73.16(35) (13)

.
Both the dark Z and dark hypercharge scenarios lead to parity violating couplings to the SM fermions which would

modify the values of the electroweak parameters and hence Q
w

. The agreement with the SM then leads to strong
limits on ✏. We utilize the results presented in [31] using 30 MeV as the energy scale of the measurement [52]. Note
that, once again, these limits are highly suppressed in the L

µ

� L
⌧

scenario due to the loop factor.

V. NUMERICAL SETUP

To evaluate the current and projected sensitivity of future CE⌫NS experiments, we use a �2 method to calculate
the bounds on ✏ at the 2� confidence interval. Following [20] we define:

�2 =
X

bins,detectors

(N
exp

� (1 + �)N
pred

)2

N
bg

+N
exp

+

✓
�

�
�

◆
2

(14)

where N
exp

is the expected number of events in the SM (or the observed number of events in the case of current
COHERENT limits), N

pred

is the number of predicted events in our model, N
bg

is the number of background events,
�
�

is the fractional systematic uncertainty, and � is the corresponding nuisance parameter. In our calculation �
�

= 0.1
[16]. We scan over the range 1 MeV  M

Z

0  10 GeV and set limits at the 2� level, which means that any point
above our exclusion curves can be interpreted to be within discovery sensitivity with at least 95% probability.

The data used in analysis includes both current data and future reactor and accelerator projections. The current
data set consists of the observed number of events per bin from COHERENT [16]. Future projections are set by the
Asimov dataset for a NaI/Ar detector for accelerator experiments and Ge/Si for reactor experiments. The Asimov
dataset is the set of simulated data which will cause the likelihood to be maximized at the expected points of all the
parameters [58]. For future reactor experiments, we assume an exposure of 100 kg ⇥ year, while for future accelerator
experiments we assume 1 ton⇥ year and 10 ton⇥ year of exposure. The background is taken to be 1 dru (1 dru
= 1 event/kg/day/keV) for Ge and Si detectors (reactor experiments) and 5 ⇥ 10�3 dru for NaI and Ar detectors
(COHERENT). We choose 20 energy bins in our analysis to account for the shape information in the energy spectrum.
The detection threshold used in our calculation is 100 eV for Ge and Si detectors and 2 keV for NaI and Ar detectors.
The reactor neutrino flux is assumed to be 1.5⇥ 1012/

�
cm2 · s�, typical of a 1MW reactor at 1m from the detector

or, equivalently, a 1GW reactor 30m away from the detector. The energy distribution is taken from [59]. For the
accelerator experiment we use a flux of 4.29⇥ 109/

�
cm2 · s� [16] with the energy distribution given in [29].

VI. RESULTS

In Fig. 2 we show the COHERENT and reactor reach on ✏
B

as a function of M
Z

0 using the couplings shown in
Eq.(7) and compare it to limits from fixed target and atomic parity violation experiments. The points where the
curves plateau correspond to the energy scale of each experiment above which M

Z

0 dominates over the momentum
dependence. In the region allowed by the fixed target experiments, we find that current and projected limits from
CE⌫NS measurements provide stringent constraints (10�5 < ✏ < 10�2) in the mass range 1MeV . m

Z

0 . 10 GeV,
almost as strong as existing limits from atomic parity violation. Below about 10 MeV, the future COHERENT
constraints are comparable to those from atomic parity violation and reactor experiments are projected to provide
stronger limits thanks to the low energies of reactor neutrinos.

In Fig. 3, we show the same constraints applied to ✏
Z

for the case of a dark Z boson, as given in Eq. (8). The
constraints are similar to the dark hypercharge case with two main di↵erences. First, the window where the CE⌫NS
constraints start competing with atomic parity violation lies outside the bounds of fixed target experiments. Second,
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The data used in analysis includes both current data and future reactor and accelerator projections. The current
data set consists of the observed number of events per bin from COHERENT [16]. Future projections are set by the
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NaI with a 2 keV threshold for each target.

