Fermilab Office of ENERGY

Discovering Dark Matter @ Neutrino Experiments Gordan Krnjaic

NuFact 2018, Virginia Tech, August 17, 2018

Open Questions in Fundamental Physics

Also Quantum Gravity

Remarkable Evidence for Dark Matter

Matter Power Spectrum

Gravitational Lensing

CMB Power Spectrum

Cluster Collisions

BBN Light Element Yields

Multiple independent, consistent observations over **nearly** all of spacetime (!)

Ultimate Goal: extend our knowledge down to laboratory scales

What Clues Do We Have?

Huge space of allowed microscopic theories

Evidence only extends down to ~kpc (dwarf galaxy) scales

Theoretical guidance is essential

Need organizing principle for systematic progress

Overview

1) What's **great** about thermal DM?

2) What's **different** about light thermal DM (< GeV)?

3) **Signals** at accelerator based neutrino experiments?

Overview

1) What's **great** about thermal DM?

2) What's **different** about light thermal DM (< GeV)?

3) **Signals** at accelerator based neutrino experiments?

Q: What's so great about equilibrium? A: Generic and easy to achieve

Compare interaction rate to Hubble expansion

$$\mathcal{L}_{\text{eff}} = \frac{g^2}{\Lambda^2} (\bar{\chi}\gamma^\mu \chi) (\bar{f}\gamma_\mu f)$$

$$H \sim n\sigma v \implies \frac{T^2}{m_{Pl}} \sim \frac{g^2 T^5}{\Lambda^4} \Big|_{T=m_{\chi}}$$

Equilibrium is reached in the early universe if

$$g \gtrsim 10^{-8} \left(\frac{\Lambda}{10 \,\mathrm{GeV}}\right)^2 \left(\frac{\mathrm{GeV}}{m_{\chi}}\right)^{3/2}$$

Nearly all **testable** models feature equilibrium at early times (especially those testable at accelerators!)

Griest et. al. 1992

Q: What's so great about equilibrium? A: Insensitive to unknown high energy physics

Initial condition known

Calculable and independent of inflation, reheating, baryogengesis etc.

Mass & couplings set abundance

A discovery would directly probe early universe cosmology

Only *other* **UV** insensitive mechanism is "freeze-in"

- Ad hoc initial condition $n_{\chi}(0) = 0$
- DM produced through tiny couplings, very hard to test

None of these features depends on SUSY/WIMPs

Q: What's so great about equilibrium? A: Narrows Viable Mass Range (!)

Q: What's so great about equilibrium? A: Narrows Viable Mass Range (!)

Overview

1) What's **great** about thermal DM?

2) What's **different** about light thermal DM (< GeV)?

3) Signals at accelerator based neutrino experiments?

Light DM vs. WIMPs

- 1) Light DM must be SM neutral Else would have been discovered at LEP
- 2) Light DM requires light new forces Overproduced without comparably light, neutral "mediators"

- 3) Annihilation involves renormalizable interactions Higher dimension operators have same problem as W/Z mediators
 - Light mediators are not optional they're essential

Who's Heavier: DM or Mediator?

No clear experimental target Abundance set by g_{χ}

Mediator decays **visibly Motivates hidden force searches**

Direct Annihilation

 $m_{\chi} < m_{\rm med}$

Predictive thermal targets Abundance depends on *g*_{SM}

Mediator decays **invisibly*** **Motivates missing energy probes**

Who's Heavier: DM or Mediator?

Direct Annihilation

 $m_{\chi} < m_{\rm med}$

Predictive thermal targets Abundance depends on *g*_{SM}

Interaction basis: "dark photon" A' mixes with visible photon A $\mathcal{L} \supset \epsilon F'_{\mu\nu}F^{\mu\nu} + \frac{m_{A'}^2}{2}A'_{\mu}A'^{\mu} + e_D A'_{\mu}J^{\mu}_{\chi}$

Interaction basis: "dark photon" A' mixes with visible photon A $\mathcal{L} \supset \epsilon F'_{\mu\nu}F^{\mu\nu} + \frac{m_{A'}^2}{2}A'_{\mu}A'^{\mu} + e_D A'_{\mu}J^{\mu}_{\chi}$

Mass basis: A' acquires tiny coupling to EM current

$$\mathcal{L} \to e_D A'_\mu J^\mu_\chi + \epsilon e A'_\mu J^\mu_{\rm EM}$$

Interaction basis: "dark photon" A' mixes with visible photon A $\mathcal{L} \supset \epsilon F'_{\mu\nu}F^{\mu\nu} + \frac{m_{A'}^2}{2}A'_{\mu}A'^{\mu} + e_D A'_{\mu}J^{\mu}_{\chi}$

Mass basis: A' acquires tiny coupling to EM current

$$\mathcal{L} \to e_D A'_\mu J^\mu_\chi + \epsilon e A'_\mu J^\mu_{\rm EM}$$

Not only model, but similar to others $J_{EM}^{\mu} \to J_{B-L}^{\mu}$, $J_{L_i-L_i}^{\mu} \cdots$

Overview

1) What's **great** about thermal DM?

2) What's **different** about light thermal DM (< GeV)?

