Removal and Binding Energies in Lepton Nucleus Scattering

Arie Bodek, University of Rochester

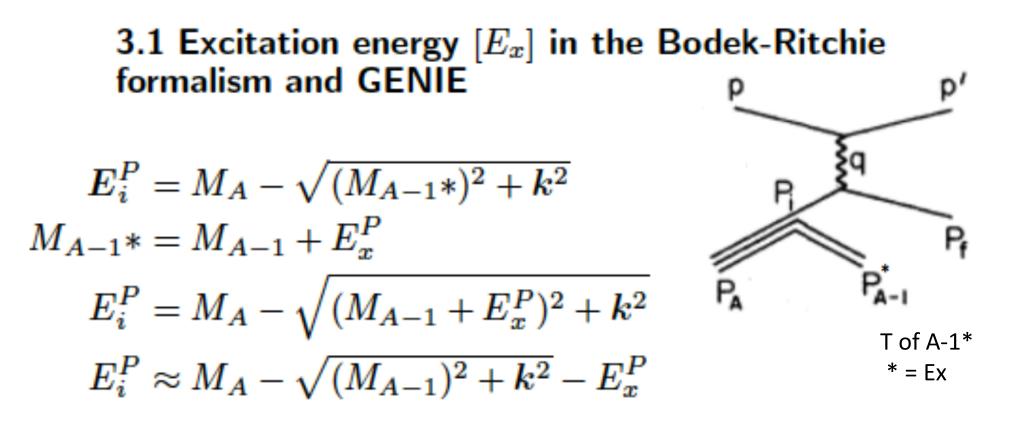
The 20th International conference on neutrinos from accelerators NUFAC 2018 WG 2: Thursday Aug 18, 2019

> Virginia Tech, Blacksburg, VA 15:30-16:00

https://indico.phys.vt.edu/event/34/sessions/205/#20180816

https://arxiv.org/abs/1801.07975 (to be published in EPJC)

For QE electron scattering the energy momentum δ function and the final state nucleon energy are given by


$$\delta[(E_i + \nu) - E_f] \\ E_f = \sqrt{(q+k)^2 + M^2}.$$
(1)

 $\mathsf{E}_{\mathsf{i}} = \mathsf{f}(\mathcal{E})$

 $\mathcal{E} = binding/removal energy parameter$ Which is defined differently in GENIE: Excitation energy $\mathcal{E} = \mathcal{E}_x(P,N)$ In NEUT: Smith-Moniz Interaction energy $\mathcal{E} = \epsilon_{SM}^{\prime P,N}$

other applications: Interaction energy $\mathcal{E} = \epsilon_R^{P,N}$

Impulse approx. Spectator A-1 Nucleus

Recoil A-1* system has kinetic energy T and excitation energy Ex

Ex is the binding energy parameter in the Bodek-Ritchie formalism

Ex is the parameter measured in early ee'P spectral function measurements

GENIE

(Bodek Ritchie 1981) Used in early spectral function experiments Excitation Energy

$$E_i^P = M_A - \sqrt{(M_{A-1} + E_x^P)^2 + k^2}$$

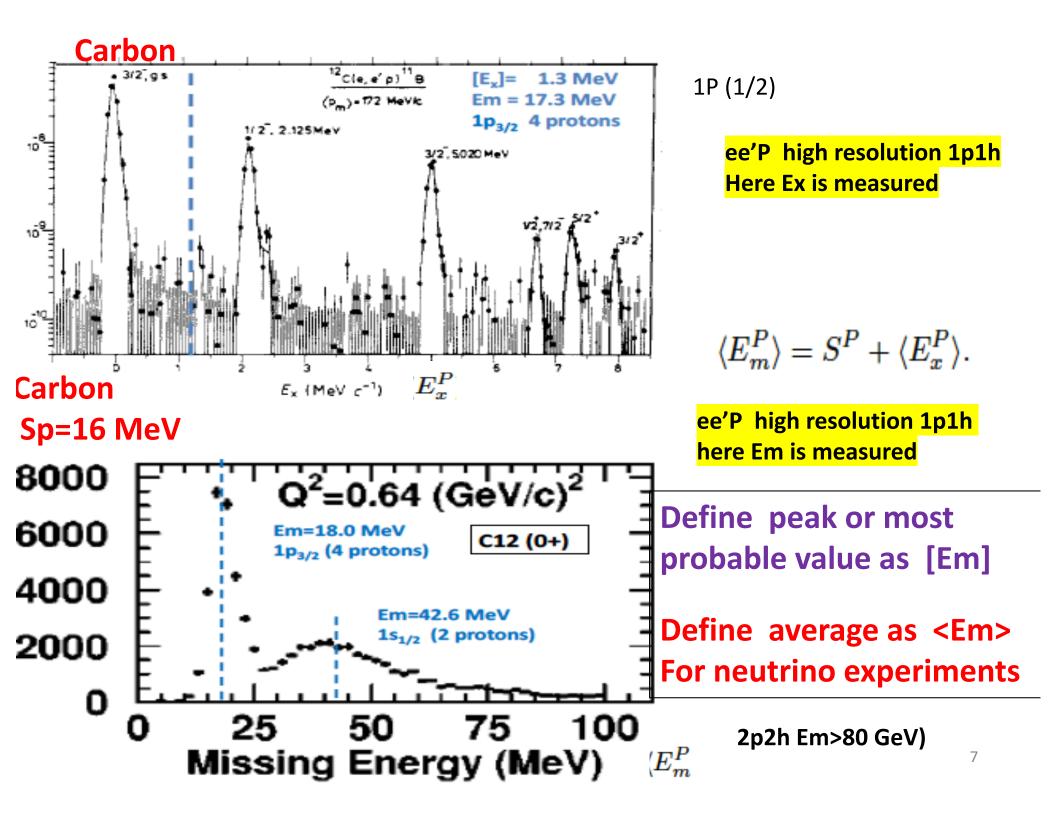
Modern spectral function experiments ee'P E_M = Removal or missing energy

$$E_i^P = M_A - \sqrt{(M_A - M + E_m^P)^2 + k^2}$$

$$\begin{split} M_A &= M_{A-1} + M_{p,n} - S^{P,N} \\ M_{A-1} &= M_A - M_{p,n} + S^{P,N} \\ \\ \langle E_m^P \rangle &= S^P + \langle E_x^P \rangle. \end{split}$$

both Formalisms Conserves momentum & Energy

They are equivalent


S^{P,N} =proton (Neutron) separation energy

S (P,N) = Energy it takes to to go from grounds state of atomic mass A to ground state of A-1 nucleus. Sp is tabulated in nuclear mass tables.

