• • • • • • • •

• • • • • • •

.

• • • • • • • •

.

• • • • • • •

NOvA Cross Section Results

Matthew Judah for the NOvA Collaboration

NuFACT 2018, Virginia August 13, 2018

Colorado State University

NOvA - NuMI Off-Axis v_e Appearance Experiment

- NOvA is a long baseline oscillation experiment to:
 - Measure the mixing angle θ_{23}
 - Determine the CP-violating phase, δ_{CP}
 - Determine mass hierarchy
- Near Detector provides an excellent platform to measure neutrino interaction cross sections
- These measurements can:
 - Constrain our cross-section systematics
 - Contribute to the current efforts of the neutrino community on understanding neutrino interactions.
 - Collaborate with future experiments

Flux at NOvA

Detectors are 14 mrad off-axis 3 with respect to the NuMI beam 3 $\mathbf{\omega}^{2}$ axis:

- Narrow-band beam centered around 2 GeV
- Hadron production uncertainties are mostly a normalization effect
- Hadron production uncertainty constraint by external hadron production data

PPFX, Package to Predict the FluX, Phys. Rev. D 93, 112007 (2016).

Flux at NOvA

- Even with a narrow-band beam, NOvA has sensitivity to many different v+A interaction channels
- Protons on target:
 - 8.09 x 10²⁰ in neutrino mode
 - Currently 6.26 X 10²⁰ in antineutrino mode

J.A. Formaggio, G.P. Zeller Rev. Mod. Phys. 84, 1307 (2012)

NOvA Near Detector

- Lies 1 km from the source, 100 m underground
- Tracking calorimeter:
 - Segmented (alternating horizontal/vertical)
 - Low Z, with 65% active volume
 - 290 tons, 77% hydrocarbon, 16% chlorine, 6% TiO₂ by mass
 - Muon catcher (steel + NOvA cells) ranges-out ~ 2 GeV muons at the downstream end
 - ~10 ns single hit timing resolution

Alternating planes allow for 3D reconstruction

Wavelength shifting fibers read out by a single pixel on Avalanche PhotoDiode (APD)

Colorado State University

NOvA Near Detector

- Events are separated by slicing algorithm that accounts for correlations between hits in time and space.
- Tracks and showers are reconstructed from these hits.

Neutrino Candidates from NOvA Data

Current NOvA Cross Section Analyses

Neutral Current Coherent Pion Production

- Neutrino coherently scatters off target nucleus via neutral current exchange producing a π^0
- Very small momentum transfer, no quantum number exchange (charge, spin, isospin)
- Target nucleus remains in ground state
 - No vertex activity
- Single forward-going pion in the final state, no other pions or nucleons

Analysis Strategy

- Select events with no muon track candidate, two photon showers candidates, and no other reconstructed tracks or showers
- NC coherent candidate event from data is shown on the left

Identifying Photon Showers

Both photon showers are identified using likelihoods based on longitudinal and transverse dE/dx information

- Red line depicts cut used to select highest energy photon shower candidate
- Second photon shower candidate is selected using slightly different cuts
- Use data-driven technique to constrain photon shower identification

 Muons from interactions outside of the detector can induce EM showers in the detector via bremsstrahlung radiation

- Muons from interactions outside of the detector can induce EM showers in the detector via bremsstrahlung radiation
- The EM showers are identified around the muon track

- Muon removal techniques isolate the EM showers
- Data-driven method to constrain photon simulation

between bremsstrahlung shower data and MC **NOvA Preliminary** 1% difference in selection efficiency is taken as systematic uncertainties

• Very good agreement

NOvA Cross Section Results

0.5

0.5

NC π⁰ Sample

• The NC π^0 sample is defined by:

- No muon candidate in the event
- Two photon shower candidates
- Vertex in the fiducial volume and showers contained
- Background is dominated by resonant and DIS π^{0} events
- Cut on invariant mass further reduces these backgrounds

NC π⁰ Control and Signal Samples

Spilt the NC π^0 sample into two sub-samples:

- Signal:events with most of their energy in the 2 photon- showers and low vertex energy: it has >90% of the signal.
- Control -> Consists primarily of backgrounds

NC π⁰ Control Sample - Background Constraint

- The control sample is used to fit background to data using templates in π⁰ energy vs angle 2D space
- 2D templates show shape differences between resonant and DIS backgrounds
- Fitting procedure determines constant scale factors for resonant and DIS backgrounds

