GEFAN

A short travel for neutrinos in Large Extra Dimensions

Short-Baseline Neutrino Program - Fermilab

arXiv:1503.01520

Gabriela Vitti Stenico Orlando Luis Goulart Peres David Vanegas Forero

08/13/2018

Summary:

- Why LED?
- Formalism
- Oscillation Probability
- SBN
- Results

	ϵ
Hierarchy Problem	- 1
	I

	e.
Hierarchy Problem	- 1
• • • • • • • • • • • • • • • • • • • •	- 1

Why LED?

	e.
Hierarchy Problem	- 1
• • • • • • • • • • • • • • • • • • • •	- 1

Large disparity

Hierarchy Problem

Hierarchy Problem

Bonus: give a natural explanation for the smallness of neutrino masses!

Hierarchy Problem

Right-handed neutrino states: $\Psi_{\alpha}\;(\alpha=e,\mu,\tau)$

Arkani-Hamed, Dimopoulos and Dvali, Scientific American, August 2000

Right-handed neutrino states: $\Psi_{\alpha} \; (\alpha = e, \mu, \tau)$

D extra Dimensions with compactification radii $R_j \ (j=1,2,...D)$

Right-handed neutrino states: $\Psi_{lpha} \; (lpha = e, \mu, au)$

Action of interaction between the active neutrinos and Ψ_lpha field is

 $S_{\alpha} = \int dx^4 dy i \bar{\Psi}_{\alpha} \Gamma^A \partial_A \Psi_{\alpha} + \int dx^4 [i \bar{\nu}_{\alpha L} \gamma^{\mu} \partial_{\mu} \nu_{\alpha L} + \kappa_{\alpha \beta} H \bar{\nu}_{\alpha L} \psi_{\beta R}(x, y = 0)] + \mathbf{h.c.}$

Action of interaction between the active neutrinos and Ψ_lpha field is

Action of interaction between the active neutrinos and Ψ_{lpha} field is

$$S_{\alpha} = \int dx^4 dy i \bar{\Psi}_{\alpha} \Gamma^A \partial_A \Psi_{\alpha} + \int dx^4 [i \bar{\nu}_{\alpha L} \gamma^{\mu} \partial_{\mu} \nu_{\alpha L} + \kappa_{\alpha \beta} H \bar{\nu}_{\alpha L} \psi_{\beta R}(x, y = 0)] + \text{h.c.}$$
 Higgs doublet

Action of interaction between the active neutrinos and Ψ_lpha field is

$$S_{\alpha} = \int dx^4 dy i \bar{\Psi}_{\alpha} \Gamma^A \partial_A \Psi_{\alpha} + \int dx^4 [i \bar{\nu}_{\alpha L} \gamma^{\mu} \partial_{\mu} \nu_{\alpha L} + \kappa_{\alpha \beta} H \bar{\nu}_{\alpha L} \psi_{\beta R}(x, y = 0)] + \text{h.c.}$$

Yukawa coupling matrix

Action of interaction between the active neutrinos and Ψ_lpha field is

Action of interaction between the active neutrinos and Ψ_lpha field is

 $S_{\alpha} = \int dx^4 dy i \bar{\Psi}_{\alpha} \Gamma^A \partial_A \Psi_{\alpha} + \int dx^4 [i \bar{\nu}_{\alpha L} \gamma^{\mu} \partial_{\mu} \nu_{\alpha L} + \kappa_{\alpha \beta} H \bar{\nu}_{\alpha L} \psi_{\beta R}(x, y = 0)] + \mathbf{h.c.}$

Action of interaction between the active neutrinos and Ψ_lpha field is

Action of interaction between the active neutrinos and Ψ_lpha field is

Action of interaction between the active neutrinos and Ψ_{lpha} field is

Action of interaction between the active neutrinos and Ψ_lpha field is

 $S_{\alpha} = \int dx^4 dy i \bar{\Psi}_{\alpha} \Gamma^A \partial_A \Psi_{\alpha} + \int dx^4 [i \bar{\nu}_{\alpha L} \gamma^{\mu} \partial_{\mu} \nu_{\alpha L} + \kappa_{\alpha \beta} H \bar{\nu}_{\alpha L} \psi_{\beta R}(x, y = 0)] + \mathbf{h.c.}$

Action of interaction between the active neutrinos and Ψ_lpha field is

 $S_{\alpha} = \int dx^4 dy i \bar{\Psi}_{\alpha} \Gamma^A \partial_A \Psi_{\alpha} + \int dx^4 [i \bar{\nu}_{\alpha L} \gamma^{\mu} \partial_{\mu} \nu_{\alpha L} + \kappa_{\alpha \beta} H \bar{\nu}_{\alpha L} \psi_{\beta R}(x, y = 0)] + \mathbf{h.c.}$

$$\mathcal{L}_{\text{mass}} = m^{D\alpha\beta} \left(\bar{\nu}_{\alpha R}^{(0)} \nu_{\beta L} + \sqrt{2} \sum_{n=1}^{\infty} \bar{\nu}_{\alpha R}^{(n)} \nu_{\beta L} \right) + \sum_{n=1}^{\infty} \frac{n}{R_{\text{ED}}} \bar{\nu}_{\alpha R}^{(n)} \nu_{\alpha L}^{(n)} + \text{c.h.}$$
$$= \sum_{i=1}^{3} \bar{\mathcal{N}}_{iR} M_i \mathcal{N}_{iL} + \text{c.h.}$$

