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The Physics case
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MiniBooNE Detector 
10 

Aguilar-Arevalo et al., NIM A599, 28 (2009) 
(inside view of MiniBooNE tank) 

•  800 tons of mineral oil  
•  ν interactions on CH2 

•  Cerenkov detector → ring imaging for event reconstruction and PID v 

 Neutrino-oscillation and 0νββ experiments

• Charge-parity (CP) violating phase and the 
mass hierarchy will be measured

• Determine whether the neutrino is a Majorana 
or a Dirac particle

• Need for including nuclear dynamics; mean-
field models inadequate to describe neutrino-
nucleus interaction

 Multi-messenger era for nuclear astrophysics 

• Gravitational waves have been detected!

• Supernovae neutrinos will be detected by the 
current and next generation neutrino experiments

• Nuclear dynamics determines the structure and 
the cooling of neutron stars



The basic model of nuclear physics 
• In the low-energy regime, quark and gluons are confined inside hadrons. Nucleons can treated 
as point-like particles interacting through the Hamiltonian 

H =
X

i

p2
i

2m
+

X

i<j

vij +
X

i<j<k

Vijk + . . .

• Effective field theories are the link between QCD and nuclear observables. They exploit the 
separation between the “hard” (M~nucleon mass) and “soft” (Q ~ exchanged momentum) scales

Lattice QCD  
QFT in a Finite and Discretized Spacetime

Lattice Spacing :

1/Λχa << 

m⇡L >> 2⇡
Lattice Volume : 

Extrapolate to a = 0 and L =1

(Nearly Continuum)

(Nearly Infinite Volume)

Systematically remove non-QCD parts of calculation
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Figure 1: Hierarchy of nuclear forces in ChPT. Solid lines represent nucleons and dashed lines pions. Small dots, large solid
dots, solid squares, and solid diamonds denote vertices of index � = 0, 1, 2, and 4, respectively. Further explanations are
given in the text.

The reason why we talk of a hierarchy of nuclear forces is that two- and many-nucleon forces are created
on an equal footing and emerge in increasing number as we go to higher and higher orders. At NNLO, the
first set of nonvanishing three-nucleon forces (3NF) occur [70, 71], cf. column ‘3N Force’ of Fig. 1. In fact, at
the previous order, NLO, irreducible 3N graphs appear already, however, it has been shown by Weinberg [52]
and others [70, 127, 128] that these diagrams all cancel. Since nonvanishing 3NF contributions happen first
at order (Q/⇤

�

)3, they are very weak as compared to 2NF which start at (Q/⇤
�

)0.
More 2PE is produced at ⌫ = 4, next-to-next-to-next-to-leading order (N3LO), of which we show only

a few symbolic diagrams in Fig. 1. Two-loop 2PE graphs show up for the first time and so does three-pion
exchange (3PE) which necessarily involves two loops. 3PE was found to be negligible at this order [57, 58].
Most importantly, 15 new contact terms ⇠ Q4 arise and are represented by the four-nucleon-leg graph with
a solid diamond. They include a quadratic spin-orbit term and contribute up to D-waves. Mainly due to
the increased number of contact terms, a quantitative description of the two-nucleon interaction up to about
300 MeV lab. energy is possible, at N3LO (for details, see below). Besides further 3NF, four-nucleon forces
(4NF) start at this order. Since the leading 4NF come into existence one order higher than the leading 3NF,
4NF are weaker than 3NF. Thus, ChPT provides a straightforward explanation for the empirically known
fact that 2NF � 3NF � 4NF . . . .

4. Two-nucleon interactions

The last section was just an overview. In this section, we will fill in all the details involved in the ChPT
development of the NN interaction; and 3NF and 4NF will be discussed in Section 5. We start by talking

19

Courtesy of M. Savage



The Argonne v18 is a finite, local, configuration-space potential controlled by ~4300 np and pp 
scattering data below 350 MeV of the Nijmegen database

Nuclear (phenomenological) Hamiltonian 
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Three-nucleon interactions effectively include the lowest nucleon excitation, the ∆(1232) resonance, 
end other nuclear effects
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Nuclear electroweak currents 
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FIG. 4: (Color online) Magnetic moments in nuclear magne-
tons for A ≤ 9 nuclei. Black stars indicate the experimen-
tal values [35–37], while blue dots (red diamonds) represent
GFMC calculations which include the IA one-body EM cur-
rent (total χEFT current up to N3LO). Predictions are for
nuclei with A > 3.

and the NLO OPE term contributes in both the trinu-
cleon clusters and in between the trinucleon clusters and
the valence pp (nn) pair. The IA m.m. for 9Be is close
to the experimental value, while those for 9Li and 9C
are far from the data, so this pattern of small and large
MEC corrections provides good overall agreement with
the data.

The χEFT results reported in Tables III and V are
summarized in Fig. 4, where the experimental data [34–
37] (there are no data for the m.m. of 9B) are repre-
sented by black stars. We show also the experimen-
tal values for the proton and neutron m.m.’s, as well
as their sum, which corresponds to the m.m. of an S-
wave deuteron. The experimental values of the A = 2–3
m.m.’s have been utilized to fix the LECs, therefore pre-
dictions are for A > 3 nuclei. The blue dots labeled
as GFMC(IA) represent theoretical predictions obtained
with the standard IA one-nucleon EM current entering
at LO: diagram (a) of Fig. 1. The GFMC(IA) results
reproduce the bulk properties of the m.m.’s of the light
nuclei considered here. In particular, we can recognize
three classes of nuclei with non-zero m.m.’s, i.e., odd-
even nuclei whose m.m.’s are driven by an unpaired va-
lence proton, even-odd nuclei driven by an unpaired va-
lence neutron, and odd-odd nuclei with either a deuteron
cluster or a triton-neutron (3He-proton) cluster outside
an even-even core. Predictions which include all the con-
tributions to the N3LO χEFT EM currents illustrated
in Fig. 1 are represented by the red diamonds of Fig. 4,
labeled GFMC(TOT). In all cases except 6Li and 9Be
(where the IA is already very good and the MEC correc-
tion is very small) the predicted m.m.’s are closer to the
experimental data when the MEC corrections are added
to the IA one-body EM operator.

It is also interesting to consider the spatial distribution
of the various contributions to the m.m., i.e., to examine
the magnetic density. The one-body IA contributions
from the starting VMC wave functions are shown in Fig. 5
for the isobaric analog pairs 7Li–7Be, 8Li–8B, and 9Li–
9C. (The VMC values for the IA m.m.’s are within a few
% of the final GFMC values, so we expect their spatial
distribution to be reasonably accurate.) In the figure, the
red upward-pointing triangles are the contribution from
the proton spin, µp[ρp↑(r)−ρp↓(r)], and similarly the blue
downward-pointing triangles are the contribution from
the neutron spin. The green diamonds are the proton
orbital (convection current) contribution, and the black
circles are the sum. The integrals of the black curves over
d3r give the total m.m.’s of the nuclei in IA.

For the neutron-rich lithium isotopes, there is one un-
paired proton (embedded in a p-shell triton cluster) with
essentially the same large positive contribution in all
three cases. The proton orbital term is also everywhere
positive, but relatively small. For 7Li and 9Li, the neu-
trons are paired up, and give only a small contribution,
so the total m.m. is close to the sum of the proton spin
and orbital parts. However 8Li has one unpaired neu-
tron which acts against the proton and significantly re-
duces the overall m.m. values. For the proton-rich iso-
baric analogs, there is one unpaired neutron (embedded
in a p-shell 3He cluster) with the same sizable negative
contribution in all three cases. In 7Be and 9C, the pro-
tons are paired up and give little net contribution, but
the orbital term is always positive and acts against the
neutron spin term. In 8B there is also one unpaired pro-
ton, which gives a bigger contribution than the unpaired
neutron and results in a net positive m.m. value.

In Table VI, we explicitly show the various contribu-
tions entering the χEFT operator. The labeling in the
table has been defined in Sec. III A. We list the contribu-
tions at each order. At N3LO, we separate the terms that
do not depend on EM LECs (i.e. the LOOP contribution
and the contact MIN currents; the former depends on the
known axial coupling constant, gA, and pion decay am-
plitude, Fπ , while the latter depends on the strong LECs
entering the NN χEFT potential at N2LO) and those
that depend on them (i.e. the contact NM and the OPE
current whose isovector component has been saturated
with the ∆ transition current). In most cases, chiral
convergence is observed but for the isovector N3LO OPE
contribution whose order of magnitude is in some cases
comparable to the OPE contribution at NLO. It is likely
that the explicit inclusion of ∆ degrees of freedom in the
present χEFT would significantly improve the conver-
gence pattern, since in such a theory this isovector OPE
current, presently entering at N3LO, would be promoted
to N2LO.

In Table VI, we do not provide the errors associated
with the individual terms at each order because they are
highly correlated. We limit ourselves to report the errors
associated with the IA, MEC, and total results. Also
in this table, we denote calculations performed enforcing

• They are essential for low-momentum and 
low-energy transfer transitions.

 The nuclear electromagnetic current is constrained by the Hamiltonian through the continuity equation

r · JEM + i[H, J0
EM] = 0

• The above equation implies that          involves 
two-nucleon contributions.

JEM

⇡

� ⇡ ⇡

⇡ ⇡ ⇢,!

S. Pastore at al., PRC 87, 035503 (2013)



Quantum Monte Carlo
• Diffusion Monte Carlo methods use an imaginary-time projection technique to enhance the 

ground-state component of a starting trial wave function.

lim
⌧!1

e�(H�E0)⌧ | T i = lim
⌧!1

X
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• Suitable to solve of A ≤ 12 nuclei with ~1% accuracy

J. Carlson et al. RMP 87, 1067 (2015)



The basic model of nuclear Physics
Nuclear effective field theories Nuclear ab-initio methods
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FIG. 3. VMC calculations of the transition distributions
C↵,�(r) defined in Eq. (26) for the 6He!6Be decay.

well approximated by the AA component. The weak-
magnetic term GT-MM, which is a N2LO correction in
chiral EFT, is small, about 2%. Fig. 3 also shows that
the tensor matrix elements are negligible.

