How different can the v_µ and v_e cross sections be?

Artur M. Ankowski SLAC, Stanford University

based on Phys. Rev. C 96, 035501 (2017)

20th International Workshop on Neutrinos from Accelerators (NuFact2018), Blacksburg, VA, Aug 12–18, 2018

Outline

1) Motivation

- Why do we need precise cross sections for v_{ρ} 's?
- How are the v_e and v_u cross sections related?

2) When is the v_e cross section higher then the v_u one?

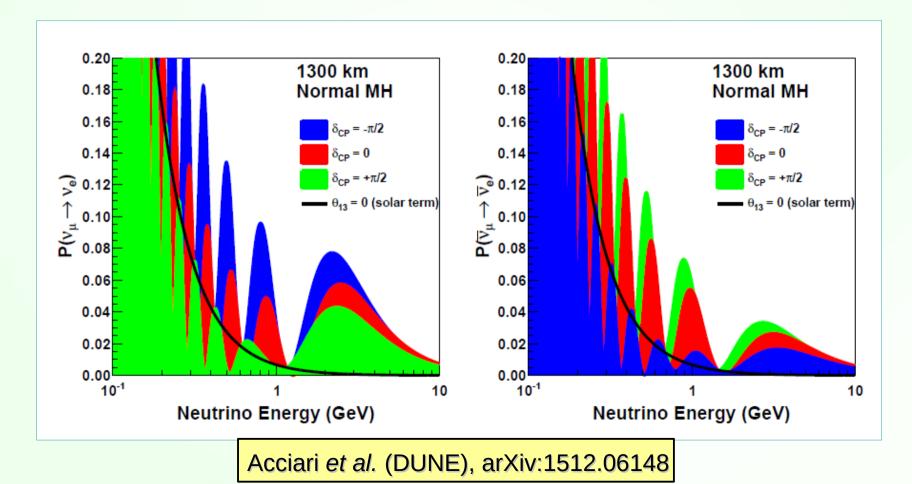
- Fermi gas with and without Pauli blocking
- Shell model and the spectral function

3) Should we be concerned about model differences?

4) Summary

Motivation

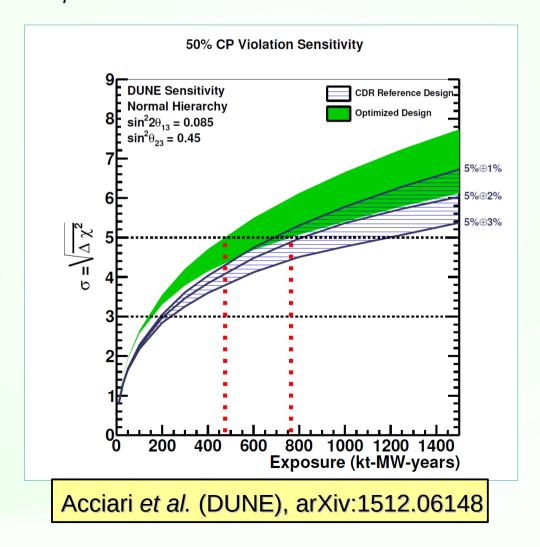
δ_{CP} from ∇_{e}^{o} event distributions To find P($\nabla_{\mu}^{o} \rightarrow \nabla_{e}^{o}$) from event distributions, precise ∇_{e}^{o} cross sections are necessary.



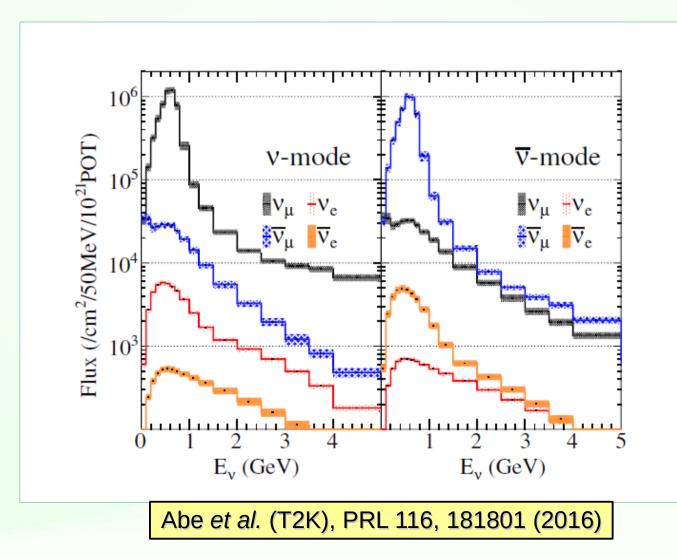
4

How relevant is the precision?

Dependence of DUNE's \mathcal{F} sensitivity on exposure for $\sigma(v_e)/\sigma(v_u)$ uncertainty between 1% and 3%.

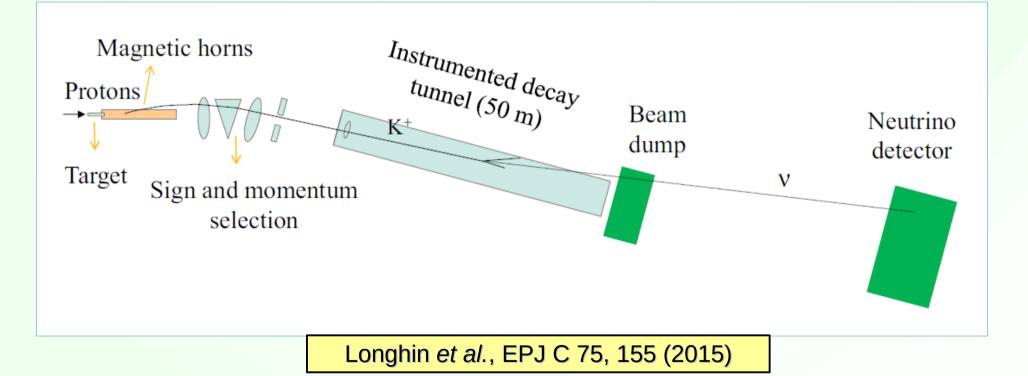


Measurement in near detector Event statistics lower ~100 times for v_e 's then for v_μ 's. Higher flux and detector-response uncertainties.



Measurement in near detector

New concept of tagging $K^+ \rightarrow e^+ v_e \pi^0$ events should allow the v_e cross section determination with 1% uncertainty.