$^{A}_{Z}Nucl$	remove	_	remove	
	proton	S^P	neutron	S^N
	Spectator		Spectator	
$^{2}_{1}H$	N	2.2	Р	2.2
⁶ ₃ Li 1+	${}_{2}^{5}\text{He} \frac{3}{2}$ -	4.4	⁵ ₃ Li ³ / ₂ -	5.7
${}^{12}_{6}C 0+$	${}_{5}^{11}B \frac{3}{2}$ -	16.0	${}^{11}_{6}C \frac{3}{2}$ -	18.7
$^{16}_{8}O 0+$	$^{15}_{7}N \frac{1}{2}$ -	12.1	$^{15}_{8}O \frac{1}{2}$ -	15.7
$^{24}_{12}$ Mg 0+	$\frac{23}{11}Na \frac{3}{2} +$	11.7	$^{23}_{12}$ Mg $\frac{3}{2}+$	16.5
$^{27}_{13}\text{Al}\frac{5}{2}+$	$^{26}_{12}Mg \ 0+$	8.3	$^{23}_{12}$ Al 5+	13.1
$^{28}_{14}$ Si 0+	$^{27}_{13}\text{Al}\frac{5}{2}+$	11.6	$^{27}_{14}$ Si $\frac{5}{2}$ +	17.2
$^{40}_{18}\text{Ar}\frac{3}{2}+$	$^{39}_{17}$ CL $\frac{3}{2}$ +	12.5	³⁹ ₁₈ Ar ⁷ / ₂ -	9.9
$^{40}_{20}$ Ca 0+	$^{39}_{19}$ K $\frac{3}{2}$ +	8.3	$^{39}_{20}$ Ca $\frac{3}{2}$ +	15.6
${}^{51}_{23}V \frac{7}{2}$ -	⁵⁰ ₂₂ Ti 0+	8.1	$^{50}_{23}$ V 6+	11.1
${}^{56}_{26}$ Fe 0+	${}^{55}_{25}$ Mn ${}^{5}_{2}$ -	10.2	${}^{55}_{26}$ Fe ${}^{3}_{2}$ -	11.2
⁵⁸ ₂₈ Ni ³ / ₂ -	$^{58}_{27}$ Co 2+	8.2	87Ni 0+	12.2
$^{89}_{39}Y \frac{1}{2}$ -	${}^{88}_{38}$ Sr $\frac{1}{2}$ -	7.1	⁸⁸ ₃₉ Y 4-	11.5
$^{90}_{40}$ Zr 0+	$^{89}_{39}Y \frac{1}{2}$ -	8.4	$^{88}_{40}$ Zr $\frac{9}{2}$ +	12.0
$^{120}_{50}$ Sn 0+	$^{119}_{49}$ In $\frac{5}{2}$ +	10.1	$\frac{^{119}_{50}\text{Sn}}{\frac{1}{2}}$ +	8.5
$^{181}_{73}$ Ta $\frac{7}{2}$ -	$^{180}_{72}$ Hf 0+	5.9	¹⁸⁰ ₇₃ Ta 1+	7.6
$^{197}_{79}{ m Au}{}^{3}_{2}+$	$^{196}_{78}$ Pt 0+	5.8	¹⁹⁶ ₇₉ Au 2-	8.1
$^{208}_{82}$ Pb 0+	$^{207}_{81}$ TI $\frac{1}{2}$ +	8.0	$^{207}_{82}$ Pb $\frac{1}{2}$ -	7.4

S (P,N) is tabulated in nuclear mass tables

Table 1. The spin parity transitions and separation energies S^P , S^N and S^{N+P} when a proton or a neutron or both are removed from various nuclei. All energies are in MeV.

Bodek-Ritchie GENIE 2p2h process High momentum short range correlations

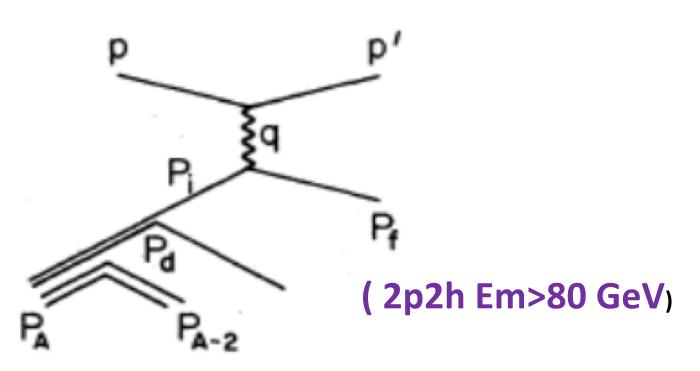


Fig. 4. 2p2h process: Scattering from an off-shell bound proton of momentum $p_i = k$ from two nucleon short range correlations (quasi-deuteron). There is an on-shell spectator (A-2) * nucleus and an on-shell spectator recoil neutron with momentum -k. The off-shell energy of the interacting bound proton is $E_i^P(SRC) = M_D - \sqrt{M_n + k^2} - \Delta_{SRC}^{N+P}$.

The 2p2hg process typically has missing energy more than 80 MeV.