Projections for reactor are made using a 1 MW at 1m (or 1 GW at 
30 m) with 100 eVnr thresholds for cryogenic Ge and Si detectors.
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FIG. 4: The current and future bounds on the coupling g
Z

0 in the L
µ

-L
⌧

model are plotted as a function of the Z 0

mass M
Z

0 . The solid blue curve is the current COHERENT limit, the orange dot-dashed and green dashed are
derived future projections for COHERENT for di↵erent luminosities, the red dotted curve is from the Borexino
measurement of solar neutrinos, and the purple large-dotted curve is from the CCFR measurement of neutrino

trident production.

3

III. KINETIC AND MASS MIXING

We will now examine how such couplings could arise in mixing scenarios first examined in [5]. Let us consider the
SM hypercharge gauge group U(1)

Y

with gauge field B and a dark abelian gauge group U(1)
X

with gauge field X
and suppose we have the following gauge kinetic terms

L
gauge

= �1

4
Fµ⌫

a

F
aµ⌫

� 1

4
Fµ⌫

b

F
bµ⌫

� ✏

2
Fµ⌫

a

F
bµ⌫

(4)

where ✏ parameterizes the mixing of the two U(1)s. The mixing can be generated by a loop of heavy fields charged

under both groups. For fields with masses m and m0 and gauge couplings g
Y

and g
X

we get ✏ ⇠ g

Y

g

X

12⇡

2 log m

02

m

2 . For
O(1) couplings and a mass di↵erence of a factor of 10 or less, this restricts us in the range ✏ . 10�2. One can remove
the mixing term by a field redefinition: B

µ

! B
µ

+ ✏X
µ

which induces new couplings of X to the SM fermions. Note
that this leads to non-diagonal terms in the Z �X mass matrix. Such mass-mixing can be controlled by introducing
additional mass mixing from an extended Higgs sector of whose details we remain oblivious [30, 31].

Accounting for the diagonalization of both the kinetic and mass terms, as well as the SM electroweak rotation, the
mass eigenstates A, Z and Z 0 can be expressed in terms of B

µ

, W 3

µ

and X
µ

by the following transformation matrix:
0

@
B

µ

W 3

µ

X
µ

1

A =

0

@
cos ✓

w

�✏ sin↵� sin ✓
w

cos↵ sin ✓
w

sin↵� ✏ cos↵
sin ✓

w

cos ✓
w

cos↵ � cos ✓
w

sin↵
0 sin↵ cos↵

1

A

0

@
A

µ

Z
µ

Z 0
µ

1

A , (5)

where the angle ↵, which has implicit dependence on ✏, controls the Z � Z 0 mass mixing. Note that the photon
remains massless to all orders in the mixing parameters.

From this we can infer the Z 0-fermion-antifermion coupling to be:

�ig

cos ✓
w

[cos↵(tan↵� ✏ sin ✓
w

)]


T 3

L

� (tan↵� ✏ / sin ✓
w

)

tan↵� ✏ sin ✓
w

sin2 ✓
w

Q

�
, (6)

where g is the SM SU(2) gauge coupling. If we assume ↵ to be small and define ✏
B

⌘ cos↵(tan↵ � ✏ sin ✓
w

), the
coupling becomes proportional to the hypercharge, and we refer to Z 0 as a dark hypercharge gauge boson. Explicitly,
the coupling is given by:

ig tan ✓
w

(Y
f

/2) ✏
B

, (7)

where Y
f

is the hypercharge of the SM fermion f . If, instead, we choose ✏ to be zero and define ✏
z

⌘ sin↵, then the
Z 0 coupling reduces to

�ig

cos ✓
w

✏
z

⇥
T 3

L

� sin ✓2
w

Q
⇤
, (8)

and we call it a dark Z boson. The case usually referred into in the literature as the dark photon corresponds to
setting tan↵ = ✏ sin ✓

w

and will not be discussed in this work since it generates no couplings between the Z 0 and
neutrinos.

Another interesting possibility for probing new physics models is when the SM is extended with a non-universal
U(1) gauge symmetry associated with U(1)

L

µ

�L

⌧

. This symmetry has been discussed in various contexts including
the flavor structures of neutrinos [32, 33], lepton flavor violating Higgs decays [34], dark matter, and the recently
reported flavor non-universality in B decays [35]. This symmetry leads to interactions in the Lagrangian of the form:
L
int

� g
Z

0Q
↵�

(l̄
↵

�µl
�

+ ⌫̄
L↵

�µ⌫
L�

)Z 0
µ

, where, as before, Z 0 is the new gauge boson, g
Z

0 is the new gauge coupling,
and Q

↵�

= diag(0, 1,�1) gives the U(1)
L

µ

�L

⌧

charges. It is possible to extend this symmetry to the quark sector as
well.