Charged-Current Cross section

Well-known dependence on the charged-lepton's mass

$$\frac{d\sigma}{d\omega d|\mathbf{q}|} = \frac{(G_F \cos \theta_C)^2}{2\pi} \frac{|\mathbf{q}|}{|\mathbf{k}|^2} \Big[v_{CC} R_{CC}(\omega, |\mathbf{q}|) + v_{CL} R_{CL}(\omega, |\mathbf{q}|) + v_{T'} R_{T'}(\omega, |\mathbf{q}|) + v_{T'} R_{T'}(\omega, |\mathbf{q}|) \Big]$$
$$+ v_{LL} R_{LL}(\omega, |\mathbf{q}|) + v_T R_T(\omega, |\mathbf{q}|) + v_{T'} R_{T'}(\omega, |\mathbf{q}|) \Big]$$

$v_{CC} = E_k E_{k'} + k_x k'_x + k_z k'_z,$	
$v_{CL} = -2(E_k k_z' + E_{k'} k_z),$	
$v_{LL} = E_k E_{k'} - k_x k'_x + k_z k'_z,$	
$v_T = E_k E_{k'} - k_z k'_z,$	
$v_{T'} = 2(E_{k'}k_z - E_kk'_z),$	

$$k_x = \frac{|\mathbf{k} \times \mathbf{k}'|}{|\mathbf{q}|} = k'_x,$$

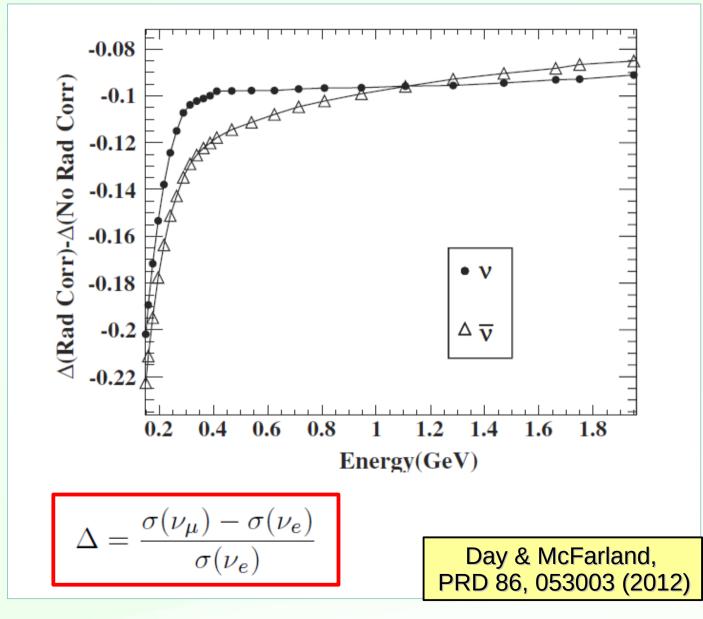
$$k_y = 0 = k'_y,$$

$$k_z = \frac{|\mathbf{k} \cdot \mathbf{q}|}{|\mathbf{q}|},$$

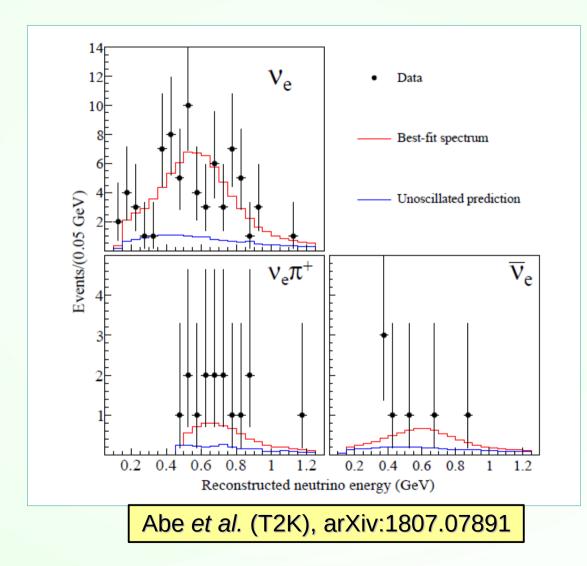
$$k'_z = \frac{|\mathbf{k}' \cdot \mathbf{q}|}{|\mathbf{q}|},$$

See e.g. Amaro et al., PRC 71, 015501 (2005)