The results for the �T = 2 transitions are shown in
rows 4�6 of Table I. The most important feature of these
transitions is the presence of the node, which causes the
GT and F densities, illustrated in the right panel of Fig.
2, to change sign at about 2.5 fm. As a result, there
is a large cancellation for the F-⌫ and GT-AA matrix
elements, which causes these NMEs to be significantly
smaller than in the case of transitions involving isobaric
analog states. This is illustrated in the left panel of Fig.
4 for the 12Be!12C transition, where the region with
r > 2.5 fm reduces the GT-AA matrix element by 50%.
The same NMEs were compared in �T = 2 and �T = 0
transitions of heavier systems, such as Ca!Ti, in Refs.
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FIG. 4. VMC calculations of the transition distributions
C↵,�(r) defined in Eq. (26) for the 12Be!12C decay.

[55, 56], where a similar suppression of the NMEs in
�T = 2 transitions was found. In contrast, the AP, PP
and MM components, which are pion- and short-range
contributions, are much less a↵ected by this cancella-
tion, and are therefore more important in the �T = 2
transitions. Both of these e↵ects can also be seen from
Table I. For example, in the 10He!10Be transition the
AP, PP and MM components are, respectively, 48%, 16%
and 10% of the GT-AA, and, while the GT-AA matrix
element is 20 times smaller than in the 6He!6Be tran-
sition, the AP, PP and MM matrix elements are only
about a factor of 5 smaller. Table I also shows a par-
tial cancellation between the GT-AP and GT-PP and
GT-MM components, which is a common feature of both
�T = 0 and �T = 2 transitions. As a result we find
that the GT-⌫ matrix element is always dominated by
the GT-AA component. In the case of transitions be-
tween isobaric analogues, the GT-AA matrix element is
90% of the total GT-⌫ contribution, while in �T = 2
transitions, it is approximately 80%. A similar e↵ect is
observed in calculations of heavier systems, such as 48Ca
and 76Ge [30, 31, 57–59].

The absolute size of the NMEs shows sizable variations
between di↵erent �T = 2 transitions. In particular, the
matrix elements increase by a factor of 2.5 between the
10He!10Be and 12Be!12C transitions. This can be ap-
preciated from Fig. 5, where we show the GT-⌫ and
F-⌫ transition distributions in momentum space. While
the shape of the distributions is very similar in the two
transitions, the peak is significantly larger in 12Be!12C.
This e↵ect may be due, at least partially, to a large di↵er-
ence in the spatial extent of the relevant wave functions.
The 10He system is only a resonance, unstable against
breakup into 8He+2n by about 1 MeV. Here we have
employed a pseudo-bound (with an exponentially falling
density at long range) VMC wave function that is quite
di↵use, with a proton (neutron) rms radius of 1.95 (3.66)
fm. The 10Be, 12Be, and 12C nuclei are all bound sys-
tems, with VMC wave functions that have proton (neu-
tron) rms radii of 2.32 (2.50) fm, 2.43 (2.99) fm, and 2.48
(2.48) fm, respectively. GFMC calculations change these
radii by less than 5%. Thus, for the A = 10 decay, two
neutrons with an rms radius of 3.66 fm must be converted
to two protons at an rms radius of 2.32 fm, indicating a
small spatial overlap between the initial and final wave
functions and consequently relatively small matrix ele-
ments. In comparison, the A = 12 decay only requires
a shift from 2.99 fm to 2.48 fm, which leads to a signifi-
cantly larger spatial overlap, and larger matrix elements.
This last transition in A = 12 is possibly the test case
that is most like 0⌫�� decays in nuclei of experimental
interest.

As a comparison, in the last three rows of Table I we
show the shell model results for 48Ca, 76Ge and 136Xe
[30, 57, 60]. Other many-body methods di↵er by a factor
of 2-3 [25]. Although the absolute sizes of these NMEs
are larger by a factor of a few than those of the �T = 2
transitions calculated here, the relative factors between

S. Pastore et al. PRC 97, 014606 (2018)J. Carlson et al. RMP 87, 1067 (2015)
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Figure 1. Point proton densities in 4He. The solid green
line refers to the “experimental” result; see text for de-
tails. The dash-dotted brown line is the GFMC result for
AV18+UIX [56].

residing inside 2.25 fm, consistent with a two-↵ cluster
structure as observed in Fig. 15 of Ref. [57]. The 12C
density peaks at a slightly smaller distance and notice-
ably higher value, with a larger dip at the center. This
is consistent with a more tightly bound three-↵ cluster—
either in a triangular configuration with a low-density
region at the center of mass, or alternatively with one ↵
in the s-shell and two ↵’s in the p-shell. Similarly, 16O
can be viewed as a tetrahedral four-↵ cluster with the ↵’s
at somewhat greater distance from the center of mass, or
as one s-shell and three p-shell ↵’s with a larger dip-peak
difference than in 12C. The 40Ca density is more compli-
cated, but might be thought of as two s-shell ↵’s giving
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Figure 2. Point proton densities in 16O. The green line refers
to the “experimental” result; see text for details.
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Figure 3. Point proton densities in 40Ca. The green line refers
to the “experimental” result; see text for details.

a larger central peak, while three p-shell and five d-shell
↵’s give a broad shoulder at 1� 3 fm.

The two-nucleon point densities of 4He, 16O, and 40Ca
are reported in Figs. 5–7, respectively, for both AV18 and
AV18+UIX. Upper and lower curves refer to np and pp
pairs, respectively. The fact that ⇢

NN

is very small for
r ' 0 is a consequence of the repulsive core of the NN
potential. As observed for the point-proton densities, the
effect of the 3N force on the two-nucleon densities is ap-
preciably different in light- and medium-heavy systems.
In 4He the pp density is almost unchanged, while the np
density is enhanced around the peak at 1.1 fm. In heav-
ier systems there is a severe depletion of both pp and np
densities, again due to the peculiar repulsive effect of the
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Figure 4. Point proton densities for AV18+UIX. 4He, 16O,
and 40Ca are the results of this work. 8Be and 12C are VMC
results collected in [56].
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Figure 2. (Color online) Mass-radius relations. The key is
the same as of Fig. 1. Full dots represent the predicted
maximum masses. Horizontal bands at ⇠ 2M� are the ob-
served masses of the heavy pulsars PSR J1614-2230 [18] and
PSR J0348+0432 [19]. The grey shaded region is the excluded
part of the plot due to causality.

inclusion of the repulsive three-body force [model (I)],
stiffens the EOS and pushes the threshold density to
0.34(1) fm�3. In the inset of Fig. 1 the neutron and
lambda fractions are shown for the two HNM EOSs.

Remarkably, we find that using the model (II) for
⇤NN the appearance of ⇤ particles in neutron matter is
energetically unfavored at least up to ⇢ = 0.56 fm�3, the
largest density for which Monte Carlo calculations have
been performed. In this case the additional repulsion
provided by the model (II) pushes ⇢th⇤ towards a density
region where the contribution coming from the hyperon-
nucleon potential cannot be compensated by the gain in
kinetic energy. It has to be stressed that (I) and (II) give
qualitatively similar results for hypernuclei. This clearly
shows that an EOS constrained on the available binding
energies of light hypernuclei is not sufficient to draw any
definite conclusion about the composition of the neutron
star core.

The mass-radius relations for PNM and HNM ob-
tained by solving the Tolman-Oppenheimer-Volkoff equa-
tions [62] with the EOSs of Fig. 1 are shown in Fig. 2.
The onset of ⇤ particles in neutron matter sizably reduces

Table II. Fitting parameters for the function f defined in
Eq. (4) for different hyperon-nucleon potentials.

Hyperon-nucleon potential c1 [MeV] c2 [MeV]

⇤N �71.0(5) 3.7(3)

⇤N + ⇤NN (I) �77(2) 31.3(8)

⇤N + ⇤NN (II) �70(2) 45.3(8)

the predicted maximum mass with respect to the PNM
case. The attractive feature of the two-body ⇤N interac-
tion leads to the very low maximum mass of 0.66(2)M�,
while the repulsive ⇤NN potential increases the pre-
dicted maximum mass to 1.36(5)M�. The latter result
is compatible with Hartree-Fock and Brueckner-Hartree-
Fock calculations (see for instance Refs. [2–5]).

The repulsion introduced by the three-body force plays
a crucial role, substantially increasing the value of the
⇤ threshold density. In particular, when model (II) for
the ⇤NN force is used, the energy balance never favors
the onset of hyperons within the the density domain that
has been studied in the present work (⇢  0.56 fm�3).
It is interesting to observe that the mass-radius relation
for PNM up to ⇢ = 3.5⇢0 already predicts a NS mass of
2.09(1)M� (black dot-dashed curve in Fig. 2). Even if
⇤ particles appear at higher baryon densities, the pre-
dicted maximum mass will be consistent with present
astrophysical observations.

In this Letter we have reported on the first quantum
Monte Carlo calculations for hyperneutron matter, in-
cluding neutrons and ⇤ particles. As already verified
in hypernuclei, we found that the three-body hyperon-
nucleon interaction dramatically affects the onset of hy-
perons in neutron matter. When using a three-body
⇤NN force that overbinds hypernuclei, hyperons appear
at around twice the saturation density and the predicted
maximum mass is 1.36(5)M�. By employing a hyperon-
nucleon-nucleon interaction that better reproduces the
experimental separation energies of medium-light hyper-
nuclei, the presence of hyperons is disfavored in the neu-
tron bulk at least up to ⇢ = 0.56 fm�3 and the lower
limit for the predicted maximum mass is 2.09(1)M�.
Therefore, within the ⇤N model that we have consid-
ered, the presence of hyperons in the core of the neutron
stars cannot be satisfactorily established and thus there is
no clear incompatibility with astrophysical observations
when lambdas are included. We conclude that in order
to discuss the role of hyperons–at least lambdas–in neu-
tron stars, the ⇤NN interaction cannot be completely
determined by fitting the available experimental energies
in ⇤ hypernuclei. In other words, the ⇤-neutron-neutron
component of the ⇤NN force will need both additional
theoretical investigation, possibly within different frame-
works such as chiral perturbation theory [63, 64], and a
substantial additional amount of experimental data, in
particular for highly asymmetric hypernuclei and excited
states of the hyperon.
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served masses of the heavy pulsars PSR J1614-2230 [18] and
PSR J0348+0432 [19]. The grey shaded region is the excluded
part of the plot due to causality.

inclusion of the repulsive three-body force [model (I)],
stiffens the EOS and pushes the threshold density to
0.34(1) fm�3. In the inset of Fig. 1 the neutron and
lambda fractions are shown for the two HNM EOSs.