At low energies, muon and tau loops generate kinetic mixing between the SM photon and Z 0 of strength ✏ /
(8eg

Z

0)/(48⇡2)log(m
⌧

/m
µ

) [36, 37] (the µ and ⌧ leptons can be replaced by second and third generation quarks if
the symmetry is also extended to the second-third generation quark sector). Since this is generated at low energy,
the diagonalization is done after electroweak symmetry breaking and results in a Z 0 coupling to the first generation
quarks equal to ✏Q. While this mixing is suppressed by a loop factor, this is compensated for by the direct coupling
to neutrinos in ⌫

µ

scattering experiments.
A diagrammatic representation of the three scenarios is shown in Fig.(1). Fig. 1(a) is associated with the dark

Z and dark hypercharge cases where the blobs contain the high energy physics responsible for the mixing ✏. Fig
1(b) corresponds to the L

µ

� L
⌧

case where the new gauge boson provides a direct coupling to a muon neutrino but
communicates with first generations quarks through lepton loops. (⌫

µ

or ⌫̄
µ

are the relevant particles for the CE⌫NS
process generated from the decay of charged pions, such as utilized by the COHERENT collaboration).
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Figure 16: Constraints from current (upper panel) and future (lower panel) experiments on a U(1)Lµ�L⌧

gauge boson with gauge coupling gµ�⌧ = ✏ e. Additional constraints from supernova cooling are not
shown (see Section 3.6).

4.4 U(1)Lµ�L⌧

This group exhibits the biggest changes compared to the case of pure kinetic mixing, due to suppressed
couplings to hadrons and electrons. The best current limits arise from experiments and observations that
only require one kinetic mixing factor. In addition, there is the BBN limit from [14].11 Importantly, we
note that there is still room for an explanation of the (g � 2)µ anomaly [13]12. This makes it particularly
attractive for future experimental probes. While SHiP will cover a large region of parameter space it
will not reach the area suggested by (g � 2)µ. This area will be probed by COHERENT [113] but
most decisively by the proposed muon run of NA64µ [18, 52]. The additional region of projected SHiP
sensitivity for MA0 > 2mµ is a consequence of high statistics and the unsuppressed Br(A0 ! µ+µ�).

11For this limit we show the coupling range displayed in [14] as solid. For weaker couplings the region is hatched. A
determination of the decoupling of the gauge boson in the early universe would require a more sophisticated analysis.

12For similar discussions around flavor-changing couplings we refer to [128, 129].
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shown (see Section 3.6).

4.4 U(1)Lµ�L⌧

This group exhibits the biggest changes compared to the case of pure kinetic mixing, due to suppressed
couplings to hadrons and electrons. The best current limits arise from experiments and observations that
only require one kinetic mixing factor. In addition, there is the BBN limit from [14].11 Importantly, we
note that there is still room for an explanation of the (g � 2)µ anomaly [13]12. This makes it particularly
attractive for future experimental probes. While SHiP will cover a large region of parameter space it
will not reach the area suggested by (g � 2)µ. This area will be probed by COHERENT [113] but
most decisively by the proposed muon run of NA64µ [18, 52]. The additional region of projected SHiP
sensitivity for MA0 > 2mµ is a consequence of high statistics and the unsuppressed Br(A0 ! µ+µ�).

11For this limit we show the coupling range displayed in [14] as solid. For weaker couplings the region is hatched. A
determination of the decoupling of the gauge boson in the early universe would require a more sophisticated analysis.

12For similar discussions around flavor-changing couplings we refer to [128, 129].
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Summary



Coherent Elastic Neutrino-Nucleus Scattering is already able to set 
interesting limits on BSM physics.

Complementarity from stopped-pion sources and reactors, as well 
as a variety of target materials will be able to provide coverage in 
numerous models.

There is great potential in the near future for significantly 
increasing the reach of the coherent scattering experiments and 
new theoretical explorations.