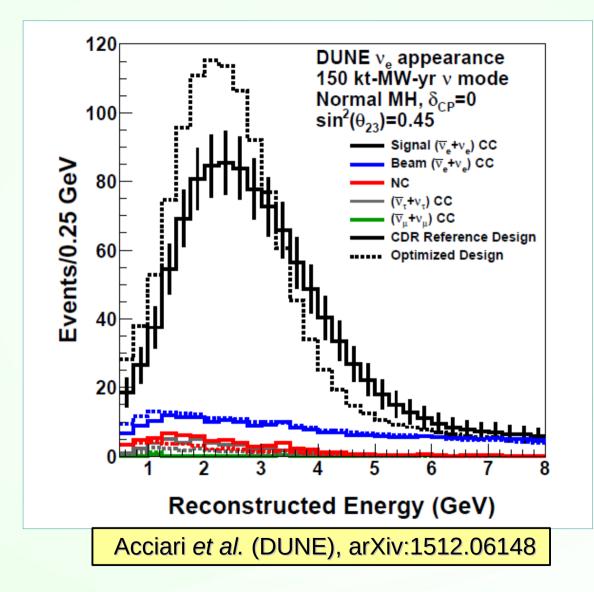
Radiative corrections



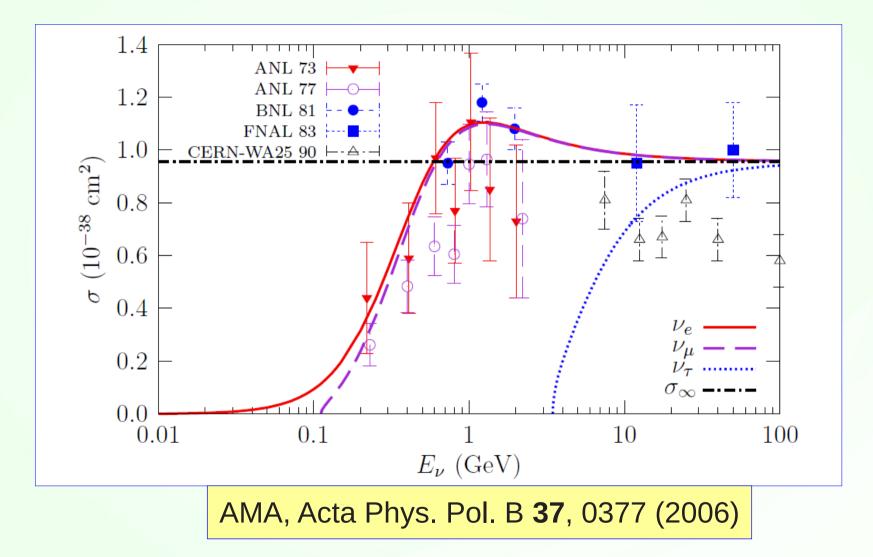
Spectra in T2K



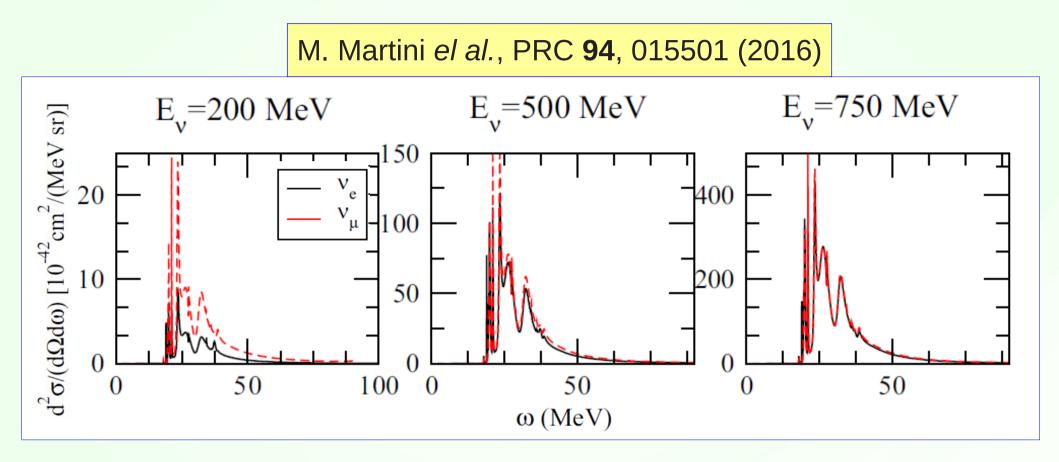
Expected spectra in DUNE



Free nucleon CC QE cross section

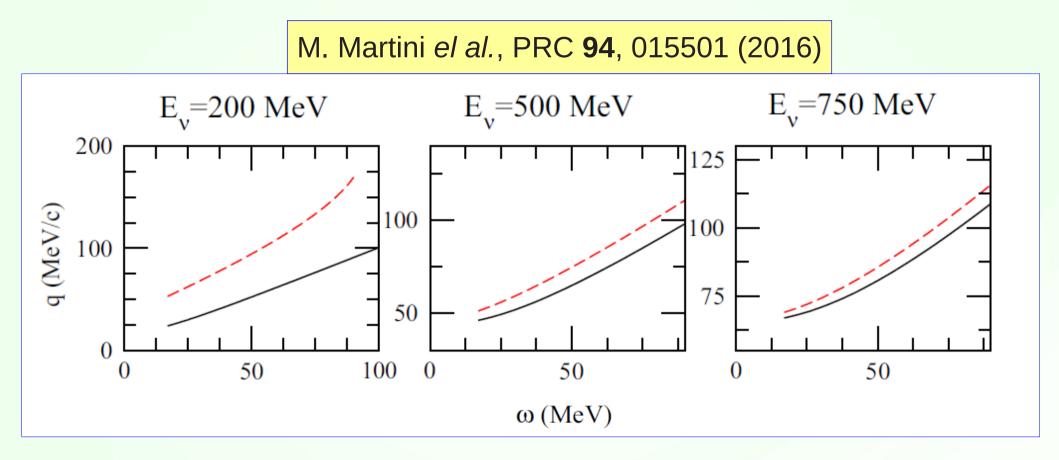


CCQE v_{μ} and v_{e} cross sections at 5°



Conclusion: While at higher energies the v_{μ} and v_{e} cross sections practically coincide, at low energies and small scattering angles the v_{μ} cross section is **higher** than the v_{e} one.

CCQE v_{μ} and v_{e} cross sections at 5°

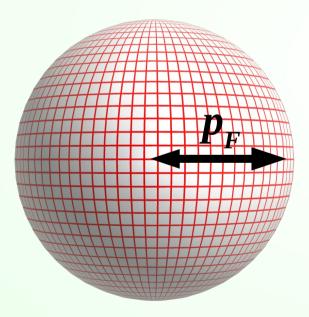


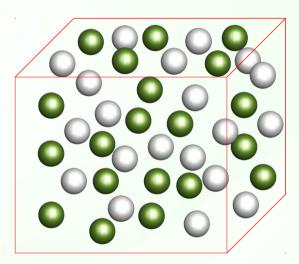
Conclusion: this behavior is related to the differences in the momentum transfer between the v_{μ} and v_{e} scattering.

When is the v_e cross section higher then the v_μ one?

Fermi gas model

Nucleus treated as a fragment of non-interacting infinite nuclear matter of constant density. Eigenstates have definite momenta and energies $E_p = \sqrt{M^2 + \mathbf{p}^2} - \epsilon$.





Momentum space

Coordinate space

Relativistic Fermi gas

Lepton kinematics

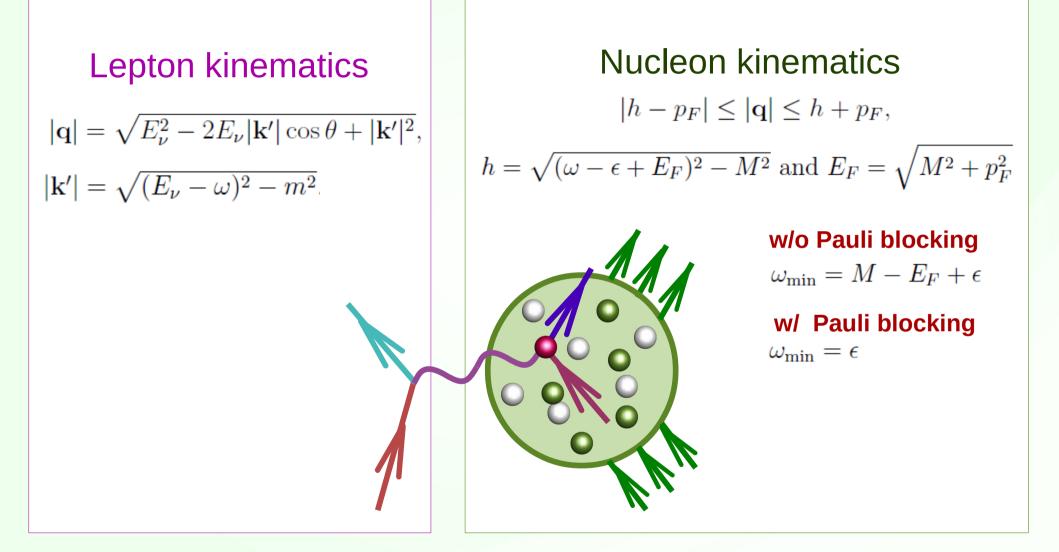
$$\omega = E_{\nu} - E_{\ell},$$
$$\mathbf{q} = \mathbf{k}_{\nu} - \mathbf{k}_{\ell},$$

Nucleon kinematics

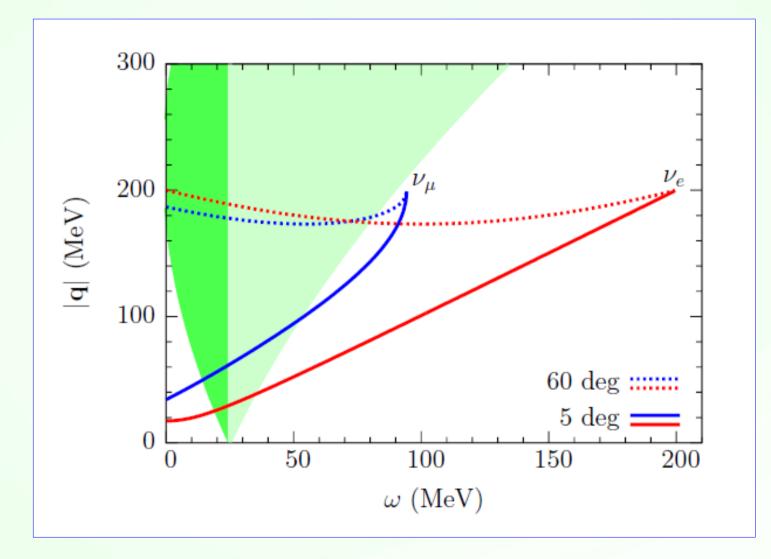
$$\omega = \sqrt{M^2 + \mathbf{p'}^2} - \sqrt{M^2 + \mathbf{p}^2} - \epsilon,$$