Remarkably, we find that using the model (II) for
⇤NN the appearance of ⇤ particles in neutron matter is
energetically unfavored at least up to ⇢ = 0.56 fm�3, the
largest density for which Monte Carlo calculations have
been performed. In this case the additional repulsion
provided by the model (II) pushes ⇢th⇤ towards a density
region where the contribution coming from the hyperon-
nucleon potential cannot be compensated by the gain in
kinetic energy. It has to be stressed that (I) and (II) give
qualitatively similar results for hypernuclei. This clearly
shows that an EOS constrained on the available binding
energies of light hypernuclei is not sufficient to draw any
definite conclusion about the composition of the neutron
star core.

The mass-radius relations for PNM and HNM ob-
tained by solving the Tolman-Oppenheimer-Volkoff equa-
tions [62] with the EOSs of Fig. 1 are shown in Fig. 2.
The onset of ⇤ particles in neutron matter sizably reduces

Table II. Fitting parameters for the function f defined in
Eq. (4) for different hyperon-nucleon potentials.

Hyperon-nucleon potential c1 [MeV] c2 [MeV]

⇤N �71.0(5) 3.7(3)

⇤N + ⇤NN (I) �77(2) 31.3(8)

⇤N + ⇤NN (II) �70(2) 45.3(8)

the predicted maximum mass with respect to the PNM
case. The attractive feature of the two-body ⇤N interac-
tion leads to the very low maximum mass of 0.66(2)M�,
while the repulsive ⇤NN potential increases the pre-
dicted maximum mass to 1.36(5)M�. The latter result
is compatible with Hartree-Fock and Brueckner-Hartree-
Fock calculations (see for instance Refs. [2–5]).

The repulsion introduced by the three-body force plays
a crucial role, substantially increasing the value of the
⇤ threshold density. In particular, when model (II) for
the ⇤NN force is used, the energy balance never favors
the onset of hyperons within the the density domain that
has been studied in the present work (⇢  0.56 fm�3).
It is interesting to observe that the mass-radius relation
for PNM up to ⇢ = 3.5⇢0 already predicts a NS mass of
2.09(1)M� (black dot-dashed curve in Fig. 2). Even if
⇤ particles appear at higher baryon densities, the pre-
dicted maximum mass will be consistent with present
astrophysical observations.

In this Letter we have reported on the first quantum
Monte Carlo calculations for hyperneutron matter, in-
cluding neutrons and ⇤ particles. As already verified
in hypernuclei, we found that the three-body hyperon-
nucleon interaction dramatically affects the onset of hy-
perons in neutron matter. When using a three-body
⇤NN force that overbinds hypernuclei, hyperons appear
at around twice the saturation density and the predicted
maximum mass is 1.36(5)M�. By employing a hyperon-
nucleon-nucleon interaction that better reproduces the
experimental separation energies of medium-light hyper-
nuclei, the presence of hyperons is disfavored in the neu-
tron bulk at least up to ⇢ = 0.56 fm�3 and the lower
limit for the predicted maximum mass is 2.09(1)M�.
Therefore, within the ⇤N model that we have consid-
ered, the presence of hyperons in the core of the neutron
stars cannot be satisfactorily established and thus there is
no clear incompatibility with astrophysical observations
when lambdas are included. We conclude that in order
to discuss the role of hyperons–at least lambdas–in neu-
tron stars, the ⇤NN interaction cannot be completely
determined by fitting the available experimental energies
in ⇤ hypernuclei. In other words, the ⇤-neutron-neutron
component of the ⇤NN force will need both additional
theoretical investigation, possibly within different frame-
works such as chiral perturbation theory [63, 64], and a
substantial additional amount of experimental data, in
particular for highly asymmetric hypernuclei and excited
states of the hyperon.
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Figure 1. Point proton densities in 4He. The solid green
line refers to the “experimental” result; see text for de-
tails. The dash-dotted brown line is the GFMC result for
AV18+UIX [56].

residing inside 2.25 fm, consistent with a two-↵ cluster
structure as observed in Fig. 15 of Ref. [57]. The 12C
density peaks at a slightly smaller distance and notice-
ably higher value, with a larger dip at the center. This
is consistent with a more tightly bound three-↵ cluster—
either in a triangular configuration with a low-density
region at the center of mass, or alternatively with one ↵
in the s-shell and two ↵’s in the p-shell. Similarly, 16O
can be viewed as a tetrahedral four-↵ cluster with the ↵’s
at somewhat greater distance from the center of mass, or
as one s-shell and three p-shell ↵’s with a larger dip-peak
difference than in 12C. The 40Ca density is more compli-
cated, but might be thought of as two s-shell ↵’s giving
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Figure 2. Point proton densities in 16O. The green line refers
to the “experimental” result; see text for details.
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Figure 3. Point proton densities in 40Ca. The green line refers
to the “experimental” result; see text for details.

a larger central peak, while three p-shell and five d-shell
↵’s give a broad shoulder at 1� 3 fm.

The two-nucleon point densities of 4He, 16O, and 40Ca
are reported in Figs. 5–7, respectively, for both AV18 and
AV18+UIX. Upper and lower curves refer to np and pp
pairs, respectively. The fact that ⇢

NN

is very small for
r ' 0 is a consequence of the repulsive core of the NN
potential. As observed for the point-proton densities, the
effect of the 3N force on the two-nucleon densities is ap-
preciably different in light- and medium-heavy systems.
In 4He the pp density is almost unchanged, while the np
density is enhanced around the peak at 1.1 fm. In heav-
ier systems there is a severe depletion of both pp and np
densities, again due to the peculiar repulsive effect of the
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Figure 4. Point proton densities for AV18+UIX. 4He, 16O,
and 40Ca are the results of this work. 8Be and 12C are VMC
results collected in [56].
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final state
��Y f

↵
with momentum Pµ

f = (E f ,P f ), and momentum conservation implies qµ =

pµ
e � pe

0µ = Pµ
f �Pµ

i . Furthermore, the interaction proceeds through the exchange of a space-
like virtual photon, for which q2

µ = w2 �q2 < 0†. In electron-induced reactions w and q can
vary independently (provided that |q| > w), as opposed to reactions induced by real photons
where |q|= w . In elastic reactions w = 0 (neglecting the recoil of the nucleus), which implies
|Yii =

��Y f
↵
. Reactions in which w 6= 0 are instead called inelastic. To different values of

w = E f �Ei, correspond different excitation energies of the nucleus. As w increases to a
few MeV, low-lying (discrete) nuclear excited states can be accessed. For energies transferred
of the order of ⇠ 10� 30 MeV, giant resonance modes in the continuum spectrum of the
nucleus are excited, while for values of wq.e. ⇠ q2/(2m) quasi-elastic effects dominate, in
which the reaction is in first approximation well described as if electrons were scattered off
single nucleons. Beyond the quasi-elastic energy region, meson production can be observed.
A schematic representation of the double differential cross section for electron scattering at a
fixed value of momentum transfer q is provided in Figure 7.

Because in inelastic electron scattering w and q can vary independently, for each value
of excitation energy w , one can study the matrix elements’ behavior as a function of the
momentum transfer. In particular, by varying q one changes the spatial resolution of the
electron probe, which is µ 1/|q|. At low values of momentum transfer, electron scattering
reactions probe long ranged dynamics, while at higher values of momentum transfer shorter
distance phenomena are tested, where dynamics from heavier mesons and baryons become
relevant.

Figure 7. (Color online) Schematic representation of the double differential cross section at
fixed value of momentum transfer.

Cross sections for elastic scattering and scattering to discrete excited states, for which
the transferred energy w is fixed, are expressed in terms of longitudinal (or charge) and
transverse (or magnetic) form factors, which are functions of the momentum transferred
q = |q|, and provide information on the e.m. charge and current spatial distributions inside
the nucleus. The double differential cross section for inclusive processes, in which only
the scattered electron is detected, is expressed in terms of the longitudinal and transverse

† The four-vector squared qµ qµ is here denoted with q2
µ .

Schematic representation of the inclusive cross section as a function of the energy loss.

Lepton-nucleus scattering 

Courtesy of Saori Pastore



Lepton-nucleus scattering 
The inclusive cross section of the process in which a lepton scatters off a nucleus can be written 
in terms of five response functions
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• The response functions contain all the information on target structure and dynamics
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• In the electromagnetic case only the longitudinal  
and the transverse  response functions contribute

R↵�(!,q) =
X

f

h 0|J†
↵(q)| f ih f |J�(q)| 0i�(! � Ef + E0)

• They account for initial state correlations, final state correlations and two-body currents



Moderate momentum-transfer regime 

• Both initial and final states are eigenstates of the nuclear Hamiltonian

• Relativistic corrections are included in the current operators and in the nucleon form factors

• At moderate momentum transfer, the inclusive cross section can be written in terms of the 
response functions

• As for the electron scattering on 12C

R↵�(!,q) =
X

f

h 0|J†
↵(q)| f ih f |J�(q)| 0i�(! � Ef + E0)