Should be calculated separately from 1p1h (high momentum tail from short range correlations)

	Em e e'l	P n	neasureme	ents of leve	el removal	<mark>energy</mark>
	$\frac{\text{Nucleus}}{S^P}$		${}^{12}_{6}C$ 16.0	Carbon		
	ee'p		shell removal	shell removal	shell removal	
	$\epsilon_R^P = E_m + T_{A-1}$		energy E_m^P	energy E_m^P	energy E_m^P	width FWHM
			Saclay	NIKHEF	Tokyo	Tokyo
	$1s_{1/2}$	2	38.1 ± 1.0	42.6 ± 5	36.9 ± 0.3	19.8 ± 0.5
	$1p_{3/2,1/2}$	4	17.5 ± 0.4	17.3 ± 0.4	15.5 ± 0.1	$6.9{\pm}0.1$
	$1d_{5/2,3/2}$					
	$2s_{1/2}$					
	1f _{7/2}				1.4	
	T_{A-1}		1.4	1.4	1.4	
M	ean $\langle E_m^P \rangle^{levels}$	6	$\langle 24.4\pm2 angle$	$\langle {f 25.7\pm2} angle$	$\langle 22.6\pm3 angle$	
1						
	levels removed		1s	1s	1s	
	$[E^P_m]^{levels}_{1s}$	4	$[17.5\pm1]$	$[17.3\pm0.4]$	$[15.5\pm1]$	
P	$\begin{array}{l} eak & [E^P_m]_{1s1p}^{levels} \\ & [E^P_m]_{est}^{levels} \end{array}$	4	[17 5 1]	[17 2 0 4]	[15 5 1 1]	
1	$[L_m]_{est}$	4	$[17.5\pm1]$	$[17.3\pm0.4]$	$[15.5\pm1]$	
	L 40					
	difference					(ave)
	$\langle E_m \rangle^{levels} - [E_m]^{levels}_{est}$		6.9 ± 3	8.4 ± 3	$7.1{\pm}3$	(7.3)

Table 5. Results of a DPWA analysis of the "level removal energies" for different shell-model levels done by the Saclay[26] and Tokyo[27–29] ee'p experiments on ${}_{6}^{12}C$, ${}_{14}^{28}Si$ and ${}_{28}^{58}Ni$. Also shown are results of our re-analysis of the Moniz[10] data. Values of the [peak] are shown in square brackets and values for the $\langle mean \rangle$ are shown in angular brackets.

Calculating average removal energy from level removal energy measured in ee'P

	Lin e e r measurements of level temoval energy											
	$\frac{\text{Nucleus}}{S^P}$		${}^{12}_{6}C$ 16.0	Carbon				$^{28}_{14}Si$ 11.6		$\frac{58}{28}Ni$ 8.2		
	ee'p		shell removal	shell removal	shell removal			shell removal		shell removal		
	$\epsilon_R^P = E_m + T_{A-1}$		$\begin{array}{c} \text{energy} \\ E_m^P \end{array}$	$\begin{array}{c} \text{energy} \\ E_m^P \end{array}$	$\begin{array}{c} \text{energy} \\ E_m^P \end{array}$	width FWHM		$\begin{array}{c} \text{energy} \\ E_m^P \end{array}$		$\begin{array}{c} \text{energy} \\ E_m^P \end{array}$		
			\mathbf{Saclay}	NIKHEF	Tokyo	Tokyo		Saclay		L_m Saclay		
	$1s_{1/2}$	2	38.1 ± 1.0	42.6 ± 5	$36.9 {\pm} 0.3$	$19.8 {\pm} 0.5$	2	51.0	2	62.0		
	$1p_{3/2,1/2}$	4	$17.5 {\pm} 0.4$	$17.3 {\pm} 0.4$	$15.5 {\pm} 0.1$	$6.9 {\pm} 0.1$	6	32.0	6	45.0		
	$1d_{5/2,3/2}$						4	$16.1{\pm}0.8$	10	21.0		
	$2s_{1/2}$						2	$13.8 {\pm} 0.5$	2	$14.7 {\pm} 0.2$		
	$1f_{7/2}$								8	$9.3{\pm}0.3$		
	T_{A-1}		1.4	1.4	1.4			0.7		0.4		
M	$\operatorname{ean} \xrightarrow{\langle E_m^P \rangle^{levels}}$	6	$\langle 24.4\pm2 angle$	$\langle 25.7\pm2 angle$	$\langle 22.6\pm3 angle$		14	$\langle 27.6\pm2 angle$	28	$\langle 25.3\pm2 angle$		
L												
	levels removed		1s	1s	1s			1s or 1s1p		1s or 1s1p		
	$[E^P_m]^{levels}_{1s}$	4	$[17.5\pm1]$	$[17.3\pm0.4]$	$[15.5\pm1]$		12	$[23.7\pm1]$	26	$[22.5\pm1]$		
D	eak $[E_m^P]_{1s1p}^{levels}$						6	$[15.3\pm1]$	20	$[15.7\pm1]$		
F	$[E_m^P]_{est}^{levels}$	4	$[17.5\pm1]$	$[17.3 \pm 0.4]$	$[15.5\pm1]$		9	$[19.5 \pm 4.2]$	23	$[19.1 \pm 3.4]$		
	difference					(ave)						
	$\langle E_m \rangle^{levels} - [E_m]^{levels}_{est}$		$6.9{\pm}3$	$8.4{\pm}3$	7.1 ± 3	(7.3)		$8.1{\pm}4.2$		$6.2{\pm}3.4$		

Em e e'P measurements of level removal energy

Table 5. Results of a DPWA analysis of the "level removal energies" for different shell-model levels done by the Saclay[26] and Tokyo[27–29] ee'p experiments on ${}_{6}^{12}C$, ${}_{14}^{28}Si$ and ${}_{28}^{58}Ni$. Also shown are results of our re-analysis of the Moniz[10] data. Values of the [peak] are shown in square brackets and values for the $\langle mean \rangle$ are shown in angular brackets.