$$\mathbf{q} = \mathbf{p'} - \mathbf{p},$$

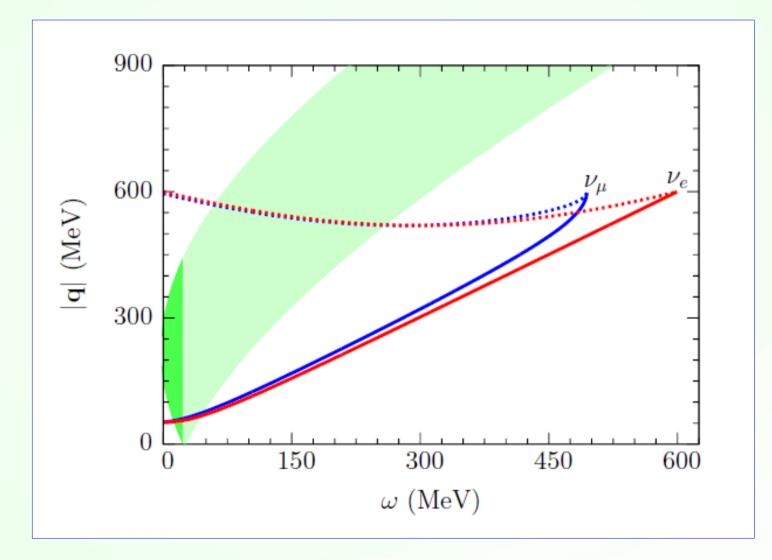
Relativistic Fermi gas



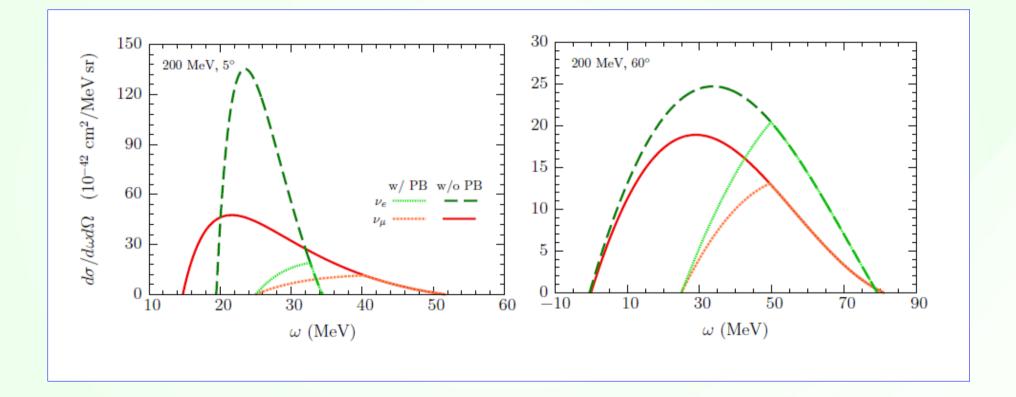
RFG, CCQE scattering at 200 MeV



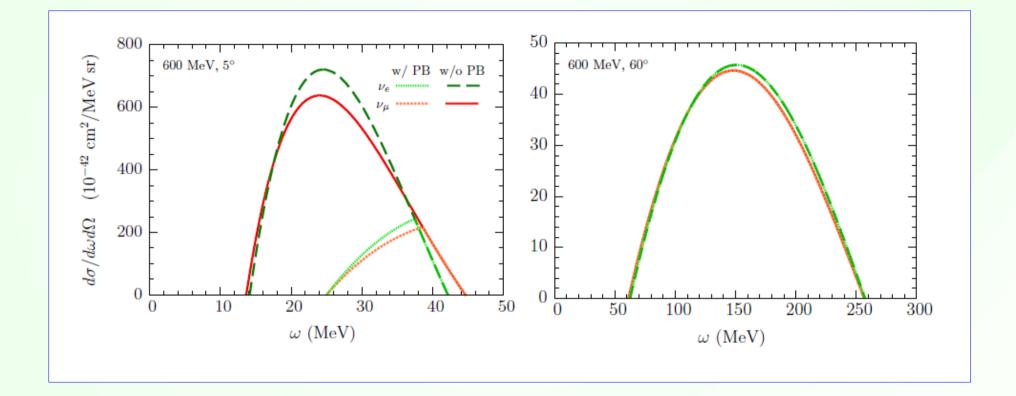
RFG, CCQE scattering at 600 MeV

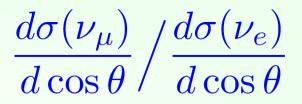


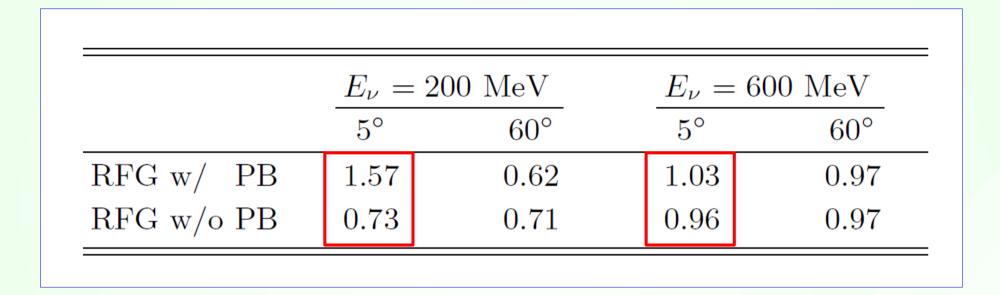
CCQE scattering at 200 MeV



CCQE scattering at 600 MeV



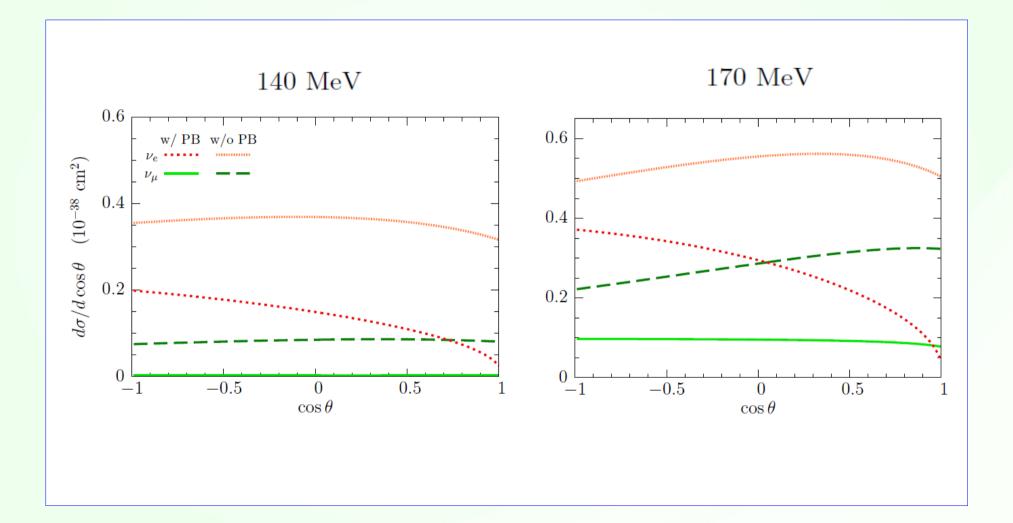




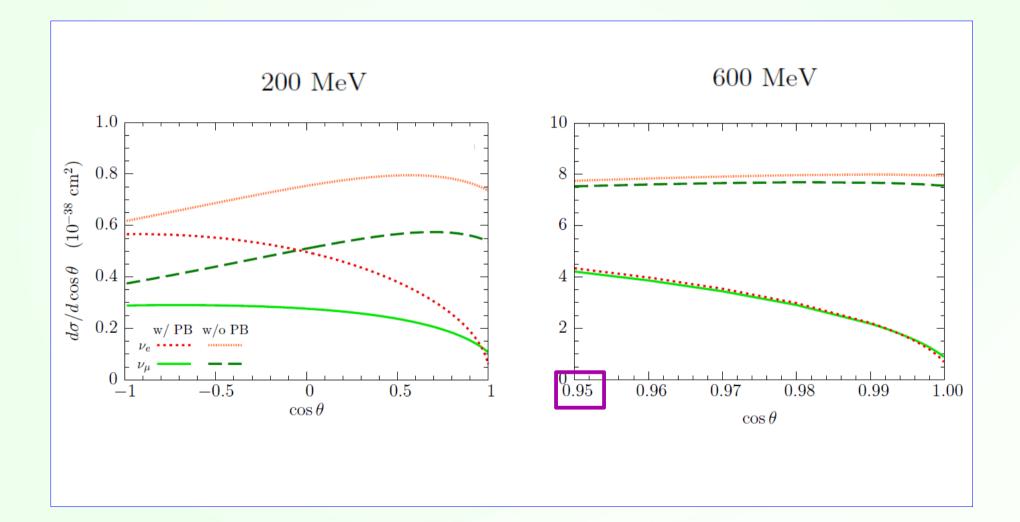
Details of nuclear model can qualitatively change the mass dependence of the cross section.

The behavior is driven by the phase-space availability, rather than the kinematics.

Differential cross section $d\sigma/d\cos\theta$



Differential cross section $d\sigma/d\cos\theta$