H| f i = Ef | f iH| 0i = E0| 0i

|12C⇤i, |11B, pi, |11C, ni, |10B, pni, |10B, ppi . . .
|10Be, ppi

<latexit sha1_base64="wnLvSs9vVDQ4SOet/Eh6fyoJs+o=">AAACAHicdVDLSgNBEJyNrxhfq14EL4NB8CBhN4omt6AXjxFcE0himJ10kiGzs8vMrBDW9eKvePGg4tXP8ObfOHkIPgsaiqpuurv8iDOlHefdyszMzs0vZBdzS8srq2v2+salCmNJwaMhD2XdJwo4E+BppjnUIwkk8DnU/MHpyK9dg1QsFBd6GEErID3BuowSbaS2vXVzlbhOmjRlgE8g3Y+ipiSix6Ft551CsVxyDsr4N3ELzhh5NEW1bb81OyGNAxCacqJUw3Ui3UqI1IxySHPNWEFE6ID0oGGoIAGoVjL+IMW7RungbihNCY3H6teJhARKDQPfdAZE99VPbyT+5TVi3S21EiaiWIOgk0XdmGMd4lEcuMMkUM2HhhAqmbkV0z6RhGoTWs6E8Pkp/p94xUK54J4f5itH0zSyaBvtoD3komNUQWeoijxE0S26R4/oybqzHqxn62XSmrGmM5voG6zXDwSQls4=</latexit><latexit sha1_base64="wnLvSs9vVDQ4SOet/Eh6fyoJs+o=">AAACAHicdVDLSgNBEJyNrxhfq14EL4NB8CBhN4omt6AXjxFcE0himJ10kiGzs8vMrBDW9eKvePGg4tXP8ObfOHkIPgsaiqpuurv8iDOlHefdyszMzs0vZBdzS8srq2v2+salCmNJwaMhD2XdJwo4E+BppjnUIwkk8DnU/MHpyK9dg1QsFBd6GEErID3BuowSbaS2vXVzlbhOmjRlgE8g3Y+ipiSix6Ft551CsVxyDsr4N3ELzhh5NEW1bb81OyGNAxCacqJUw3Ui3UqI1IxySHPNWEFE6ID0oGGoIAGoVjL+IMW7RungbihNCY3H6teJhARKDQPfdAZE99VPbyT+5TVi3S21EiaiWIOgk0XdmGMd4lEcuMMkUM2HhhAqmbkV0z6RhGoTWs6E8Pkp/p94xUK54J4f5itH0zSyaBvtoD3komNUQWeoijxE0S26R4/oybqzHqxn62XSmrGmM5voG6zXDwSQls4=</latexit><latexit sha1_base64="wnLvSs9vVDQ4SOet/Eh6fyoJs+o=">AAACAHicdVDLSgNBEJyNrxhfq14EL4NB8CBhN4omt6AXjxFcE0himJ10kiGzs8vMrBDW9eKvePGg4tXP8ObfOHkIPgsaiqpuurv8iDOlHefdyszMzs0vZBdzS8srq2v2+salCmNJwaMhD2XdJwo4E+BppjnUIwkk8DnU/MHpyK9dg1QsFBd6GEErID3BuowSbaS2vXVzlbhOmjRlgE8g3Y+ipiSix6Ft551CsVxyDsr4N3ELzhh5NEW1bb81OyGNAxCacqJUw3Ui3UqI1IxySHPNWEFE6ID0oGGoIAGoVjL+IMW7RungbihNCY3H6teJhARKDQPfdAZE99VPbyT+5TVi3S21EiaiWIOgk0XdmGMd4lEcuMMkUM2HhhAqmbkV0z6RhGoTWs6E8Pkp/p94xUK54J4f5itH0zSyaBvtoD3komNUQWeoijxE0S26R4/oybqzHqxn62XSmrGmM5voG6zXDwSQls4=</latexit><latexit sha1_base64="wnLvSs9vVDQ4SOet/Eh6fyoJs+o=">AAACAHicdVDLSgNBEJyNrxhfq14EL4NB8CBhN4omt6AXjxFcE0himJ10kiGzs8vMrBDW9eKvePGg4tXP8ObfOHkIPgsaiqpuurv8iDOlHefdyszMzs0vZBdzS8srq2v2+salCmNJwaMhD2XdJwo4E+BppjnUIwkk8DnU/MHpyK9dg1QsFBd6GEErID3BuowSbaS2vXVzlbhOmjRlgE8g3Y+ipiSix6Ft551CsVxyDsr4N3ELzhh5NEW1bb81OyGNAxCacqJUw3Ui3UqI1IxySHPNWEFE6ID0oGGoIAGoVjL+IMW7RungbihNCY3H6teJhARKDQPfdAZE99VPbyT+5TVi3S21EiaiWIOgk0XdmGMd4lEcuMMkUM2HhhAqmbkV0z6RhGoTWs6E8Pkp/p94xUK54J4f5itH0zSyaBvtoD3komNUQWeoijxE0S26R4/oybqzHqxn62XSmrGmM5voG6zXDwSQls4=</latexit>



Integral transform techniques  

• The integral transform of the response function are generally defined as

• Using the completeness of the final states, they can be expressed in terms of ground-state 
expectation values

K

E↵�(�,q) ⌘
Z

d!K(�,!)R↵�(!,q)

E↵�(�,q) = h 0|J†
↵(q)K(�, H � E0)J�(q)| 0i



Lorentz integral transform (LIT) 
• The Lorentz integral transform
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FIG. 9. (Color online) Comparison of the 16O dipole cross
section calculated in the LIT-CCSD scheme against experi-
mental data by Ahrens et al. [63] (triangles with error bars),
and Ishkhanov et al. [65] (red circles). The grey curve starts
from the theoretical threshold, while the dark/blue curve is
shifted to the experimental threshold.
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observe that the convergence rate is comparable to that
found in 16O.

In Fig. 11 we compare the LIT for 22O versus 16O
for the width � = 10 MeV. One notices that the 22O
total strength is larger than that of 16O. The total dipole
strength is the bremsstrahlung sum rule (BSR)

BSR ⌘
Z 1

!th

d!S(!) = h0|D̂
0

†
D̂

0

|0i . (49)

Using the definition of the LIT, Eq. (3), and the proper-
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MeV for 22O and 16O. Di↵erent harmonic oscillator frequen-
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and full blue lines) and ~⌦ = 24 and 26 MeV for 22O (dashed
and full black lines).
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FIG. 12. (Color online) Comparison of the LIT-CCSD dipole
cross section of 22O with the photoneutron data of Ref. [2].
The grey curve starts from the theoretical threshold, while
the dark/blue curve is shifted to the experimental threshold.

ties of the Lorentzian kernel the BSR can also be written
as

BSR =

Z 1

�1
d!

0

L(!
0

,�) . (50)

In both ways we obtain a value of 4.6 and 6.7 fm2 for 16O
and 22O, respectively.
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As in the previous calculation of RL using the Trento (TN)
potential [12], one notes that a semirealistic interaction, in
this case the MTI-III, leads to quite a good overall description
of the response in comparison to the experimental data from
Bates [29] and Saclay [30].

The only difference to the previous calculation with the TN
potential is the pronounced peak close to threshold in case of
q = 300 MeV/c that originates from the monopole excitation
of 4He. However, such a peak is not seen in the data. But it is not
clear whether the experimental energy resolution was sufficient
to resolve such a structure. It is worthwhile to mention that a
0+ resonance at 20.10±0.05 MeV with a width of 270±50
keV was determined in an electron-scattering experiment at
momentum transfers q < 100 MeV/c [32]. Here we do not
calculate these low-q kinematics, the resonance is very close to
the “quasi-elastic peak" and quite small in size in comparison.
A much more detailed study than the present calculation would
be necessary to resolve such a rather complicated low-energy
structure.

B. The transverse response function

As done for the charge operator, we have expanded
the transverse current operator into electric and magnetic
multipoles according to Eqs. (12) and (13), separating them
further into isoscalar and isovector parts, because the response
function is an incoherent sum of these various multipole
contributions. As discussed above, the transverse current
includes one- and two-body operators. We first consider the
one-body current alone, i.e., the spin and the convection current
of Eq. (21). Later we add the consistent two-body current.

1. One-body current

It is known from standard PWIA calculations, that the spin
current dominates the transverse response function at medium
momentum transfers in the region of the quasi-elastic peak.
Therefore, we start the discussion of the transverse response
function of the spin current alone. In Fig. 4, we present the
isoscalar and isovector response functions of the magnetic and
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has been successfully exploited in 
the calculation of electromagnetic 
and neutral-weak responses

K(�,!) =
1

(! � �R)2 + �2
I

Bacca et al., PRL 111, 122502 (2013)

Bacca et al., PRC 76, 014003 (2007)

12

MeV, in Fig. 14, we also show (in dark blue) the theo-
retical curves shifted on the experimental threshold en-
ergy. When integrating the theoretical photo-absorption
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FIG. 14. (Color online) Comparison of the LIT-CCSD
dipole cross section of 40Ca with the photoabsorption data of
Ref. [63]. The grey curve starts from the theoretical thresh-
old, while the dark/blue curve is shifted to the experimental
threshold.

cross section up to 100 MeV we obtain an enhancement
 = 0.69� 0.73 of the Thomas-Reiche-Kuhn sum rule.

Let us also consider the dipole polarizability because of
its considerable experimental and theoretical interest [71,
72]. From the dipole response function S(!) one can
obtain the electric dipole polarizability

↵
E

= 2↵

Z 1

!th

d!
S(!)

!
(52)

as an inverse energy weighted sum rule. In analogy
to Ref. [73], electric dipole polarizability can be also
obtained directly from the Lanczos approach [74–76],
avoiding the inversion of the integral transform. The
removal of center of mass spuriosities for this observable
can be done in the same way as explained in Section III C.
In this case

↵
E

= 2↵
X

⌫

|h'N

⌫

|⇥|0i|2

✏N
⌫

(53)

and the spurious states can be removed from the sum.
Both from the Lanczos approach and integrating the re-
sponse function up to 100 MeV we obtain ↵

E

= 1.47 fm3

within 5%. With the present N3LO nucleon-nucleon in-
teraction we predict a polarizability for 40Ca, which is
rather low in comparison to the experimental value of
↵exp

E

= 2.23(3) fm3 [63]. If we integrate the strength after
shifting it to the experimental threshold (dark/blue curve
in Fig. 14) we obtain roughly ↵

E

= 1.82 fm3, thus mov-
ing in the direction of the experimental value. We also

note that if we integrate the cross section data by Ahrens
et al. [63] we obtain 1.95(26) fm3 for the dipole polar-
izability. It is worth to mention that with the present
nucleon-nucleon interaction 40Ca is about 20 MeV over-
bound and with a charge radius R

ch

= 3.05 fm, which
is considerably smaller than the experimental value of
3.4776(19) fm [77]. This points towards a general prob-
lem of the present Hamiltonian, which does not provide
good saturation properties of nuclei, leading to too small
radii and consequently too small polarizabilities.

VIII. CONCLUSIONS

We presented in detail an approach that combines
the Lorentz integral transform with the coupled-cluster
method, named LIT-CC, for the computation of the
dipole response function in 4He, 16,22O and 40Ca. The
benchmark of this method against the EIHH in 4He gives
us the necessary confidence for the computation in heav-
ier nuclei. The LIT-CCSD approximation yielded results
for the total photonuclear dipole cross section of oxy-
gen and calcium isotopes that are in semi-quantitative
agreement with data. This opens the way for interesting
investigations of the response functions of heavier nuclei,
also beyond the stability valley.
The comparison of the LITs of the response functions

of 16O and 22O shows a larger total area of the latter
(corresponding to the relative bremsstrahlung sum rule)
and a slight shift of the peak to lower energy. Such a shift
already envisages the possibility of more strength in that
region. This becomes manifest after the inversion. For
22O we found a very interesting dipole cross section ex-
hibiting two peaks: A small one at 8-9 MeV and a larger
one at 21-22 MeV. We also extend our calculations fur-
ther out in mass number, presenting first results on the
GDR of 40Ca. In this case we observe that, with re-
spect to experiment, the N3LO nucleon-nucleon interac-
tion leads to larger excitation energy of the GDR, which
is consistent with the over-binding, the too small charge
radius and dipole polarizability we obtain for 40Ca. The
results presented here also open the way to systematic
investigations of more general electro-weak responses of
medium-mass nuclei with an ab-initio approach.
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• Very good agreement with the experimental data. Small contribution from two-body currents.
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to self-consistently account for nucleon and nuclear struc-
ture [24, 25], leads to a reduction of the proton elec-
tric form factor, and, as a consequence, to a significant
quenching of the longitudinal response function of nu-
clear matter and associated Coulomb sum rule [18]. Such
a model does not explain the large enhancement of the
transverse response or the momentum-transfer depen-
dence in the quenching of the longitudinal one. It should
also be noted that medium modifications are not an in-
evitable consequence of the quark substructure of the nu-
cleon. For example, a study of the two-nucleon problem
in a flux-tube model of six quarks interacting via single
gluon and pion exchanges [26] indicates that the nucle-
ons retain their individual identities down to very short
separations, with little distortion of their substructures.