Calculating average removal energy from level removal energy measured in ee'P

3.4 Interaction energy $\epsilon_R^{P,N}$ = Em plus kinetic energy of recoil A-1* system

The fully relativistic expression for the interaction energy ϵ_R^P of a proton is defined as: Used for: $Q_{QE-\mu}^2 E_{\mu}^{QE-\mu}$

$$E_i^P = M - \epsilon_R^P. \tag{8}$$

For

$$E_i^P = M_A - \sqrt{(M_A - M + E_m^P)^2 + k^2}, \qquad (9)$$

we obtain

$$\epsilon_R^P = E_m^P + T_{A-1} = S^P + E_x + T_{A-1}.$$
(10)

Here, $T_{A-1} = \sqrt{k^2 + M_{A-1}^2 - M_{A-1}}$ is the kinetic energy of the recoiling (A-1) spectator nucleus.

$$\delta[(E_i + \nu) - E_f]$$
$$E_f = \sqrt{(q+k)^2 + M^2}.$$

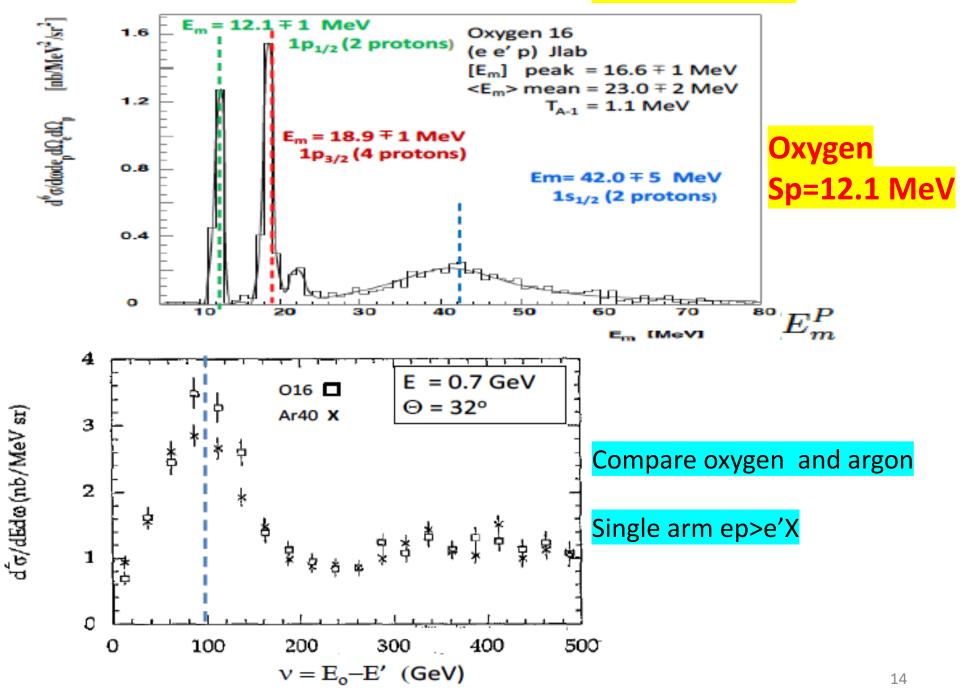
3.6 The Smith-Moniz formalism

Different definition of E_i

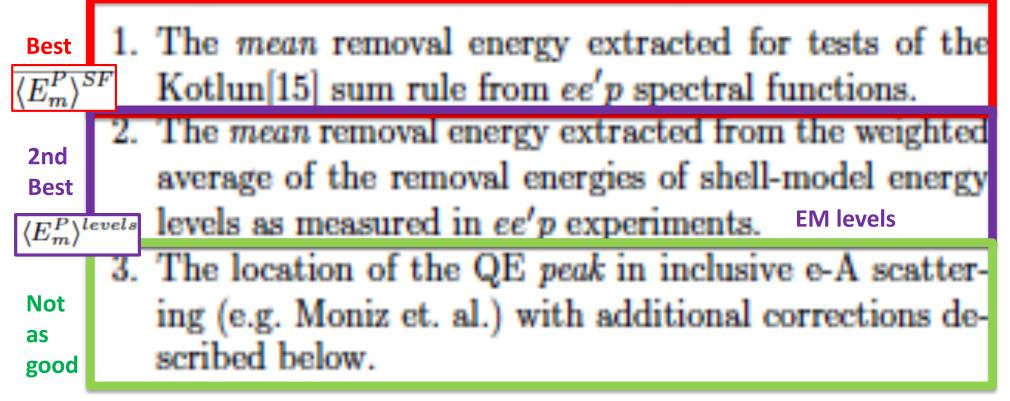
Smith and Moniz [5] use on-shell relativistic kinematics as follows, include kinetic on shell compensate with larger binding

$$E_i = (k^2 + M_{p,n}^2)^{1/2} - \epsilon_{SM}^{\prime P,N}.$$

Compare to $E_i^P = M - \epsilon_R^P$. (interaction energy)


$$\begin{split} \epsilon_{SM}^{\prime P,N} &= \epsilon_R^{P,N} + T_{av} \\ T_{av}^P &= \langle (k^2 + M_p^2)^{1/2} - M_p \rangle \\ &\approx \frac{\langle k^2 \rangle}{2M_p}. \end{split}$$

Smith-Moniz Interaction energy


non-relativistic approximation (only correct on average)

Symbol	
	Spectator Nucleus Excitation
$E_x^{P,N}$	Used in spectral <u>functions</u>
	implemented in GENIE[1]
$S^{P,N}$	Separation Energy
$= M_{A-1} + M_{p,n} - M_A$	Nuclear Data Tables
	(measured) $[19, 20]$
	removal (or missing) energy
$E_{m}^{P,N} = S^{P,N} + E_{x}^{P,N}$	used in spectral functions
	interaction energy is $\epsilon_R^{P,N}$
$\epsilon_{R}^{P,N} = E_{m}^{P,N} + T_{A-1}$	$E_i = M - \epsilon_R^{P,N}$
$\epsilon_R^{P,N} = E_m^{P,N} + T_{A-1}$ $T_{A-1} =$	used in $E_{\nu}^{QE-\mu}, Q_{QE-\mu}^2,$
$=\sqrt{k^2+M_{A-1}^2}-M_{A-1}$	and Q_{QE-P}^2 , also used in
$pprox rac{k^2}{2M_{A-1}}$	effective spectral functions[8]
$\epsilon_{SM}^{\prime(P,N)} = \epsilon_R^{P,N} + T_{av}^{P,N}$	$\epsilon_{SM}^{\prime(P,N)}$ is Smith Moniz[11]
$T = \sqrt{k^2 + M^2} - M$	Interaction energy
	$E_i = M + T - \epsilon_{SM}^{\prime(P,N)}$
$\langle k^2 angle = 0.6 K_F^2$	used in NEUT-NUANCE[3,4]

[Peak] vs <Mean>

We can extract interaction and removal energy parameters from electron scattering data from a variety of modern experiments in three different ways.