Relativistic Fermi gas

Reducing the available phase space, Pauli blocking changes the behavior of the cross section.

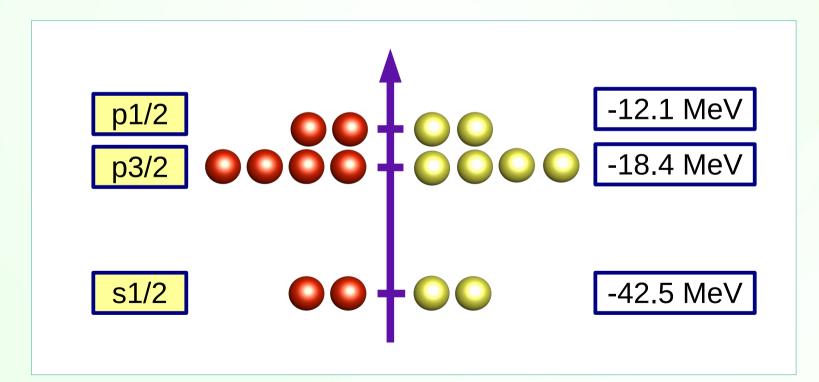
- Without Pauli blocking, the v_e cross section converges to the v_μ one from below, when energy increases.
- With Pauli blocking, close to the threshold the v_{μ} cross section is lower than the v_e one for any angle. At higher energies, there is a range of angles where

 $d\sigma(v_{\mu})/d\cos\theta > d\sigma(v_{e})/d\cos\theta.$

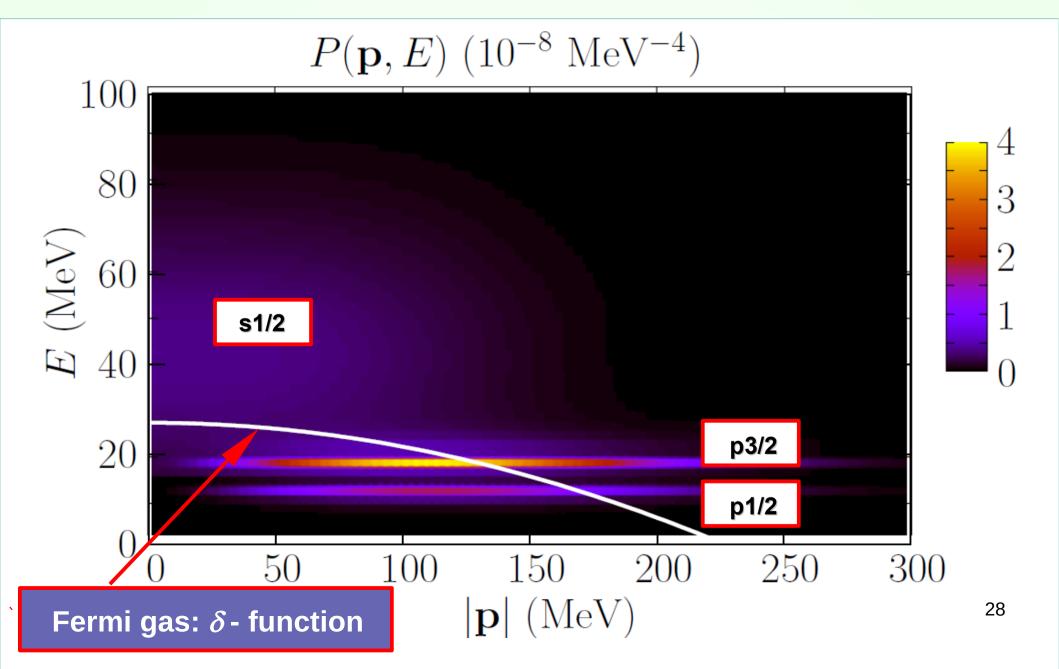
Shell model

In a spherically symmetric potential, the eigenstates correspond to definite values of the total angular momentum.

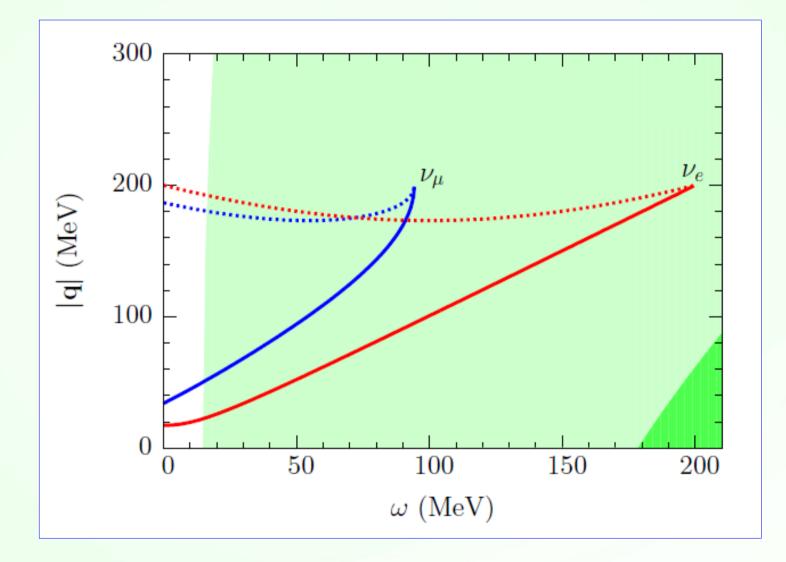
No correspondence between nucleon momentum and energy, unlike in the Fermi gas model.