Figures 1–2, showing a comparison between the exper-
imental and theoretical RL(q,!) and RT (q,!) for mo-
mentum transfer values in the range 300–570 MeV/c,
immediately lead to the main conclusions of the present
work: (i) the dynamical approach outlined above (with
free nucleon electromagnetic form factors) is in excellent
agreement with experiment in both the longitudinal and
transverse channels; (ii) as illustrated by the di↵erence
between the plane-wave-impulse-approximation (PWIA)
and GFMC one-body-current predictions (curves labeled
PWIA and GFMC-O

1b), correlations and interaction ef-
fects in the final states redistribute strength from the
quasi-elastic peak to the threshold and high-energy trans-
fer regions; and (iii) while the contributions from two-
body charge operators tend to slightly reduce RL(q,!)
in the threshold region, those from two-body currents
generate a large excess of strength in RT (q,!) over
the whole !-spectrum (curves labeled GFMC-O

1b and
GFMC-O

1b+2b), thus o↵setting the quenching noted in
(ii) in the quasi-elastic peak.

As a result of the present study, a consistent picture
of the electromagnetic response of nuclei emerges, which
is at variance with the conventional one of quasi-elastic
scattering as being dominated by single-nucleon knock-
out. This fact also has implications for the nuclear weak
response probed in inclusive neutrino scattering induced
by charge-changing and neutral current processes. In
particular, the energy dependence of the cross section
is quite important in extracting neutrino oscillation pa-
rameters. An earlier study of the sum rules associated
with the weak transverse and vector-axial interference re-
sponse functions in 12C found [27] a large enhancement
due to two-body currents in both the vector and axial
components of the neutral current. Only neutral weak
processes have been considered so far, but one would
expect these conclusions to remain valid in the case of
charge-changing ones. In this connection, it is important
to realize that neutrino and anti-neutrino cross sections
only di↵er in the sign of this vector-axial interference re-

FIG. 1. (Color online) Electromagnetic longitudinal response
functions of 12C for q in the range (300–570) MeV. Exper-
imental data are from Refs. [9, 10]. See text for further
explanations.

sponse, and that this di↵erence is crucial for inferring the
charge-conjugation and parity violating phase, one of the
fundamental parameters of neutrino physics, to be mea-
sured at DUNE. The rest of this paper deals succinctly
with the most salient aspects of the present calculations.

The longitudinal and transverse response functions are
defined as

R↵(q,!) =
X

f

hf |j↵(q,!)|0ihf |j↵(q,!)|0i⇤

⇥ �(Ef � ! � E
0

) , ↵ = L, T (1)

where |0i and |fi represent the nuclear initial and final
states of energies E

0

and Ef , and jL(q,!) and jT (q,!)
are the electromagnetic charge and current operators, re-
spectively. A direct calculation of R↵(q,!) is impractical,
since it would require evaluating each individual transi-
tion amplitude |0i �! |fi induced by the charge and cur-
rent operators. To circumvent this di�culty, the use of
integral transform techniques has proven to be quite help-
ful. One such approach is based on the Laplace transform
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FIG. 2. (Color online) Same as Fig. 1 but for the electromag-
netic transverse response functions. Since pion production
mechanisms are not included, the present theory underesti-
mates the (transverse) strength in the � peak region, see in
particular the q=570 MeV/c case.

of R↵(q,!)—so called Euclidean response [11]—which we
define as

E↵(q, ⌧) =

Z 1

!+
el

d! e�!⌧ R↵(q,!)

[Gp
E(q,!)]

2

, (2)

where Gp
E(q,!) is the (free) proton electric form factor

and the integration excludes the contribution due to elas-
tic scattering (!

el

is the energy of the recoiling ground
state). We elaborate this issue further below; for now
it su�ces to note that, in the specific case of 12C, the
ground state has quantum numbers J⇡ =0+ and there-
fore the elastic contribution vanishes in the transverse
channel. With the definition given in Eq. (2), the Eu-
clidean response function above can be thought of as be-
ing due to point-like, but strongly interacting, nucleons,
and can simply be expressed as

E↵(q, ⌧)=h0|O†
↵(q)e

�(H�E0)⌧O↵(q)|0i� |F↵(q)|2e�⌧!el ,
(3)

where H is the nuclear Hamiltonian (here, the AV18/IL7
model), F↵(q) = h0|O↵(q)|0i is the elastic form fac-
tor, and in the electromagnetic operators O↵(q) the de-

pendence on the energy transfer ! has been removed
by dividing the current j↵(q,!) by Gp

E(q,!) [15]. The
calculation of this matrix element is then carried out
with GFMC methods [11] similar to those used in pro-
jecting out the exact ground state of H from a trial
state [28]. It proceeds in two steps. First, an un-
constrained imaginary-time propagation of the state |0i
is performed and saved. Next, the states O↵(q)|0i
are evolved in imaginary time following the path pre-
viously saved. During this latter imaginary-time evolu-
tion, scalar products of exp [�(H�E

0

) ⌧i]O↵(q)|0i with
O↵(q)|0i are evaluated on a grid of ⌧i values, and from
these scalar products estimates for E↵(q, ⌧i) are obtained
(a complete discussion of the methods is in Refs. [11, 29]).
Following Ref. [15] (see also extended material submit-

ted in support of that publication), we have exploited
maximum entropy techniques [13, 14] to perform the an-
alytic continuation of the Euclidean response function—
corresponding to the inversion of the Laplace transform
of Eq. (2). However, we have improved on the inver-
sion procedure described in [15] in order to better prop-
agate the statistical errors associated with E↵(q, ⌧) into
R↵(q,!). Specifically, the smallest possible value for pa-
rameter ↵ (see Ref. [15]) has been chosen to perform a
first inversion of the Laplace transform, which is then in-
dependent on the prior. The resulting response function
R(0) is the one whose Laplace transform E(0) is the clos-
est to the original average GFMC Euclidean response.
Then, N = 100 Euclidean response functions are sam-
pled from a multivariate gaussian distribution, with mean
value E(0) and covariance estimated from the original set
of GFMC Euclidean responses. The corresponding re-
sponse functions, obtained using the so called “historic
maximum entropy” technique, are used to estimate the
mean value and the variance of the final inverted response
function.

q (MeV/c) 2+ 0+ 4+

300 0.1286 0.0311 0.0060
380 0.0745 0.0051 0.0075
570 0.0064 0.0046 0.0037

TABLE I. Measured longitudinal transition form factors, de-
fined as hf |OL(q)|0i/Z, to the f =2+, 0+ (Hoyle), and 4+
states in 12C. Experimental data are from Refs. [30–32], and
have been divided by the proton electric form factorGp

E(q,!f )
with !f = Ef � E0.

We now proceed to address the issue alluded to earlier.
The low-lying spectrum of 12C consists of J⇡ =2+, 0+

(Hoyle), and 4+ states with excitation energies E?
f � E

0

experimentally known to be, respectively, 4.44, 7.65, and
14.08 in MeV units [33]. The contributions of these states
to the quasi-elastic longitudinal and transverse response
functions extracted from inclusive (e, e0) cross section
measurements are not included. Therefore, before com-
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charge-conjugation and parity violating phase, one of the
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⇥ �(Ef � ! � E
0

) , ↵ = L, T (1)

where |0i and |fi represent the nuclear initial and final
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0

and Ef , and jL(q,!) and jT (q,!)
are the electromagnetic charge and current operators, re-
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one- and two-body current matrix elements, and is con-
sistent with that expected on the basis of sum-rule analy-
ses [18]. Counter to the electromagnetic case [17], we find
that two-body terms in the weak neutral charge produce
substantial excess strength in R00 and R0z beyond the
quasi-elastic peak. In the 00, 0z, zz, and xx response
functions the vector (V NC) and axial (ANC) compo-
nents of the weak neutral current, jNC

↵ = jV NC
↵ + jANC

↵ ,
do not interfere; in these cases, R↵� =RV NC

↵� +RANC
↵� and

the separated RV NC
xx and RANC

xx are illustrated in Fig. 2.
By contrast, the xy response function arises solely on ac-
count of this interference. The ANC contribution to R↵�

is typically much larger than the V NC one (for example,
RANC

xx ' 3⇥RV NC
xx ). Furthermore, one expects in 12C the

00 and xx V NC response functions to be proportional to
the longitudinal and transverse electromagnetic response
functions RL and RT via RV NC

00/xx ' RL/T /4, since the

isoscalar and isovector pieces in jV NC are related to the
corresponding ones in the electromagnetic current jEM

by the factors, respectively, �2 sin2✓W and (1�2 sin2✓W )
(sin2✓W ' 0.23), and the matrix elements of these pieces
add up incoherently in the response of an isoscalar target
such as 12C. Lastly, we note that two-body terms in the
ANC increase the one-body RANC

xx response by about
20% in the quasi-elastic region. This increase is much
larger than the ' 2–4% that is obtained in the case of
Gamow-Teller rates between low-lying states near thresh-
old, induced by the axial component of the weak charged
current [24].