All should agree if done correctly

5.1 Direct measurements of $\langle E_m^P \rangle^{SF}$ and $\langle T \rangle^{SF}$

Koltun Sum rule

These two quantities are directly extracted from spectral function measurements in analyses that test the Koltun sum rule [12]. The Koltun's sum rule states that

$$\frac{E_0}{A} = \frac{1}{2} \left[\langle T \rangle^{SF} \frac{A-2}{A-1} - \langle E_m^P \rangle^{SF} \right], \tag{34}$$

where E_0/A is the nuclear binding energy per particle obtained from nuclear masses and includes a (small) correction for the Coulomb energy,

$$\langle T \rangle^{SF} = \int d^3k \ dE_m \ \frac{k^2}{2M} P_{SF}(k, E_m) \ , \qquad (35) \ \text{Ave.} < \text{KE} >$$

Exactly what we need For momentum distribution And binding

$$\langle E_m \rangle^{SF} = \int d^3k \ dE_m \ E_m \ P_{SF}(k, E_m) \ .$$
 (36) Ave. < E_m>

For precise tests of the Koltun sum rule a small contribution from three-nucleon processes should taken into account.

<mark>Koltun Sum rule measurements</mark>

	Target	Q2	$\langle T \rangle$	$\langle E_m \rangle$
			$E_{m}^{P} < 80$	$E_m^P < 80$
	¹² ₆ C	0.6	15.9	26.0
	Jlab Hall C [22]	1.2	16.3	25.8
		1.8	16.0	26.6
		3.2	17.3	26.2
	Jlab $\langle T \rangle^{SF}, \langle E_m^P \rangle^{SF}$	Ave.	$16.4{\pm}0.6$	$26.1{\pm}0.4$
	Saclay $\langle T \rangle^{SF}, \langle E_m^P \rangle^{SF}$		$16.9 {\pm} 0.5$	$23.4{\pm}0.5$
	Saclay $\langle E_m^P \rangle^{levels}$			$24.4{\pm}2$
Compare Fermi g	$\Gamma F = 221 \pm 0$		15.5 ± 1.2	
8	Target	Q2	$\langle T \rangle$	$\langle E_m \rangle$
	$^{28}_{14}Si$			
	Saclay $\langle T \rangle^{SF}$, $\langle E_m^P \rangle^{SF}$		17.0 ± 0.6	$24.0{\pm}0.6$
	Saclay $\langle E_m^P \rangle^{levels}$			27.6 ± 2
Compar			18.1 ± 1.3	
<mark>Fermi g</mark>	<mark>as</mark>			

Target	Q2	$\langle T \rangle$	$\langle E_m \rangle$
$\begin{array}{c} {}^{40}_{20}\text{Ca}\\ \text{Saclay}\; \langle T\rangle^{SF}, \; \langle E^P_m\rangle^{SF}\\ \text{Saclay}\; \langle E^P_m\rangle^{levels} \end{array}$		$16.6{\pm}0.5$	$27.8{\pm}0.5$ $26.5{\pm}2$
$K_F=239\pm5$		18.1 ± 1.3	20.012
Target	Q2	$\langle T \rangle$	$\langle E_m \rangle$
⁵⁶ ₂₆ Fe	0.6	20.4	30.7
Jlab Hall C [22]	1.2	18.1	29.4
	1.8	17.8	27.8
	3.2	19.1	28.8
Jlab $\langle T \rangle^{SF}, \langle E_m^P \rangle^{SF}$	Ave.	18.8 ± 1.0	$29.2{\pm}1.1$
$K_F = 254 \pm 5$		$20.4{\pm}1.4$	
Target	Q2	$\langle T \rangle$	$\langle E_m \rangle$
$\begin{array}{c} {}^{58}_{28}\mathbf{Ni}\\ {\rm Saclay}\left< T \right>^{SF}, \left< E_m^P \right>^{SF}\\ {\rm Saclay}\left< E_m^P \right>^{levels} \end{array}$		18.8 ± 0.7	$25.0{\pm}0.7$ $25.3{\pm}2$
$K_F = 257 \pm 5$		20.9 ± 1.4	
Target	Q2	$\langle T \rangle$	$\langle E_m \rangle$
$^{197}_{79}{ m Au}$	0.6	20.2	25.5
Jlab Hall C [22]	1.2	18.4	25.7
	1.8	18.3	24.1
	3.2	19.4	26.1
Jlab $\langle T \rangle^{SF}, \langle E_m^P \rangle^{SF}$	Ave.	$19.1{\pm}0.8$	$25.3{\pm}0.8$
$K_F = 245 \pm 5$		$19.0{\pm}1.3$	