3) **Signals** at accelerator based neutrino experiments?

Target/ECAL/HCAL

Neutrino Experiments: Relativistic Direct Detection!

Produce Mediator in *Beam Dump*

DM scatters in (near) detector

ECAL/HCAL

Why use the beam dump?

MiniBooNE-DM Collaboration arXiv:1807.06137

Case Study 1: Constrain DM with LSND NC data

DM beam from pi0 decays $E_p \simeq 800 \,\mathrm{MeV}$, $10^{24} \,\mathrm{POT}$ (!!)

Signal from e-recoils in detector

 $18 \,\mathrm{MeV} < E_{\mathrm{vis}} < 50 \,\mathrm{MeV}$ $\cos \theta < 0.9$ $\Delta N_{\mathrm{obs}} = 55$

Reinterpret $\nu_{\mu}e \rightarrow \nu_{\mu}e$ LSND arXiv/0101039

Simulate pi0 production Sanford/Wang

deNiverville, Chen, Pospelov, Ritz 1609.01770 deNiverville, Pospelov, Ritz 1107.4580

Case Study 2: Constrain DM with COHERENT

Reinterpret data $\nu N \rightarrow \nu N$

Hg target, DM beam from pi0 decays $E_p \sim \text{GeV}$, $2 \times 10^{23} \text{POT}$

Signal: coherent nuclear recoil 14.6 kg CsI target, ~keV threshold

COHERENT Collaboration 1708.01294

Shao-Feng Ge, Ian Shoemaker 1710.10889

The experimental era has arrived: MiniBooNE-DM

Lots of interest in future searches

However:

- 1) Most future facilities are intensity limited $\sim 10^{20}$ POT
- 2) Competition from electron beam experiments (higher lumi, lower BG)

How do we get maximum value from neutrino experiments?

Izaguirre, GK, Schuster, Toro arXiv:1505.00011

DOE Cosmic Visions Report 1707.04591

Caveat: needs additional TeV scale colored particles to cancel anomalies

Batell, de Niverville, McKeen, Pospelov, Ritz 1405.7049

Dirac and Majorana masses split a Fermion into two mass eigenstates $\chi_{1,2}$

Off diagonal coupling to
$$A'$$

 $\mathcal{L} \supset A'_{\mu} \left(e_D \bar{\chi}_1 \gamma^{\mu} \chi_2 + \epsilon e J^{\mu}_{\rm EM} \right)$
Relic abundance
"coannihilation" during early universe

Heavier state is unstable

New decay signatures in accelerators

Izaguirre, GK, Shuve arXiv: 1508.03050 Izaguirre, Kahn, GK, Moschella arXiv: 1703.06881 Jordan, Kahn, GK, Moschella, Spitz arXiv: 180.06137

 $\Delta \equiv m_2 - m_1$

Variation 2: Inelastic DM

Decays qualitatively different

Active Target (ECAL/HCAL)

DM beam from pi0& eta decays $\sim 10^{23}$ POT, $E_p = 3$ GeV, Hg target Similar to LSND, ~30 ton scintillator det., 24 m target-detector dist.

$$\delta B = \sqrt{B_{\text{beam-off}}} + 0.2B_{\text{beam-on}}$$

demand $S/\delta B = 2$

Assuming:

20% systematic uncertainty on BG7cm extra shielding for comics

JSNS2 TDR 1705.08629

Jordan, Kahn, GK, Moschella, Spitz arXiv: 1703.06881

Variation 2: Inelastic DM @ JSNS²

small mass splitting ~ 10%

large mass splitting ~ 40%

- Traditional direct detection kinematically forbidden
- -Heavier state decayed away in early universe (no indirect detection)

Jordan, Kahn, GK, Moschella, Spitz arXiv: 1703.06881

Neutrino experiments + electron fixed targets + B-factories + LHC

Summary

Thermal DM is extremely well motivated

- $\begin{array}{ll} \textbf{A Modest Proposal} & \Gamma(\text{DM}\leftrightarrow\text{SM}) > H \\ \text{Rate beats Hubble expansion at *some* point [easy to realize]} \\ \textbf{Initial Condition Known} & n_{\text{DM}} \sim T^3 \\ \text{Insensitive to unknown high scales [inflation, baryogenesis...]} \end{array}$
- **Predicts Min. Annihilation Rate** $\sigma v \gtrsim 10^{-26} \text{cm}^3 \text{s}^{-1}$ Equilibrium overproduces DM, must deplete with annihilation
- Viable Window In Our Neighborhood Coincidentally in broad vicinity of the electroweak scale

${ m MeV} \sim m_e$	${ m GeV} \sim m_p$	$m_{Z,h}$	$\sim 10 \mathrm{s} \mathrm{TeV}$
$\Delta N_{ m eff}$	LDM	"WIMPs"	$\Omega_\chi > \Omega_{ m DM}$

Concluding Remarks

Dawn of a new era of accelerator DM searches Neutrino experiments leading the way!

- Test thermal targets in predictive models
- Almost completely free (just need new analysis)
- MiniBooNE first **ever** dedicated search
- Lots of new signatures (especially decays)
- Complementarity with electron beam & collider searches

No longer have to trust theorists to reinterpret old data