In Fig. 3 we show the ⌫ and ⌫ di↵erential cross sec-
tions for a fixed value of the three-momentum transfer as
function of the energy transfer for a number of scattering
angles. In terms of these variables, the initial energy E
of the neutrino, shown in the insets of Fig. 3, is given by
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and its final energy E0 =E � !. Because of the can-
cellation in Eq. (1) between the dominant contributions
proportional to the Rxx and Rxy response functions, the
⌫ cross section decreases rapidly relative to the ⌫ cross
section as the scattering angle changes from the for-
ward to the backward hemisphere. For this same rea-
son, two-body current contributions are smaller for the
⌫ than for the ⌫ cross section, in fact becoming negligi-
ble for the ⌫ backward-angle cross section. As the angle
changes from the forward to the backward hemisphere,
the ⌫ cross section drops by almost an order of mag-
nitude, and in the limit ✓= 180� is just proportional
to Rxx(q,!) � Rxy(q,!). In terms of initial and final
neutrino energies E and E0—the kinematical variables
most relevant for the analysis of accelerator neutrino

FIG. 3. (Color online) Weak neutral ⌫ (black curves) and
⌫ (red curves) di↵erential cross sections in 12C at q=570
MeV/c, obtained with with one- and one- and two-body terms
in the NC. The final neutrino angle is indicated in each panel
and the initial neutrino energy is shown in the inset.

experiments—we note that E ranges from 1–2 GeV at
✓=15� to 0.3–0.5 GeV at ✓=120�, and so the present
results computed at fixed q=570 MeV/c as function of
! span a broad kinematical range in terms of the vari-
ables E and E0.
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Relativistic effects in a correlated system 
• Non relativistic approaches are limited to moderate momentum transfers

• In a generic reference frame the longitudinal response reads

Rfr
L =

X

f

���h i|
X

j

⇢j(q
fr,!fr)| f i

���
2
�(Efr

f � Efr
i � !fr)

�(Efr
f � Efr

i � !fr) ⇡ �[efrf + (P fr
f )2/(2MT )� efri � (P fr

i )2/(2MT )� !fr] ⌘ �[efrf � enrf (qfr,!fr)]

• The response in the LAB frame is given by the Lorentz transform
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Relativistic effects in a correlated system 
• The 4He  longitudinal response at q=700 MeV strongly depends on the original reference frame 
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Relativistic effects in a correlated system 
• To determine the relativistic corrections, we consider a two-body breakup model

• The relative momentum is derived in a relativistic fashion

• And it is used as input in the non relativistic kinetic energy

• The energy-conserving delta function reads 
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Relativistic effects in a correlated system 
• The 4He  longitudinal response at q=700 MeV mildly depends on the original reference frame 

N. Rocco et al. PRC 97 055501(2018) 



Relativistic effects in a correlated system 6

FIG. 7. Double-di↵erential electron-4He cross sections for di↵erent values of incident electron energy and scattering angle.
The green and blue lines correspond to GFMC calculation were only one- body and one- plus two-body contributions in the
electromagnetic currents are accounted for. The red line indicates one plus two-body current results obtained in the ANB
frame, employing the two-body fragment model to account for relativistic kinematics. The experimental data are taken from
Ref. [14].

N. Rocco et al. PRC 97 055501(2018) 
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FIG. 7. Double-di↵erential electron-4He cross sections for di↵erent values of incident electron energy and scattering angle.
The green and blue lines correspond to GFMC calculation were only one- body and one- plus two-body contributions in the
electromagnetic currents are accounted for. The red line indicates one plus two-body current results obtained in the ANB
frame, employing the two-body fragment model to account for relativistic kinematics. The experimental data are taken from
Ref. [14].

N. Rocco et al. PRC 97 055501(2018) 



Fully-relativistic regime 
• At (very) large momentum transfer, scattering off a nuclear target reduces to the sum of scattering 

processes involving bound nucleons              short-range correlations.

• Relativistic effects and resonance production-mechanisms play a major role and need to be 
accounted for along with nuclear correlations. 

| f i ' |p1, p2i ⌦ | f iA�2

| f i ' |p1i ⌦ | f iA�1

• The approach based on realistic spectral functions 
has recently been extended to include two-body 
currents in electron and neutrino scattering 

N. Rocco’s talk on Thursday



(Intermediate) Conclusions 

•12C electromagnetic responses are in good agreement with experiments.

• Two-body current contributions enhance the longitudinal and transverse axial responses 

• Quantum Monte Carlo is suitable to compute cross-sections, not only responses 

 Disclaimer

• The continuity equation only constraints the longitudinal components of the current

• Two- and three- body forces not consistent

• The transverse component and the axial terms are phenomenological (the coupling constant is 
fitted on the tritium beta-decay)

The theoretical error arising from modeling the nuclear 
dynamics cannot be properly assessed 

• Charged-current responses calculations underway 



   -full local chiral potential�
We have complemented the historical “Argonne” approach by considering a local chiral     -full 
potential giving an excellent fit to the NN scattering data that can be readily used in QMC.
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FIG. 1. (Color online) S-wave, P-wave, and D-wave phase shifts for np (in T=0 and 1 states)

and pp, obtained in the Nijmegen [36, 37], Gross and Stadler [52], and Granada [39] PWA’s, are

compared to those of models a, b, and c, indicated by the band. The left (right) panels show phase

shifts up to 125 (200) MeV lab energy.

Gross-Stadler [52] groups. The recent Gross and Stadler’s PWA is limited to np data only.

In Fig. 2, the np (top panels) and pp (lower panel) S-wave, P-wave, and D-wave phase

shifts are displayed for model b up to 125 MeV lab energy order-by-order in the chiral

expansion. Dashed (blue), dash-dotted (green), double-dash-dotted (magenta), and solid

(red) lines represent the results at LO, NLO, N2LO and N3LO, respectively. Of course, the

description of the phase shifts improves substantially, as one progresses from LO to N3LO.
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FIG. 1. (Color online) S-wave, P-wave, and D-wave phase shifts for np (in T=0 and 1 states)

and pp, obtained in the Nijmegen [36, 37], Gross and Stadler [52], and Granada [39] PWA’s, are

compared to those of models a, b, and c, indicated by the band. The left (right) panels show phase

shifts up to 125 (200) MeV lab energy.

Gross-Stadler [52] groups. The recent Gross and Stadler’s PWA is limited to np data only.

In Fig. 2, the np (top panels) and pp (lower panel) S-wave, P-wave, and D-wave phase

shifts are displayed for model b up to 125 MeV lab energy order-by-order in the chiral

expansion. Dashed (blue), dash-dotted (green), double-dash-dotted (magenta), and solid

(red) lines represent the results at LO, NLO, N2LO and N3LO, respectively. Of course, the

description of the phase shifts improves substantially, as one progresses from LO to N3LO.
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• Consistent MEC available

• Theoretical uncertainty estimation

• Closer connection with QCD

model order ELab (MeV) Npp+np �2/datum

b LO 0–125 2558 59.88

b NLO 0–125 2648 2.18

b N2LO 0–125 2641 2.32

b N3LO 0–125 2665 1.07

a N3LO 0–125 2668 1.05

c N3LO 0–125 2666 1.11

ea N3LO 0–200 3698 1.37

eb N3LO 0–200 3695 1.37

ec N3LO 0–200 3693 1.40

a N3LO 0–200 3690 2.41

b N3LO 0–200 3679 3.76

c N3LO 0–200 3679 4.52

TABLE I: Total �2/datum for model a (ã) with (RL, RS) = (1.2, 0.8) fm, model b (b̃) with (1.0, 0.7)

fm, and model c (c̃) with (0.8, 0.6) fm fitted up to 125 (200) MeV laboratory energy. For model

b, results of the fits up to 125 MeV order by order in the chiral expansion are also given; Npp+np

denotes the total number of pp and np data, including observables and normalizations.

LO and NLO and from N2LO and N3LO. However, the quality of the fit worsens slightly

in going from NLO to N2LO. At N2LO we fixed the chiral LECs, namely c1, c2, c3, c4 and

b3 + b8, from the ⇡N scattering analysis of Ref. [28]. In the range 0–125 MeV, the total

�2/datum at N3LO are 1.05, 1.07, 1.11 for models a, b, and c, respectively; while in the

range 0–200 MeV the total �2/datum at N3LO are 1.37, 1.37, 1.40. The total �2/datum at

N3LO for models a, b, and c when compared (without refitting) to the 0–200 MeV database

are 2.41, 3.76, 4.52, respectively. In both energy ranges, the quality of the fits deteriorates

slightly as the (RL, RS) cuto↵s are reduced from the values (1.2,0.8) fm of model a down to

(0.8,0.6) fm of model c.

The fitted values of the LECs corresponding to models a, b, c and ea, eb, ec are listed in

Tables II and III, respectively. The values for the ⇡N LECs in the OPE and TPE terms of

these models are given in Table I of Ref. [50].
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   -full local chiral potential�
The experimental A≤12 ground- and excited state energies are very well reproduced by the local          

    -full NN+NNN chiral interaction �

FIG. 3. Spectra of A=4–12 nuclei. The energy spectra obtained with the NV2+3-Ia chi-

ral interactions are compared to experimental data. Also shown are results obtained with the

phenomenological AV18+IL7 interactions.
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4

gs ex
LO 2.334 2.150

N2LO –3.18⇥10�2 –2.79⇥10�2

N3LO(CT) 2.79⇥10�1 2.36⇥10�1

OPE –2.99⇥10�2 –2.44⇥10�2

N4LO(2b) –1.61⇥10�1 –1.33⇥10�1

N4LO(3b) –6.59⇥10�3 –4.86⇥10�3

TABLE II. Individual contributions to the 7Be ✏-capture
Gamow-Teller RMEs obtained at various orders in the chiral
expansion of the axial current (⇤=500 MeV) with VMC wave
functions. The rows labeled LO and N2LO refer to, respec-
tively, the first term and the terms proportional to 1/m2 in
Eq. (1); the rows labeled N3LO(CT) and OPE, and N4LO(2b)
and N4LO(3b), refer to panel (a) and panels (b) and (f), and
to panels (c)-(e), (g) and panel (h) in Fig. 1, respectively.

The contributions of the axial current order-by-order in
the chiral expansion are given for the GT matrix ele-
ment of the 7Be ✏ capture in Table II. Those beyond
LO, with the exception of the CT at N3LO, have oppo-
site sign relative to the (dominant) LO. The loop cor-
rections N4LO(2b) are more than a factor 5 larger (in
magnitude) than the OPE. This is primarily due to the
accidental cancellation between the terms proportional
to c3 and c4 in the OPE operator at N3LO (which also
occurs in the tritium GT matrix element [27]). It is also
in line with the chiral filter hypothesis [35–37], according
to which, if soft-pion processes are suppressed—as is the
case for the axial current—then higher-order chiral cor-
rections are not necessarily small. Indeed, the less than
3% overall correction due to terms beyond LO reported
in Table I (row N4LO) comes about because of destruc-
tive interference between two relatively large (⇠ 10%)
contributions from the CT and the remaining [primarily
N4LO(2b)] terms considered here.