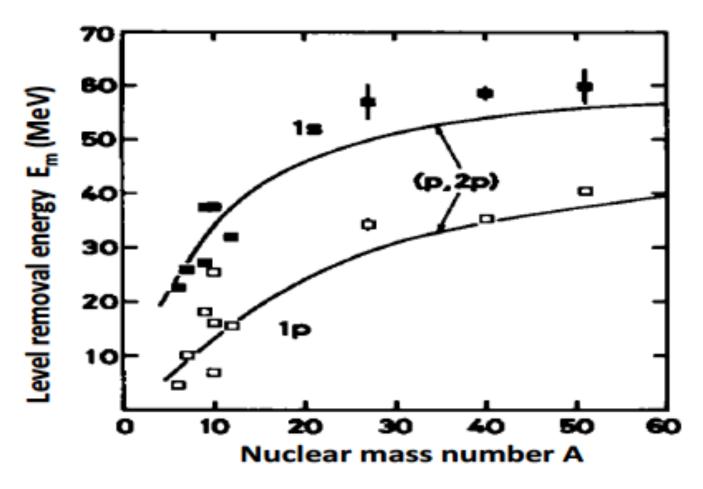
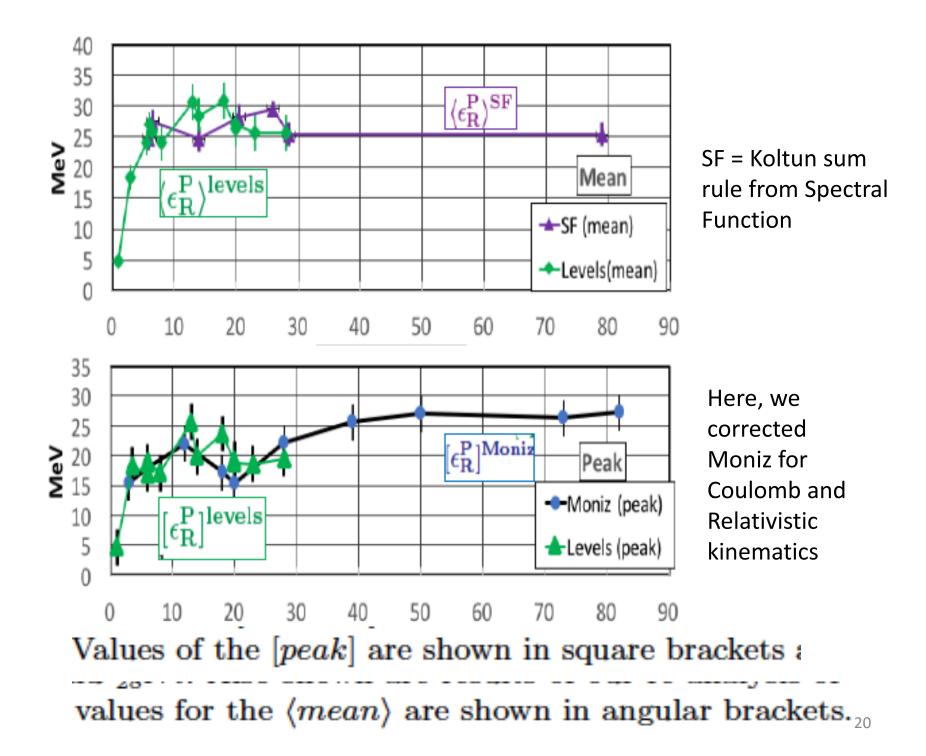
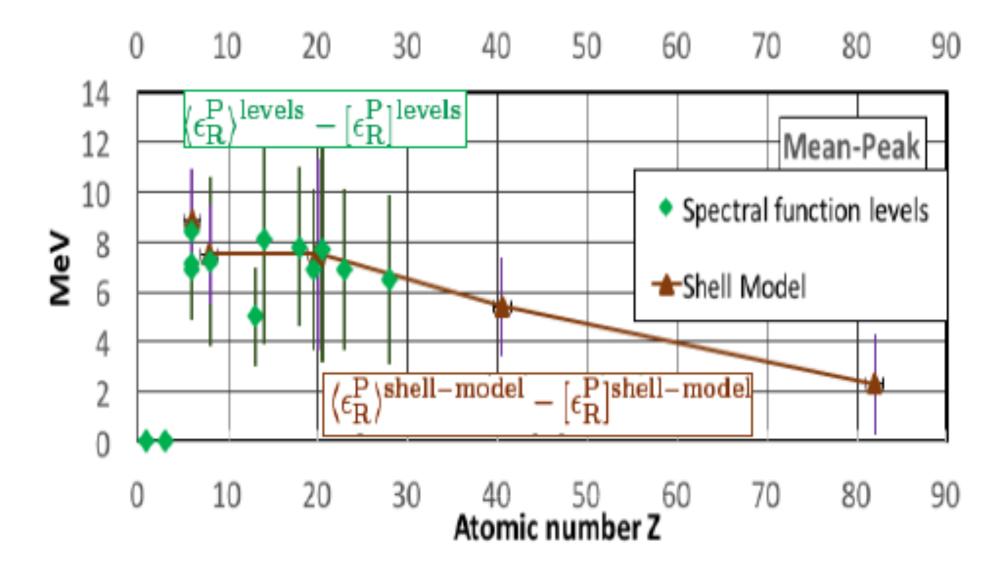
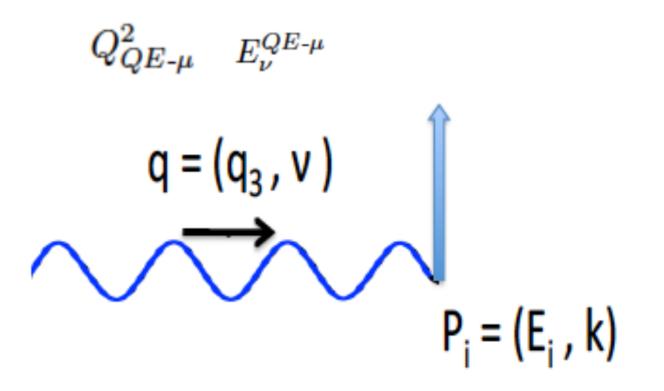
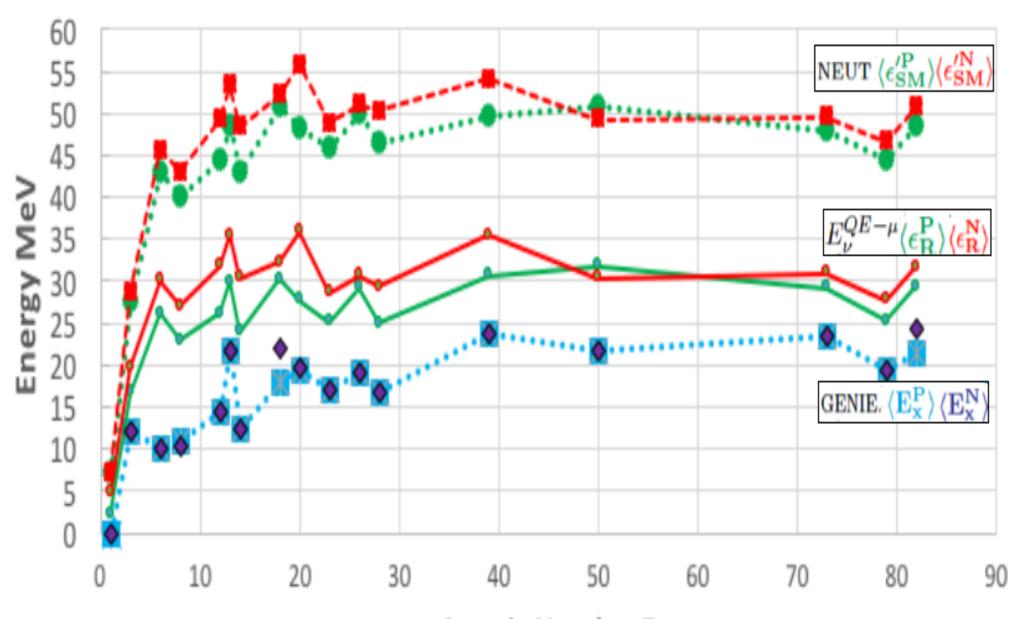