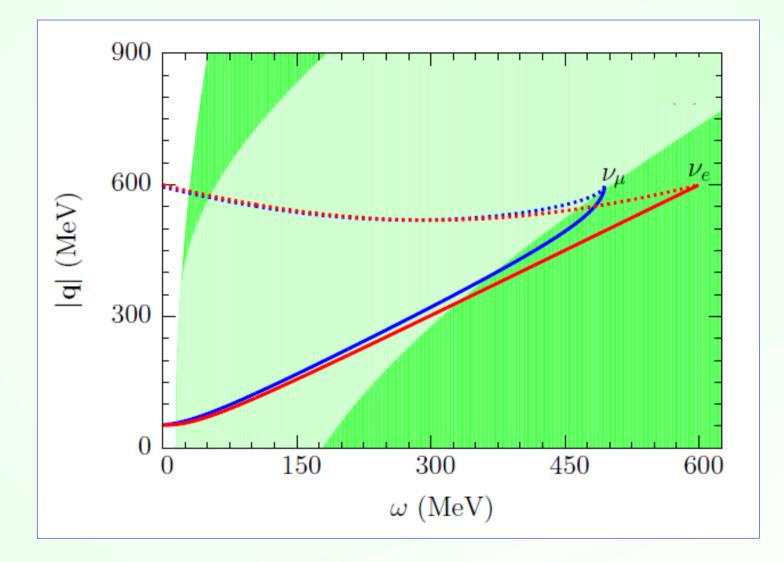
Example: spectral function of oxygen



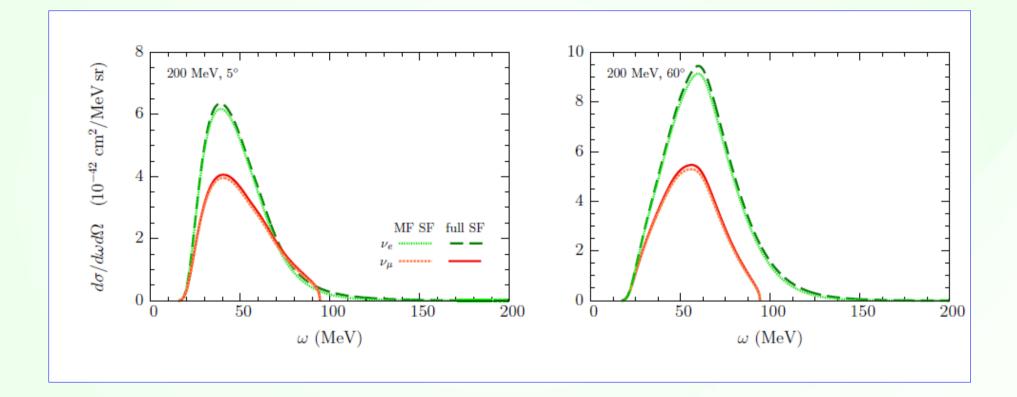
SF, CCQE scattering at 200 MeV



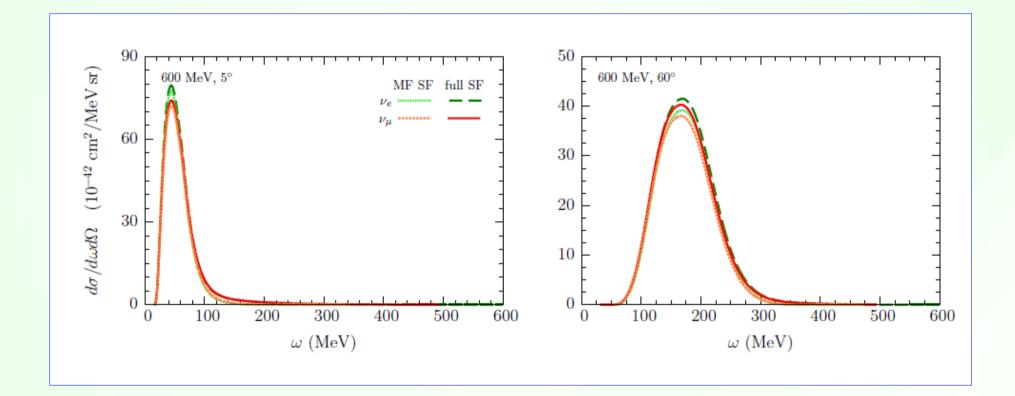
SF, CCQE scattering at 600 MeV



CCQE scattering at 200 MeV



CCQE scattering at 600 MeV

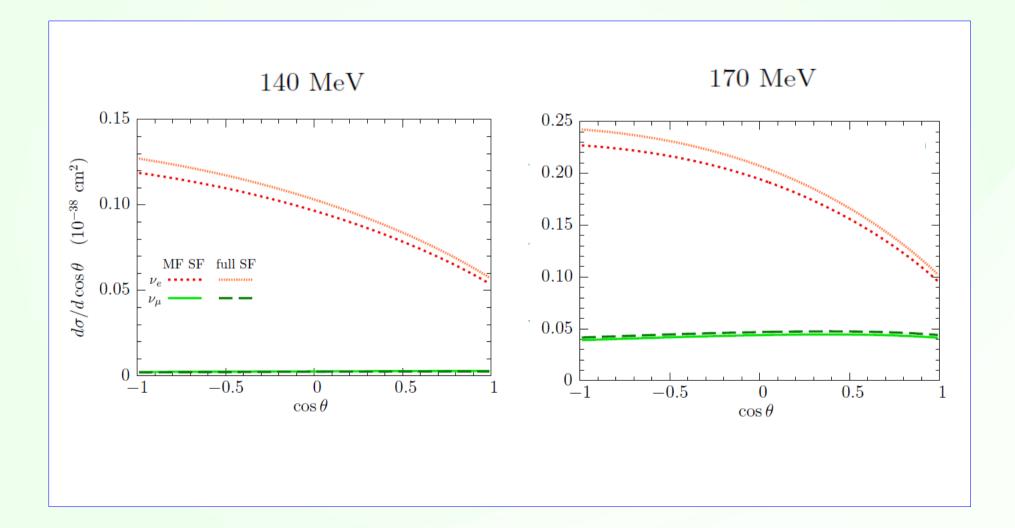


Cross-sections' ratio $\frac{d\sigma(\nu_{\mu})}{d\cos\theta} / \frac{d\sigma(\nu_{e})}{d\cos\theta}$

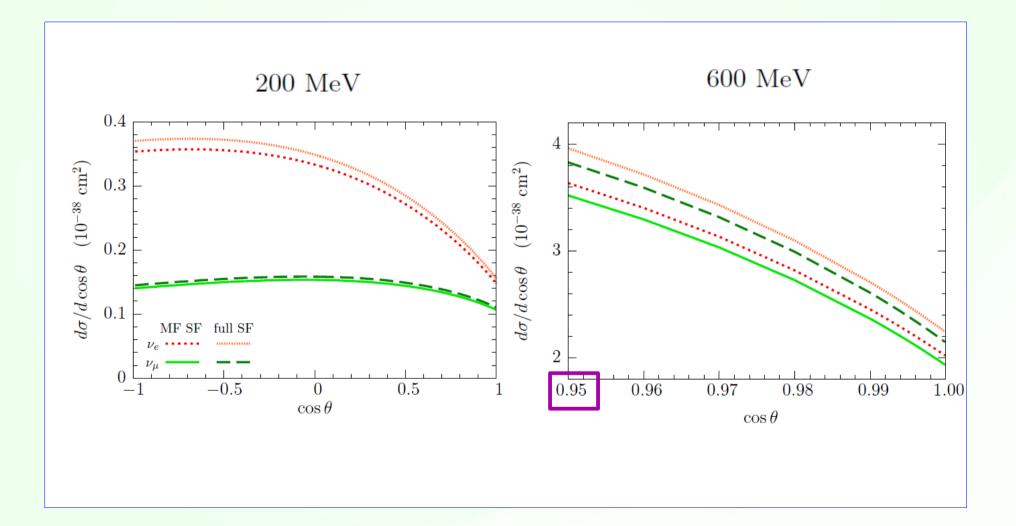
	$E_{\nu} = 200 \text{ MeV}$		$E_{\nu} = 600 \text{ MeV}$	
	5°	60°	5°	60°
RFG w/ PB	1.57	0.62	1.03	0.97
RFG w/o PB	0.73	0.71	0.96	0.97
Mean-field SF	0.72	0.53	0.96	0.97
Full SF	0.71	0.52	0.96	0.97

The ratio is governed mostly by the shell contribution, extracted from (e,e'p) data.