Ratios of GFMC to experimental values for the GT
RMEs in the 3H, 6He, 7Be, and 10C weak transitions
are displayed in Fig. 2—theory results correspond to
�EFT axial currents at LO and including corrections
up to N4LO. The experimental values are those listed
in Table I, while that for 3H is 1.6474(24) [27]. These
values have been obtained by using g

A

=1.2723(23) [38]
and K/

⇥
G2

V

�
1 +�V

R

�⇤
=6144.5(1.4) sec [39], where

K =2⇡3 ln 2/m5
e

=8120.2776(9) ⇥ 10�10 GeV�4 sec and
�V

R

= 2.361(38)% is the transition-independent radiative
correction [39]. In the case of the � decays, but not for
the ✏ captures, the transition-dependent (�0

R

) radiative
correction has also been accounted for. Lastly, in the ✏
processes the rates have been obtained by ignoring the
factors B

K

and B
L1 which include the e↵ects of electron

exchange and overlap in the capture from the K and L1
atomic subshells. As noted by Chou et al. [14] following
Bahcall [40, 41], such an approximation is expected to be
valid in light nuclei, since these factors only account for

1 1.1 1.2

Ratio to EXPT

10C 10B

7Be 7Li(gs)
6He 6Li
3H 3He

7Be 7Li(ex)

gfmc 1b
gfmc 1b+2b(N4LO)
Chou et al. 1993 - Shell Model - 1b

FIG. 2. (Color online) Ratios of GFMC to experimental
values of the GT RMEs in the 3H, 6He, 7Be, and 10C weak
transitions. Theory predictions correspond to the �EFT axial
current in LO (blue circles) and up to N4LO (magenta stars).
Green squares indicate ‘unquenched’ shell model calculations
from Ref. [14] based on the LO axial current.

a redistribution of the total strength among the di↵erent
subshells (however, it should be noted that B

K

and B
L1

were retained in Ref. [11], and led to the extraction of
experimental values for the GT RMEs about 10% larger
than reported here).
We find overall good agreement with data for the 6He

�-decay and ✏ captures in 7Be, although the former is
overpredicted by ⇠ 2%, a contribution that comes almost
entirely from 2b and 3b chiral currents. The experimental
GT RME for the 10C �-decay is overpredicted by ⇠ 10%,
with two-body currents giving a contribution that is com-
parable to the statistical GFMC error. The presence of
a second (1+; 0) excited state at ⇠ 2.15 MeV can poten-
tially contaminate the wave function of the 10B excited
state at ⇠ 0.72 MeV, making this the hardest transition
to calculate reliably. In fact, a small admixture of the
second excited state (' 6% in probability) in the VMC
wave function brings the VMC reduced matrix element
in statistical agreement with the the measured value, a
variation that does not spoil the overall good agreement
we find for the reported branching ratios of 98.54(14)%
(< 0.08%) to the first (second) (1+, 0) state of 10B [14].
Because of the small energy di↵erence of these two levels,
it would require an expensive GFMC calculation to see if
this improvement remains or is removed; in lighter sys-
tems we have found that such changes of the trial VMC
wave function are removed by GFMC.

We note that correlations in the wave functions sig-
nificantly reduce the matrix elements, a fact that can
be appreciated by comparing the LO GFMC (blue cir-
cles in Fig. 2) and the LO shell model calculations
(green squares in the same figure) from Ref. [14]. More-
over, preliminary variational Monte Carlo studies, based

2

into account. These two-body operators, multiplied by
hadronic form factors so as to regularize their short-range
behavior in configuration space, were then constrained to
reproduce the GT matrix element contributing to tritium
� decay by adjusting the poorly known N -to-� axial cou-
pling constant (see Ref. [19] for a recent summary).

Yet, the calculations of Ref. [11] were based on ap-

proximate VMC wave functions to describe the nuclear
states involved in the transitions. This shortcoming was
remedied in the subsequent GFMC study of Ref. [12],
which, however, only retained the one-body GT opera-
tor. Adding to the GFMC-calculated one-body matrix
elements the VMC estimates of two-body contributions
obtained in Ref. [11] led Pervin et al. [12] to speculate
that a full GFMC calculation of these A=6–7 weak tran-
sitions might be in agreement with the measured values.

The last three decades have witnessed the emergence
of chiral e↵ective field theory (�EFT) [20]. In �EFT,
the symmetries of quantum chromodynamics (QCD), in
particular its approximate chiral symmetry, are used to
systematically constrain classes of Lagrangians describ-
ing, at low energies, the interactions of nucleons and �
isobars with pions as well as the interactions of these
hadrons with electroweak fields [21, 22]. Thus �EFT
provides a direct link between QCD and its symmetries,
on one side, and the strong and electroweak interac-
tions in nuclei, on the other. Germane to the subject
of the present letter are, in particular, the recent �EFT
derivations up to one loop of nuclear axial currents re-
ported in Refs. [23, 24]. Both these studies were based on
time-ordered perturbation theory and a power-counting
scheme à la Weinberg, but adopted di↵erent prescrip-
tions for isolating non-iterative terms in reducible contri-
butions. There are di↵erences—the origin of which is yet
unresolved—in the loop corrections associated with box
diagrams in these two independent derivations.

The present study reports on VMC and GFMC calcu-
lations of weak transitions in 6He, 7Be, and 10C, based on
the Argonne v18 (AV18) two-nucleon [25] and Illinois-7
(IL7) three-nucleon [26] interactions, and axial currents
obtained either in the meson-exchange [19] or �EFT [23]
frameworks mentioned earlier. The AV18+IL7 Hamilto-
nian reproduces well the observed spectra of light nuclei
(A=3–12), including the 12C ground- and Hoyle-state
energies [3]. The meson-exchange model for the nuclear
axial current has been most recently reviewed in Ref. [19],
where explicit expressions for the various one-body (1b)
and two-body (2b) operators are also listed (including fit-
ted values of the N -to-� axial coupling constant). The
�EFT axial current [23, 27] consists of 1b, 2b, and three-
body (3b) operators. The 1b operators read

j1b5,± = �g
A

AX

i=1

⌧
i,±

✓
�
i

�r
i

�
i

·r
i

� �
i

r2
i

2m2

◆
, (1)

where ⌧
i,± = (⌧

i,x

± i ⌧
i,y

)/2 is the standard isospin rais-

ing (+) or lowering (�) operator, and �
i

and �ir
i

are,
respectively, the Pauli spin matrix and momentum oper-
ator of nucleon i. The 2b and 3b operators are illustrated
diagrammatically in Fig. 1 in the limit of vanishing mo-
mentum transfer considered here. Referring to Fig. 1,
the 2b operators are from contact [CT, panel (a)], one-
pion exchange (OPE) [panels (b) and (f)], and multi-pion
exchange (MPE) [panels (c)-(e) and (g)],

j2b5,± =
AX

i<j=1

h
jCT
5,±(ij) + jOPE

5,± (ij) + jMPE
5,± (ij)

i
, (2)

and the 3b operators are from MPE [panels (h)-(i)],

j3b5,± =
AX

i<j<k=1

jMPE
5,± (ijk) . (3)

Configuration-space expressions for these 2b and 3b op-
erators are reported in Ref. [27].

FIG. 1. Diagrams illustrating the (non-vanishing) contribu-
tions to the 2b and 3b axial currents. Nucleons, pions, and
external fields are denoted by solid, dashed and wavy lines,
respectively. The circle in panel (b) represents the vertex im-

plied by the L(2)
⇡N chiral Lagrangian [28], involving the LECs

c3 and c4. Only a single time ordering is shown; in particular,
all direct- and crossed-box diagrams are accounted for. The
power counting of the various contributions is also indicated.
See text for further explanations.

The 1b operator in Eq. (1) includes the leading or-
der (LO) GT term and the first non-vanishing correc-
tions to it, which come in at next-to-next-to-leading or-
der (N2LO) [27]. Long-range 2b corrections from OPE
enter at N3LO, panel (b) in Fig. 1, involving the low-
energy constants (LECs) c3 and c4 in the sub-leading

L(2)
⇡N

chiral Lagrangian [28], as well as at N4LO, panel (f).
In terms of the expansion parameter Q/⇤

�

—where Q
specifies generically the low-momentum scale and ⇤

�

=1
GeV is the chiral-symmetry-breaking scale—they scale as
(Q/⇤

�

)3 and (Q/⇤
�

)4, respectively, relative to the LO.
Loop corrections from MPE, panels (c)-(e) and (g), come
in at N4LO, as do 3b currents, panels (h)-(i). Finally, the
contact 2b current at N3LO, panel (a), is proportional to
a LEC, denoted as z0.
The short-range behavior of the 2b and 3b operators

is regularized by including a cuto↵ C⇤(k)= exp(�k4/⇤4)

Chiral-EFT currents

S. Pastore et al. PRC 97, 022501 (2018)

• Chiral currents consistent with the    -full local chiral potential are being developed �
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• Mixed-approach calculations indicate a slight enhancement of the decay rates from MEC 
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Explicit-pion QMC
The non-relativistic wave functions found solving the many-body Schrödinger equations describe the 
quantum-mechanical amplitudes of the nucleonic degrees of freedom.

The nucleon-mass renormalization is 
consistent with quantum-field theory

hR, S| i
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FIG. 3. (Color online) The rest mass counter term as a func-
tion of the cuto↵ for L = 5, 10, 15 fm, (blue) triangles, (green)
circles, (red) squares, respectively. The closed symbols rep-
resent GFMC results obtained discarding HWT in Eq. (34)
in the one-nucleon Hamiltonian. The open symbols stand
for the lowest-order nonrelativistic rest mass calculated with
Eq. (B8).

enough systems. The fact that in the short-time limit
the nucleon is di↵using with a constant related to MP is
consistent with our findings reported in Sec. IV A.
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C. The pion cloud

One of the most interesting properties that can be com-
puted within the formalism presented in this paper are
those of the virtual pions surrounding the nucleons. Al-
though this might in principle contain some dynamical in-
formation, at present we limit ourselves to analyze static
properties.

An interesting quantity to analyze is the ground-state
momentum distribution of the pion cloud for the di↵erent
charged states n↵(k). Since we the sum of Eq. (9) are
written in such a way that k is included and �k is not,
this is best represented by the expectation value of

Nik = a†↵ka↵k + a†↵�k

a↵�k

, (66)

with the creation and annihilation operators for a pion in
a given charge state are given in Eqs. (29–30). We com-
puted the momentum distributions and radial densities
of the pion cloud using the forward walking procedure
described in Sec. III D in order to avoid the bias due to
the trial wave function. We considered a box with L=10
fm, and the model state |�i of Eq. (40) corresponding to
a spin-up proton.