Fig. 4. Single "level removal energies" $\langle E_m^P \rangle^{1s}$ and $\langle E_m^P \rangle^{1p}$ for the 1s and 1p states, respectively. The data points are measurements done in ee'p experiments [26]. The solid curves represent interpolations of the "level removal energies" observed in (p, 2p) experiments [27]. The "level removal energies" for the 1s and 1p states measured in ee'p experiments are systematically higher than those observed in (p, 2p) experiments.




Fig. 3. Scattering from an off-shell bound nucleon of momentum k which is perpendicular to the direction of the virtual photon. This is the configuration at the *peak* of the Fermi motion smearing. At the *peak* of the distribution the z component of the nucleon momentum (k_z) is zero. For neutrino QE scattering we define $E'_{\mu} = T_{\mu} + m_{\mu} + |V_{eff}|$ as the total Coulomb corrected muon energy. The adjusted bound neutron energy in the laboratory system is $M'_n = M_n - \langle \epsilon^N_R \rangle$. We define $(M'_p)^2 = M_p^2 + \langle k_{T-N}^2 \rangle$ to account for the fact that the final state proton has the same average transverse momentum as that of the initial state neutron $\langle k_{T-N}^2 \rangle$ with respect to the neutrino-muon scattering plane. From energy-momentum conservation we get:

$$E_{\nu}^{QE-\mu} = \frac{2(M'_{n})E'_{\mu-} - ((M'_{n})^{2} + m_{\mu}^{2} - (M'_{p})^{2})}{2 \cdot [(M'_{n}) - E'_{\mu-} + (\sqrt{(E'_{\mu-})^{2} - m_{\mu}^{2}})\cos\theta_{\mu-}]} (39)$$
$$Q_{QE-\mu}^{2} = -m_{\mu}^{2} + 2E_{\nu}^{QE}(E'_{\mu-} - \sqrt{(E'_{\mu-})^{2} - m_{\mu}^{2}}\cos\theta_{\mu-}).$$

$$Q_{QE-P}^2 = (M'_n)^2 - (M'_p)^2 + 2M'_n[M_p + T_p - M'_n].$$

Should use these updated equations with the correct interaction energy.y If we set Veff=0, K_T=0, and use wrong interaction energy, then we get what is currently being used.

23

Atomic Number Z

People have been using 27 MeV for Carbon. Genie users should use 10 MeV, Neut users should use 46 MeV

People have been using 27 MeV for Carbon. Genie users should use 10 MeV, Neut users should use 46 MeV Binding energy is the largest systematic error in Δm_{32}^2

The two-neutrino transition probability can be written as

$$P_{\nu_{\alpha} \to \nu_{\beta}}(L) = \sin^2 2\vartheta \, \sin^2 \left(1.27 \, \frac{\left(\Delta m^2 / \mathrm{eV}^2 \right) \left(L / \mathrm{km} \right)}{\left(E_{\nu} / \mathrm{GeV} \right)} \right).$$

The location of the first oscillation maximum in neutrino energy $(E_{\nu}^{1st-min})$ is when the term in brackets is equal to $\pi/2$. An estimate of the extracted value of Δm^2 is given by:

$$\Delta m^2 = \frac{2E_{\nu}^{1st-min}}{1.27\pi L}.$$
 (2)

For example, for the T2K experiment [12] L = 295 Km, and E_{ν} is peaked around 0.6 GeV. The T2K experiment[12] reports a value of

 $\Delta m_{32}^2 = (2.434 \pm 0.064) \times 10^{-3} \text{ eV}^2.$

S. Dennis, talk at Nufact 2018, Virginia Tech, Blacksburg,

A 15 MeV change in binding energy yields a change in the extracted value of Δm_{32}^2 of

 $0.031 \times 10^{-3} \text{ eV}^2$

With our analysis the binding energy uncertainty is 3 MeV so this error is reduced by a factor of 5

> Combined analysis: **Christoph Andreas Ternes** Nufact 2018

$$\Delta m^2_{32}$$
 =(2.50 +- 0.03)× 10^{-3} eV²

Need to make sure that binding **Energy is treated consistently Between experiments.**