NC π⁰ Signal Sample

• Background tuning is then applied to the Signal sample

NC Coherent π⁰ Results

Source	$\delta(\%)$			
Calorimetric Energy Scale	3.4			
Background Modeling	10.0			
Control Sample Selection	2.9			
EM Shower Modeling	1.1			
Coherent Modeling	3.7			
Rock Event	2.4			
Alignment	2.0			
Flux	9.4			
Total Systematics	15.3			
Signal Sample Statistics	5.3			
Control Sample Statistics	4.1			
Total Uncertainty	16.7			

• Flux averaged cross section: $\sigma = 14.0 \pm 0.9(\text{stat.}) \pm 2.1(\text{syst.}) \times 10^{-40} \text{cm}^2/\text{nucleus}$

NC Coherent π⁰ Results

Source	$\delta(\%)$				
Calorimetric Energy Scale	3.4				
Background Modeling	10.0				
Control Sample Selection	2.9				
EM Shower Modeling	1.1				
Coherent Modeling	3.7				
Rock Event	2.4				
Alignment	2.0				
Flux	9.4				
Total Systematics	15.3				
Signal Sample Statistics	5.3				
Control Sample Statistics	4.1				
Total Uncertainty	16.7				

v_{μ} CC π^{0} Analysis

- Analysis signal has large contributions from both resonant and DIS interactions
- There is a large multi-π component in v_µCC+π⁰ events which is included in the analysis signal
- Flux averaged differential cross sections measured in:
 - Direct observables: pion momentum and angle, muon momentum and angle
 - 4-momentum transfer to hadronic system (Q²)
 - Invariant mass of the hadronic system
 (W)

Simulated $v_{\mu} CC \pi^{0} Event$

Simulated v_{μ} CC π^{0} Event

Machine Learning for Neutral Current Rejection

- Analysis has large neutral current background
- Use a convolutional neutral network PID to reject this background
- Calibrated hit maps are inputs to Convolutional Visual Network (CVN)
- Series of image processing transformations applied to extract abstract features
- Extracted features used as inputs to a conventional neural network to classify the event

Machine Learning for Neutral Current Rejection

- Analysis has large neutral current background
- Use a convolutional neutral network PID to reject this background
- Calibrated hit maps are inputs to Convolutional Visual Network (CVN)
- Series of image processing transformations applied to extract abstract features
- Extracted features used as inputs to a conventional neural network to classify the event

Machine Learning for Neutral Current Rejection

- Analysis has large neutral current background
- Use a convolutional neutral network PID to reject this background
- Extracted features used as inputs to a conventional neural network to classify the event
- CVN is able to reject neutral current background from sample
 - NC ~ 1.7% of sample after cut
- CVN has only identified v_{μ} CC events, still need a way to find events with a π^{0} in the final state

- Photon identification is done through a ΔLL selector
- Two variables to describe dE/dx
 - Bragg peak identifier:
 - dE/dx at end of prong compared to the bulk
 - Energy/Hit
- Two variables to
 - characterize "gappiness":
 - Distance from vertex
 - Skipped planes along prong

0.1

Photon Identification

- CCπ⁰ID is defined as highest photon score in the event
- Used to ID prongs for π⁰ reconstruction

Template Fit

CCπ⁰ID is also used to apply a data-driven constraint to simulation using a template fit

- Template fit determines
 normalization
- Measurement is differential, fit is performed in each analysis bin independently
- Systematic effects are not included in the fit

Template Fit

CCπ⁰ID is also used to apply a data-driven constraint to simulation using a template fit

- Template fit determines
 normalization
- Measurement is differential, fit is performed in each analysis bin independently
- Systematic effects are not included in the fit

Template Fit Results

CCπ⁰ID is also used to apply a data-driven constraint to simulation using a template fit

- Template fit determines
 normalization
- Measurement is differential, fit is performed in each analysis bin independently
- Systematic effects are not included in the fit

Systematic Uncertainties

- Each source of systematic uncertainty is evaluated by modifying the simulation and comparing the extracted cross section to the nominal simulated prediction.
- · Largest sources of uncertainty for this analysis are flux and light-level modeling