Action of interaction between the active neutrinos and Ψ_lpha field is

 $S_{\alpha} = \int dx^4 dy i \bar{\Psi}_{\alpha} \Gamma^A \partial_A \Psi_{\alpha} + \int dx^4 [i \bar{\nu}_{\alpha L} \gamma^{\mu} \partial_{\mu} \nu_{\alpha L} + \kappa_{\alpha \beta} H \bar{\nu}_{\alpha L} \psi_{\beta R}(x, y = 0)] + \text{h.c.}$

$$\begin{split} \mathcal{N}_{iL(R)} &= \left(\nu_i^{(0)}, \nu_i^{(1)}, \dots\right)_{L(R)}^T \longrightarrow \text{Pseudo mass eigenstates} \\ M_i &= \begin{bmatrix} m_i^D & 0 & 0 & 0 & \dots \\ \sqrt{2}m_i^D & 1/R_{\text{ED}} & 0 & 0 & \dots \\ \sqrt{2}m_i^D & 0 & 2/R_{\text{ED}} & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix} \longrightarrow \begin{array}{l} \text{Need to be} \\ \text{diagonalized!} \\ \end{array} \end{split}$$

Eigenvalues:

$$\lambda_i^{(n)} - \pi \left(m_i^D R_{\rm ED} \right)^2 \cot \left(\pi \lambda_i^{(n)} \right) = 0 \qquad n \le \lambda_i^{(n)} \le n + 1/2$$

$$(S_i^{0n})^2 = \frac{2}{1 + \pi^2 (m_i^D R_{\rm ED})^2 + (\lambda_i^{(n)})^2 / (m_i^D R_{\rm ED})^2}.$$

NuFact 2018 - LED at the SBN (Mathematical Contemponents) (Mathematica

Oscillation Probability

$$3\nu$$

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \left| \sum_{i=1}^{3} U_{\alpha i} U_{\beta i}^{*} \exp\left(-i\frac{m_{i}^{2}L}{2E_{\nu}}\right) \right|^{2}$$

$$\textbf{Affects Neutrino Oscillation!}$$

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \left| \sum_{i=1}^{3} \sum_{n=0}^{\infty} U_{\alpha i} U_{\beta i}^{*} (S_{i}^{0n})^{2} \exp\left(-i\frac{\left(\lambda_{i}^{(n)}\right)^{2}L}{2E_{\nu}R_{\text{ED}}^{2}}\right) \right|^{2}$$

$$m_{i} \rightarrow \frac{\lambda_{i}^{(n)}}{R_{\text{ED}}}$$

$$U_{\alpha i} \rightarrow U_{\alpha i} S_{i}^{0n}$$

$$S_{i}^{0n} (m_{0}, R_{\text{ED}})$$

Oscillation Probability

Look for LED evidence in NEUTRINO EXPERIMENTS!

Exclusion limits in the literature:

G. V. Stenico

G. V. Stenico

Short-Baseline Neutrino Program

arXiv:1503.01520

Short-Baseline Neutrino Program

arXiv:1503.01520

Short-Baseline Neutrino Program

arXiv:1503.01520

3 Liquid Argon (LAr) Detectors:

Detector	Distance from BNB Target	LAr Total Mass	LAr Active Mass
LAr1-ND	110 m	220 t	112 t
MicroBooNE	470 m	170 t	89 t
ICARUS-T600	600 m	760 t	476 t

- Energy Range: 0.2 3 GeV;
- •2 Channels: $u_{\mu} \rightarrow \nu_{\mu}$ (Muon Neutrino Disappearance) $u_{\mu} \rightarrow \nu_{e}$ (Electron Neutrino Appearance)
- •SBND (LAr1-ND): 2020
- MicroBooNE: 2015
- ICARUS-T600: 2019

SBN motivation: search to date for sterile neutrinos at the eV mass-scale through both appearance and disappearance oscillation channels.

Oscillation Probability

km 1.2 $\overline{\text{GeV}}$ $\overline{E_{\nu}}$

Results:

- ø Energy Reconstruction;

arXiv:1503.01520v A Proposal for a Three Detector Short-Baseline Neutrino Oscillation Program in the Fermilab Booster Neutrino Beam

Detector	Active Mass	Distance from BNB target	POT
Lar1-ND	112 t	110 m	6.6×10^{20}
MicroBooNE	89 t	470 m	1.32×10^{21}
ICARUS-T600	476 t	600 m	$6.6 imes 10^{20}$
Electron Neutrino A	ppearance Channel	Muon Neutrino Disap	pearance Channel
Energy Bin Size (GeV)	Energy Range (GeV)	Energy Bin Size (GeV)	Energy Range (GeV)
0.15	0.2-1.10	0.10	0.2-0.4
0.20	1.10-1.50	0.05	0.4-1.0
0.25	1.50 - 2.00	0.25	1.0-1.5
1.00	2.00-3.00	0.50	1.5-3.0