^A ZNucl	$\begin{array}{c} \langle \epsilon_R^{P,N} \rangle \\ \text{relativ.} \\ \text{corected} \\ \hline E_m + T_{A-1}^{P,N} \\ \text{use for} \\ E_{\nu}^{QE-\mu} \\ Q_{QE-\mu}^2 \\ Q_{QE-\mu}^2 \\ Q_{QE-P}^2 \\ \langle \epsilon_R^P \rangle \end{array}$	$\langle \epsilon_R^N \rangle$	$\langle \epsilon_{SM}^{\prime P,N} \rangle$ SMITH- MONIZ $\epsilon_R^{P,N} + T$ used in NEUT interaction energy $\langle \epsilon_{SM}^{\prime P} \rangle, \langle \epsilon_{SM}^{\prime N} \rangle$	$\langle E_x^{P,N} \rangle$ BODEK- RITCHIE $E_m^{P,N} \cdot S^{P,N}$ used in GENIE excitation energy $\langle E_x^P \rangle, \langle E_x^N \rangle$	Red is of interest to neutrino experiments: carbon, oxygen, argon, calcium, iron, lead Measurment method used
$\binom{2}{1}H$	4.7	4.7	7.2, 7.2	0.0, 0.0	Binding energy
⁵ ₃ Li	18.4 ± 3	19.7 ± 3	27.5, 28.8	12.2, 12.2	$\langle \epsilon_R \rangle^{levels}$ Tokyo [24,25,26]
¹² ₆ C	27.5±3	30.1 ± 3	43.0, 45.6	10.1, 10.0	Koltun SR $\langle \epsilon_R \rangle^{SF}$ Jlab Hall C [22]
16 8	24.1±3	27.0±3	40.1, 43.0	10.9, 10.2	$\langle \epsilon_R \rangle^{levels}$ Jlab Hall A [28]
$f_{12}^{*}Mg$	27.0 ± 3	31.8 ± 3	44.5, 49.3	14.5, 14.5	updated $\langle \epsilon_R^P \rangle^{Moniz}$ [4]
$^{27}_{13}Al$	30.6 ± 3	35.4 ± 4	48.5, 53.3	21.6, 21.6	$\langle \epsilon_R \rangle^{levels}$ Tokyo [24, 25, 26]
$^{28}_{14}Si$	24.7 ± 3	30.3 ± 3	42.8, 48.4	12.4, 12.4	Koltun SR $\langle \epsilon_R \rangle^{SF}$ Saclay [23]
$^{40}_{18}Ar$	30.9 ± 4	32.3 ± 4	50.8, 52.2	17.8, 21.8	$\langle \epsilon_R \rangle^{levels}$ Tokyo [24,25,26] +Shell model
$^{40}_{20}Ca$	28.2 ± 3	35.9 ± 4	48.1, 55.8	19.4, 19.8	Koltun SR $\langle \epsilon_R \rangle^{SF}$ Saclay [23]
50V	25.6±3.	28.6 ± 4	45.8, 48.8	17.0, 17.0	$\langle \epsilon_R \rangle^{levels}$ Tokyo [24, 25, 26]
$\frac{56}{26}Fe$	29.6 ± 3	30.6 ± 3	50.0, 51.0	19.0, 19.0	Koltun SR $\langle \epsilon_R \rangle^{SF}$ Jlab Hall C [22]
28 Ni	25.4 ± 3	29.4±3	46.3, 50.3	16.8, 16.8	Koltun SR $\langle \epsilon_R \rangle^{SF}$ Saclay [23]
89 39Y	31.0±3	35.4±3	49.7, 54.1	23.6, 23.6	updated $\langle \epsilon_R^P \rangle^{Montz}$ [4]
$^{118.7}_{50}Sn$	32.0 ± 3	30.4 ± 3	50.9, 49.3	21.7, 21.7	updated $\langle \epsilon_R^P \rangle^{Montz}$ [4]
$\frac{181}{73}Ta$	29.3 ± 3	31.0 ± 3	47.8, 49.5	23.3, 23.3	updated $\langle \epsilon_R^P \rangle^{Moniz}$ [4]
¹⁹⁷ ₇₉ Au	25.4 ± 3	27.7±3	44.4, 46.7	19.5, 19.5	Koltun SR $\langle \epsilon_R \rangle^{SF}$ Jlab Hall C [22]
208 Pb 82 Pb	29.5±3	31.7±3	48.5, 50.7	21.4, 24.2	updated $\langle \epsilon_R^P \rangle^{Moniz}$ [4]

Corrections to Moniz Measurements Appendix

	A Z	K_F^P, K_F^N Moniz	$K_F^P \ \psi'[13]$	$E_{ m shift} \ \psi'[13]$	$\begin{bmatrix} \epsilon_M^P \end{bmatrix}$ pub.	$\frac{ V_{eff} }{\text{Gueye}}$	$\begin{bmatrix} \epsilon_{cc}^{P} \end{bmatrix}$ Coul.	$[\epsilon_R^P]$ relativ.	$\langle mean \rangle$ minus	$\langle \epsilon_R^P \rangle$ relativ.
e-A	Nucl.	± 5	fit	ψ [13] fit	Moniz	ref.[14]	corretd	corretd	[peak]	corretd
expt.		MeV/c		MeV	MeV	MeV	MeV	[peak]	est.	$\langle mean \rangle$
Moniz[10]	${}^{6}_{3}Li$	169,169	165	15.1	17 ± 3	1.4	16.3	15.4 ± 3	0.0	15.4 ± 3
Moniz	$^{12}_{6}C$	221,221	228	20.0	25 ± 3	$3.1 {\pm} 0.25$	23.6	18.0 ± 3	7.3 ± 2	$25.3{\pm}4$
Moniz	$^{24}_{12}Mg$	$235,\!235$	230	25.0	32 ± 3	4.8	29.4	$22.0{\pm}3$	(5.0 ± 3)	27.0 ± 4
Frascati[22]	$^{40}_{18}Ar$	251,263		-	-	6.6	-	17.2 ± 5	7.8 ± 3.4	25.0 ± 5
Moniz	$^{40}_{20}Ca$	251,251	241	28.0	28 ± 3	$7.4{\pm}0.6$	24.6	15.4 ± 3	7.3 ± 3.2	22.7 ± 5
Moniz	$\frac{58.7}{28}Ni$	257,269	245	30.0	36 ± 3	9.8	31.9	22.1 ± 3	6.5 ± 3.4	28.6 ± 5
Moniz	$^{89}_{39}Y$	243,263	245		39 ± 3	11.6	33.6	25.6 ± 3	(5.4 ± 3)	$31.0{\pm}4$
Shell-model	$^{90}_{40}Zr$	243,263	-		-		-	-	5.4 ± 3	-
Moniz	$^{118.7}_{50}Sn$	$245,\!270$	245	28.0	42 ± 3	13.6	35.0	27.0 ± 3	(5.0 ± 3)	$32.0{\pm}4$
jlab[14]	$^{154}_{64}Gd$	$245,\!272$	-		-	$15.9{\pm}1.2$	-	-	-	-
Moniz	$^{181}_{73}Ta$	242,271	245		42 ± 3	17.3	33.9	26.3 ± 3	(3.0 ± 3)	29.3 ± 4
Moniz	$^{208}_{82}Pb$	245,277	248	31.0	44 ± 3	18.9 ± 1.5	35.2	27.2 ± 3	2.3 ± 3	$29.5{\pm}4$

Table 3. A summary of our re-extractions of the interaction energy parameters from the Moniz[10] analysis. Also shown are results for $^{40}_{18}Ar$ from the Frascati[22] e-A inclusive experiment. All energies are in MeV. For details see section 4.13.