Light-Level Modeling Systematic

ND proton sample from data shows lower dE/dx than predicted by simulation

- Simulation incorporates Birks-Chou model for light yield:
- Using ND protons find:
 - $k_B = 0.4 \text{ g/cm}^2/\text{MeV}$
 - $k_C = -0.0005 \text{ cm}^2/\text{MeV}^2$
- Direct measurements of k_B for organic scintillator is around 0.1-0.2 g/cm²/MeV
- Re-simulate using $k_B = 0.1 \text{ g/cm}^2/\text{MeV}$ and $k_C = 0$ and take the difference in extracted cross sections as a systematic

Charge Exchange Cross Section Systematic

Charge exchange (CEx) makes a non-primary π^0 in the detector through $\pi^{\pm} \rightarrow \pi^0 + X$

- This cross section is only known to the 20% level from the 1981 Ashery and 2017 DUET analysis
- The NOvA simulation for CEx was tuned according to DUET data
- Noticeable effect on CCπ⁰ID

Phys Rev C 23, 2173 (1981), Phys Rev C 95, 045203 (2017)

Differential Cross Section - Q²

- Measured cross section is 7% higher than GENIE prediction
- Data suggests a slightly harder Q² shape than predicted by GENIE

Differential Cross Section - p_π⁰

Summary

• Measurement of NC Coherent π^0 total flux averaged cross section is

 $\sigma = 14.0 \pm 0.9$ (stat.) ± 2.1 (syst.)×10⁻⁴⁰cm²/nucleus

- Differential cross section for v_{μ} CC π^{0} semi-inclusive is generally consistent with GENIE interaction and FSI models.
- Both analyses are working towards publication.
- Be on the look out for additional results on the v_{μ} and v_{e} inclusive cross sections later this year!

B

90

0

Contraction of the second

Differential Cross Sections

42

Motivation of measuring π^0

Oscillations are measured as a function of neutrino

energy

- Need to reconstruct E_v correctly
- Nuclear effects (fermi motion, nuclear correlation, final state interactions) are important
- Pion kinematics are sensitive to nuclear effects and can provide information to constrain models

NC π⁰ Control Sample - Background Constraint

 The control sample is used to fit background to data using templates in π⁰ energy vs angle 2D space

NC Pi0 Control and Signal Samples

Spilt the NC Pi0 sample into two sub-samples:

- Signal
- Control

Simulated Numu CC m⁰ Event

Energy Spectrum and Interactions

- Even with a narrow band beam, NOvA has sensitivity to many different v+A interaction channels
 - Quasi-elastic (nominally 26%), resonant (39%), pion-continuum/DIS (34%), and coherent (1%) channels.
- Cross sections in NOvA's energy range are not well measured

NOvA Cross Sections

- Focusing on measurements which will provide an internal XS constraint useful to the oscillation analyses
- Trying to pick well defined signals which can reduce model dependency.
- Looking to provided differential cross section as a function of useful kinematics where possible.
- Impactful measurements useful to the community in general.

Colorado State University

Measuring a Differential Cross Section

 $d\sigma$

- Signal estimate is obtained from datadriven constraint from the template fitting procedure
- Signal is unfolded using D'Agostini method with 2 iterations - migration matrix is determined from simulation

NOvA Simulation

 $\Phi(E)dE$

Measuring a Differential Cross Section U(S, x) $d\sigma$ Efficiency is $\Delta x \epsilon_i N_{\rm nuc} \int \Phi(E) dE$ calculated from simulation in each **NOvA Simulation** ×10²⁰ POT *** kinematic bin Signal Simulated N_{Nuc} Total Mass (kg) Element • Number of target Selected 10³ Events / GeV/c / 3.72 2.28×10^{30} Η 3815nucleons in 1.41×10^{31} \mathbf{C} 23651determined using a 6.30×10^{29} 1053Ο 3.40×10^{30} 3D random pull Cl5685 6.81×10^{29} Ti 1139algorithm 5.71×10^{28} Other 95.4Efficiency 2.11×10^{31} Total 35438

2

1.5

p_π [GeV/c]

0.5

2.5

$\begin{array}{l} \text{Measuring a Differential Cross Section} \\ \text{ } \cdot \text{ Flux estimate from} \\ \text{ the PPFX framework} \end{array} \quad (\frac{d\sigma}{dx})_i = \frac{1}{\Delta x} \frac{U(S,x)}{\epsilon_i N_{\mathrm{nuc}} \int \Phi(E) dE} \end{array}$

developed by MINERvA Measurement is restricted to v_μ flux

from 1-5 GeV

Colorado State University