Differential cross section $d\sigma/d\cos\theta$



Differential cross section $d\sigma/d\cos\theta$

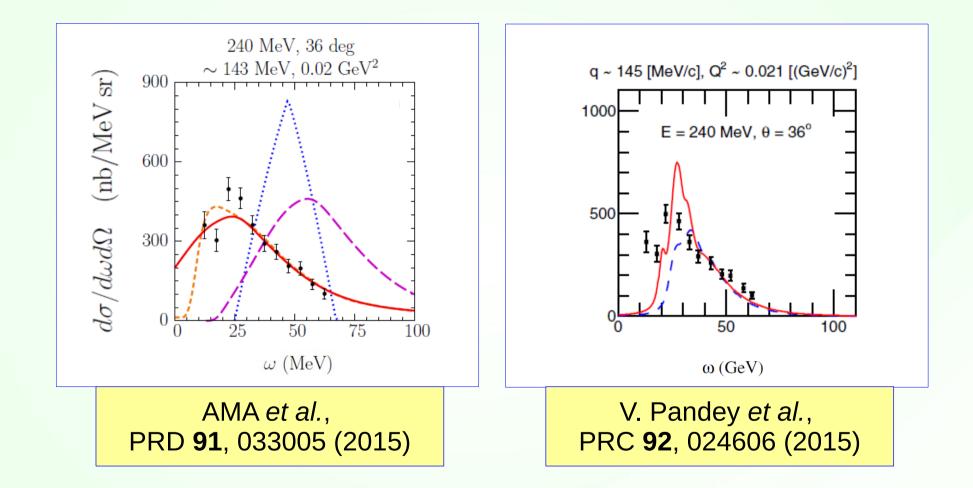


Shell model/Spectral function

- The available phase space is broad due to energy and momentum distributions of the shell states.
- The ν_µ cross section is lower than the ν_e one for any angle, but converges to it as energy increases.

Should we be concerned about model differences?

Nuclear models are converging



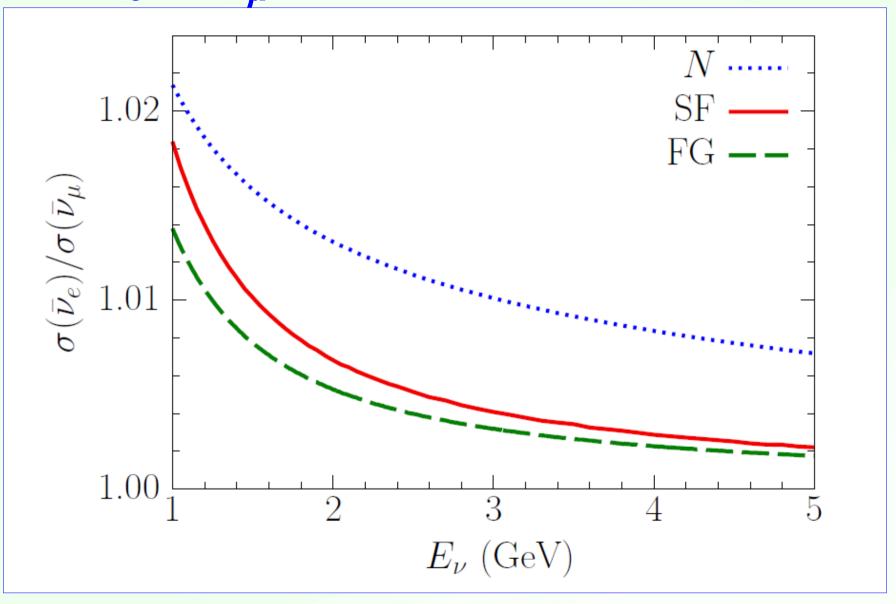
See also: G. D. Megias *et al.*, PRC **94**, 013012 (2016); J. E. Sobczyk, PRC **96**, 045501 (2017)

Model differences

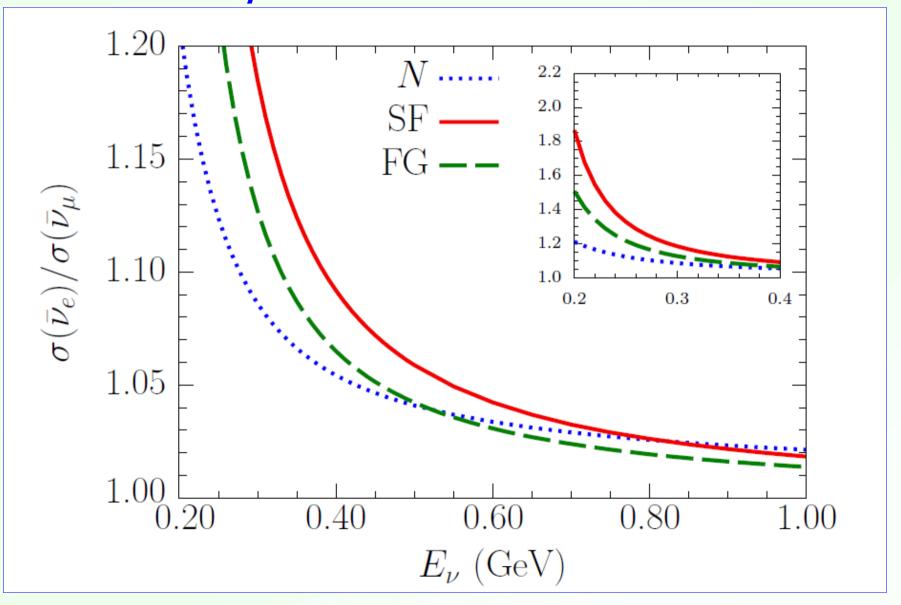
- Models developed to reproduce inclusive electronscattering data may give similar results starting from different physics assumptions.
- Treating the initial states differently, they lead to different exclusive cross sections (hadron distributions).
- For long-baseline neutrino experiments, particularly those using calorimetric energy reconstruction, exclusive cross sections are essential.

v_e to *v_u* cross sections' ratio N1.02 SF FG $\sigma(\nu_e)/\sigma(\nu_\mu)$ 1.00 23 54 E_{ν} (GeV)