In the limit L ! 1, n↵(k) should be a function of
k = |k| alone. Already for L=10 fm we found minimal
di↵erences among the modes with the same k, hence in
Fig. 5 we show the pion momentum distribution as a
function of k, only. The normalization is chosen such
that N↵ = L3

P
i n↵(ki)gi, where N↵ is the total number

of pions of charge ↵, and gi is the multiplicity of the i-th
shell. An interesting feature is that the distribution of ⇡+

is approximately twice the one of ⇡0. This follows from
the structure of the axial-vector coupling, which involves

⌧i⇡i =
1

2
⌧+(⇡x � i⇡y) +

1

2
⌧�(⇡x + i⇡y) + ⌧z⇡0, (67)

with ⌧± = (⌧x ± i⌧y) being the isospin raising and low-
ering operators, and ⇡0 = ⇡z. If we suppose that the
cartesian ⇡i are produced in the same amount, then we
expect twice as many ⇡0 than ⇡+. Since we are look-
ing at a one proton state, the production of ⇡� is much
smaller compared to that of ⇡+ and ⇡0. Conversely, if
the baryon is a neutron, we get analogous results with
the distributions of ⇡+ and ⇡� interchanged. Although
increasing the cuto↵ increases the total pion production,
the number of pions at low-momenta appears to be cuto↵
independent.

The pion densities, whose o↵-diagonal components are
related to the momentum distributions through a Fourier
transform, can also be resolved for di↵erent charge states,
as in Eq. (25). The results for the density are displayed
in Fig. (6) for a spin-up proton as model state – we did
not plot the n = 5 density for ⇡� because it is negligible
in the scale of the Figure. In analogy to n↵(k), the pro-
duction of ⇡� is heavily suppressed. If the model state
is a neutron, we, of course, get identical results with the
densities of ⇡+ and ⇡� interchanged.

D. One pion exchange

As mentioned above, the long-range behavior of the
nuclear force is due to the one-pion exchange. It arises
from tree-level diagrams with four external nucleons and
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Appendix A: Conventions

We use units such that ~ = c = 1. The contravari-
ant space-time and momentum four-vectors are given
by xµ = (t, ~x) and pµ = (E, ~p). Greek indices µ, ⌫, ...
run over the four space-time coordinate labels 0, 1, 2, 3,
with x0 = t being the time coordinate. Latin indices
i, j, k, and so on run over the three space coordinate
labels 1, 2, 3. The metric is given by gµ⌫ = gµ⌫ with
g00 = 1, gii = �1. The covariant versions of the
above-mentioned vectors are xµ = gµ⌫x⌫ = (t,�~x) and
pµ = gµ⌫p⌫ = (E,�~p). While for an ordinary three-
vector we have ~x = (x1, x2, x3), the three-dimensional
gradient operator is defined to be

~r = (@1, @2, @3) (A1)

with

@i =
@

@xi
= � @

@xi
= �@i. (A2)

The Levi-Civita tensor is defined as ✏ijk = 1 if (i, j, k) is
an even permutation of (1, 2, 3), ✏ijk = �1 if it is an odd
permutation and ✏ijk = 0 otherwise.

The spin 1/2 and isospin 1/2 operators of the nucleons
are defined as s = �/2 and t = ⌧/2, where � and ⌧ are
the Pauli matrices operating in spin and isospin space,
respectively. The Pauli matrices are

�1 =

✓
0 1
1 0

◆
; �2 =

✓
0 �i
i 0

◆
; �3 =

✓
1 0
0 �1

◆
. (A3)

We write the amplitudes of a state |�i as a column vector
(hp|�i, hn|�i)T , so that a proton corresponds to (1, 0)T ,
and a neutron (0, 1)T . The inspection of the operator
⌧ · ⇡, given in Eq. (67), leads to the identification of
(⇡x � i⇡y)/

p
2 with the annihilation of a ⇡+ (or with the

creation of a ⇡�) and (⇡x+i⇡y)/
p

2 with the annihilation
of a ⇡� (or with the creation of a ⇡+).

Appendix B: Lowest order self-energy from the
nonrelativistic pion-nucleon Hamiltonian

In this calculation we consider only the lowest order
interaction term, represented by the diagram of Fig. 9.

The nonrelativistic propagator for a free nucleon in-
cluding the mass counter terms is

G(x � x

0, t � t0) =

p

q

p

p � q

1

FIG. 9. Diagram for the lowest order self-energy ⌃(E,p).

= �i✓(t � t0)h0|N(x)e�iH(t�t0)N†(x0)|0i

= �i✓(t � t0)
1

L3

X

p

e�ip·(x�x

0)e
�i

⇣
p2

2MP
+�Kp2+MP+�M

⌘
(t�t0)

=
1

L3

X

p

eip·(x�x

0)

Z
d!

2⇡
e�i!(t�t0)G(p,!) . (B1)

In the last line we introduced the Fourier transform,

G(p,!) = �i

Z 1

�1
dt✓(t)e

i
⇣
!� p2

2MK
+�Kp2�M��M

⌘
t�⌘t

=
1

! � p2

2MK
� �Kp2 � MP � �M + i⌘

, (B2)

where ⌘ is a positive infinitesimal, which was added to
make the integral at the upper limit converges.

The free pion propagator corresponds to that of a free
harmonic oscillator with frequency !q =

p
q2 + m2

⇡,

GHO(!) =
1

!2 � !2
q + i⌘

. (B3)

Equations (B2) and (B3), together with standard
Feynman diagram rules [33], provide an expression for
the self-energy,

⌃(E,p) = 3i

✓
gA
2f⇡

◆2 1

L3

X

q

Z 1

�1

d!

2⇡

1

!2 � !2
q + i⌘

⇥ q2

E � ! �
⇣

1
2MP

+ �K

⌘
|p � q|2 � MP � �M + i⌘

,

(B4)

where the factor of 3 comes from ⌧ · ⌧ (or the 3 types of
hermitian pions). Performing the integral over ! yields

⌃(E,p) =
3

2

✓
gA
2f⇡

◆2 1

L3

X

q

1

!q

⇥ q2

E �
⇣

1
2MP

+ �K

⌘
|p � q|2 � MP � �M � !q

.

(B5)

The single-nucleon spectrum is dictated by the pole of
the Green’s function,

E =

✓
1

2MP
+ �K

◆
p2 + Mp + �M + ⌃(E,p) . (B6)

N N

⇡

⇡(x) =
1p
L3

X

k

⇡ke
ik·x
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The relativistic pions and the nucleons are both explicitly included in the quantum-mechanical 
states of the system

L. Madeira, et al. arXiv:1803.10725

The interaction between two static nucleons 
reduces to one-pion exchange at large distance
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C. One pion exchange

As mentioned above, the long-range behavior of the
nuclear force is due to the one-pion exchange. It arises
from tree-level diagrams with four external nucleons and
an o↵-shell pion. At lowest order in perturbation theory,
the potential arising from two static nucleons is

VOPE(q) = �
✓

gA
2f⇡

◆2 (�1 · q)(�2 · q)

q2 + m2
⇡

⌧ 1 · ⌧ 2, (68)

where q is the transferred momentum. The coordinate-
space potential is recovered from VOPE(q) via a Fourier
transform. In order to make a meaningful comparison we
need to compute the one-pion exchange potential keeping
into account the geometry and the cuto↵ of the simula-
tion cell we use.

In Eq. (38) last term on the RHS of the fixed nucleon
Hamiltonian contains contributions of the self-energy of
the nucleons and the one-pion exchange potential, in
which we are interested. Keeping only terms that involve
the coupling between the two nucleons,

VOPE(r) = � 1

L3

g2A
2f2

⇡

⌧ 1 · ⌧ 2

X

k

0
(�1 · k)(�2 · k)

⇥ cos(k · r)

!2
k

, (69)

which is consistent with Eq. (68).

The instantaneous one-pion exchange potential ne-
glects terms where two or more pions are exchanged and
the vertices are in di↵erent time orders. These commu-
tator terms contribute even for fixed nucleons. However
they become unimportant for large nucleon separations.
We studied the interaction between two fixed nucleons as
a function of the inter-particle distance r in the T = 1
and S = 0 and T = 0 and S = 1 channels. We used VMC
calculations and checked that they were accurate by per-
forming GFMC calculations at a few separations. Our
VMC results, represented by the points in Fig. 7, are ob-
tained by subtracting the nucleon self-interaction terms
from the ground-state expectation value of H⇡⇡ + HAV

for two di↵erent spherical cuto↵s. For comparison, we
also show the curves corresponding to the one-pion ex-
change potential of Eq. (69) for the same cuto↵ employed
in the VMC calculations. As expected, the VMC results
agree with the one-pion exchange potential at su�ciently
large distances, r & 3.0 fm. The di↵erences at smaller
distances come from the fact that we are solving for a
Hamiltonian that contains terms other than the one-pion
exchange. This is one of the key features of explicitly in-
cluding the modes of the pion field, which is absent in
potential models, in which multiple pion-exchange po-
tentials have to be explicitly devised.
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FIG. 7. (Color online) One-pion exchange potential for two
nucleons a distance r apart along the x-axis in the T = 1
and S = 0 channel (upper panel) and T = 0 and S = 1
channel (lower panel). The points (VMC) correspond to our
variational results, where the full (red) circles denote n = 5
(!s

c ' 327 MeV) and open (blue) circles stand for n = 10
(!s

c ' 449 MeV). The curves (OPE) correspond to the one-
pion exchange potential of Eq. (69) with the same cuto↵ as
the VMC calculations.

D. Two nucleons

We need to fix the low-energy constants CS and CT

associated to the contact terms entering H2N
NN of Eq. (49).

These should be either fitted to experiment or to QCD.
Instead of fitting to experiment, we take the expedient
step of fitting to results of a potential model that has
been fit to experiments. Since our calculations rely on a
periodic box, we fit CS and CT to reproduce the ground
state results of the Argonne v06 (AV6P) potential[40] for
the deuteron and two-neutrons in a periodic box.

Note that a possible way to directly fit experiments
would involve the Lüscher method [41]. The energy spec-
trum of a system of two particles in a box with periodic
boundary conditions, for box sizes greater than the inter-
action range, and for energies below the inelastic thresh-
old, is determined by the scattering phases at these en-



Explicit-pion QMC
Our goal (a long way ahead) is to perform reliable predictions for pion production in electron- and 
neutrino-nucleus scattering
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