Results:

Non-null result in SBN

Discrimination power between LED scenario and the 3+1 scenario

Discrimination power between LED scenario and the 3+1 scenario

3+1 fit to the LED scenario

$$\chi^2 = \chi^2_{3+1} - \chi^2_{\text{LED}} \approx 8$$
$$(2\sigma - 3\sigma)$$

NuFact 2018 ~ LED at the SBN

G. V. Stenico

3+1 fit to the LED scenario

NuFact 2018 ~ LED at the SBN

G. V. Stenico

* LED can be very well explored in Neutrino Experiments;

*****SBN is sensitive to the oscillations predicted in the LED model and have the potential to constrain the LED parameter space better than any other oscillation experiment, for $m_1^D < 0.1 \text{ eV}$;

In case SBN observes a departure from the three active neutrino framework, it also has the power of discriminate between sterile oscillations predicted in the 3+1 framework and the LED ones.

Thank you!

Backup

LED fit to the 3+1 scenario

NuFact 2018 ~ LED at the SBN

G. V. Stenico

NH

IH

Experimental Bounds				
Experiment	Hierarchical	Inverted	Degenerate	
	(cm, eV)	(cm, eV)	(cm, eV)	
CHOOZ	$(9.9 imes 10^{-4}, 0.02)$	$(3.3 imes 10^{-5}, 0.60)$	$(1.8 imes 10^{-6}, 10.9)$	
BUGEY	none	$(4.3 \times 10^{-5}, 0.46)$	$(2.4 imes 10^{-6}, 8.3)$	
CDHS	none	none	$(5 \times 10^{-6}, 4)$	
Atmospheric	$(8.2 imes 10^{-5}, 0.24)$	$(6.2 imes 10^{-5}, 0.32)$	$(4.8 imes 10^{-6}, 4.1)$	
Solar	$(1.0 \times 10^{-3}, 0.02)$	$(8.9 imes 10^{-5}, 0.22)$	$(4.9 imes 10^{-6}, 4.1)$	
Table 1: Upper bounds on R (cm) at 90% c.l. and the corresponding lower				
on $1/R$ (eV) fr	om various measure	ements.		

Davoudias1, H. et al. Phys.Rev. D65 (2002)

Neutrino Oscillation

$$|
u_{\alpha}
angle = \sum_{i} U_{i}^{*} |
u_{i}
angle$$

 $_{(\alpha = e, \mu, \tau \text{ and } i = 1, 2, 3)}$

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \sum_{i,j} U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*} \exp\left(\frac{i\frac{m_{j}^{2} - m_{i}^{2}}{2E}}{2E}\right)$$
Massa dos Neutrinos e Mistura de Sabores
Ma

/

Neutrino Oscillation

Massa dos Neutrinos e Mistura de Sabores

Neutrino Oscillation

http://pdg.lbl.gov/2017/reviews/rpp2016-rev-neutrino-mixing.pdf

Table 14.4: Sensitivity of different oscillation experiments.

 m^2

3+1 model 4 🚥 $\Delta m^2_{sterile} \sim 1 \; eV^2$ \square ν_{μ}

3

2

1

 ν_{e}

ν_τ

 $\Box v_s$

 Δm^2_{atm} Δm^2_{solar}

$$U_{3+1} = \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ \vdots & \vdots & U_{\mu4} \\ \vdots & \vdots & U_{\tau4} \\ U_{s1} & U_{s2} & U_{s3} & U_{s4} \end{bmatrix} P(\nu_{\mu} \to \nu_{\mu}) = 1 - \sin^{2}(2\theta_{\mu\mu}) \sin^{2}(1.27\Delta m_{41}^{2}L/E) \\ P(\nu_{\mu} \to \nu_{e}) = \sin^{2}(2\theta_{\mu e}) \sin^{2}(1.27\Delta m_{41}^{2}L/E)$$

 $x_{\rm osc} \approx 1 {\rm km}$

 $x_{\rm osc} \approx 1 {\rm km}$

G. V. Stenico

NuFact 2018 ~ LED at the SBN

G. V. Stenico

There is no equivalence between LED and "3+1" model

 $P(\nu_{\mu} \to \nu_{\mu}) = 1 - 4|U_{\mu 1}|^2 \left(S_1^{01}\right)^2 \left(|U_{\mu 1}|^2 \left(S_1^{00}\right)^2 + |U_{\mu 2}|^2 \left(S_2^{00}\right)^2 + |U_{\mu 3}|^2 \left(S_3^{00}\right)^2\right) \sin^2\left(1.27 \frac{\lambda_1^{(1)2} - \lambda_1^{(0)2}}{R_{\rm ED}^2} \frac{L}{E}\right)$

$$P(\nu_{\mu} \to \nu_{e}) = ?$$

Formalism

Formalism