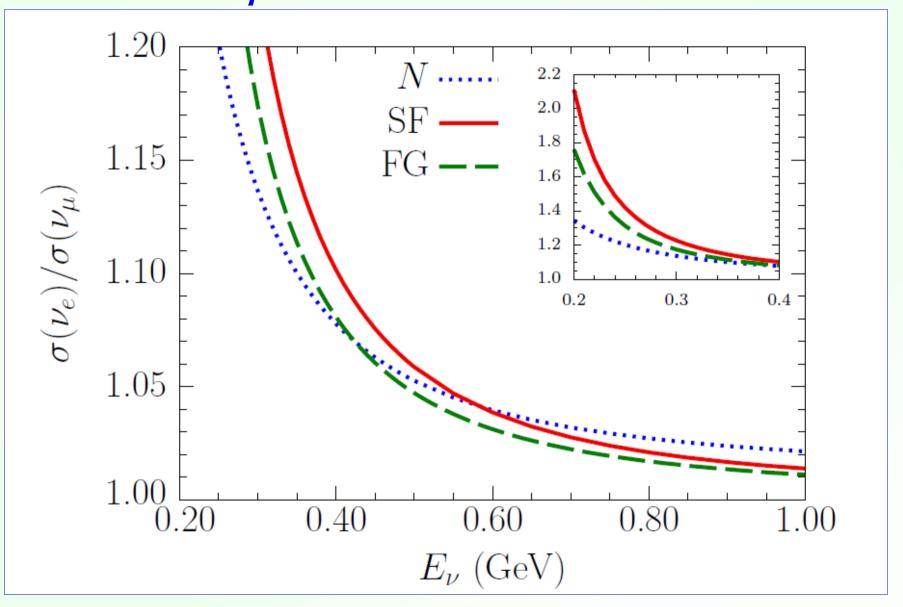
\overline{v}_e to \overline{v}_μ cross sections' ratio



\overline{v}_e to \overline{v}_μ cross sections' ratio



 $v_e to v_\mu$ cross sections' ratio

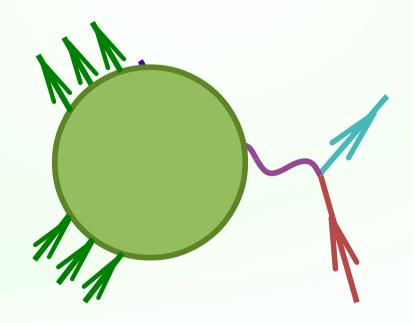


Summary

- Next-generation appearance experiments require $\sigma(v_{\mu})/\sigma(v_{e})$ known with challenging precision.
- The ratio's precise measurement currently not possible. It may be necessary to rely on input from theory.
- For differential cross sections at low energies, different nuclear models may yield qualitatively different results.
- The $\sigma(v_{\mu}) \sigma(v_{e})$ difference small above 1 GeV, but significant at energies below ~600 MeV.

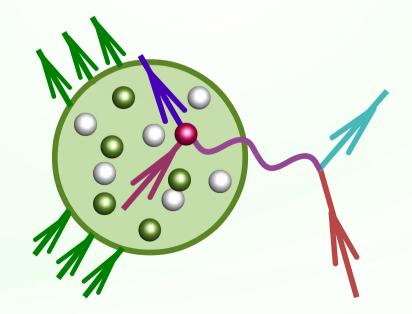
Backup slides

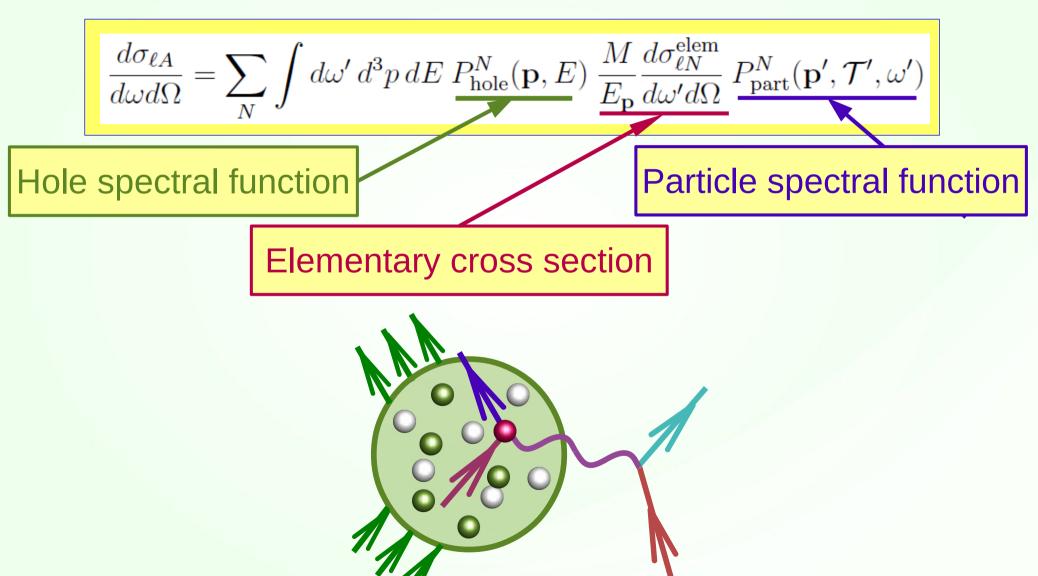
Assumption: the dominant process of lepton-nucleus interaction is **scattering off a single nucleon**, with the remaining nucleons acting as a spectator system.



Assumption: the dominant process of lepton-nucleus interaction is **scattering off a single nucleon**, with the remaining nucleons acting as a spectator system.

It's valid when the momentum transfer $|\mathbf{q}|$ is high enough, as the probe's spatial resolution is $\sim 1/|\mathbf{q}|$.



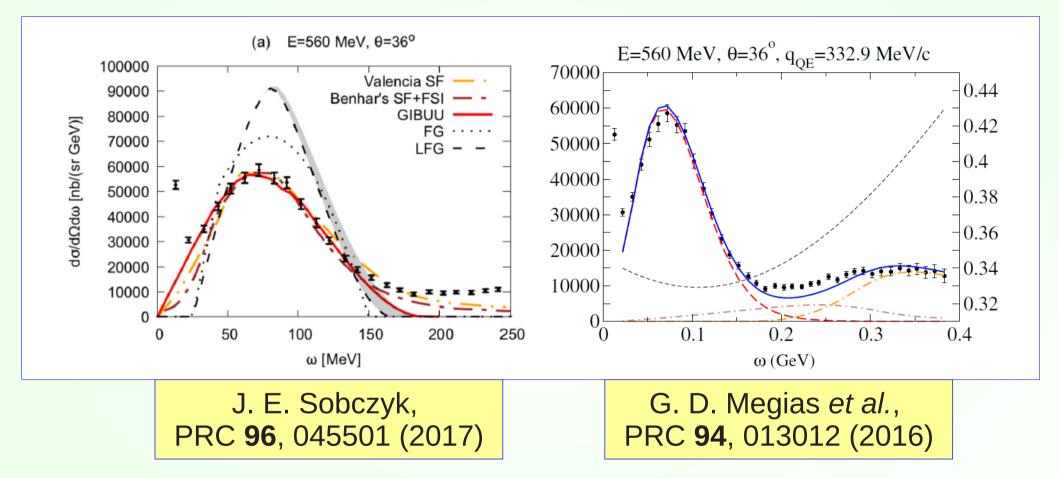


For scattering in a given angle, neutrinos and electrons differ only due to **the elementary cross section**.

In neutrino scattering, uncertainties come from (i) interaction dynamics and (ii) **nuclear effects**.

It is **highly improbable** that theoretical approaches unable to reproduce *(e,e')* data would describe nuclear effects in neutrino interactions at similar kinematics.

Nuclear models are converging



See also: AMA *et al.*, PRD **91**, 033005 (2015) V. Pandey *et al.*, PRC **92**, 024606 (2015)