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Why muons at NuFact?

e Same production mechanism for muons and neutrinos.

e A neutrino factory is also a muon factory and vice versa.

e Muon experiments are complementary to each other and to
searches at the Energy Frontier.

e Excellent probe for physics beyond the standard model.



So much to cover in W(G4!

| will attempt to:

e Cover 25 talks
e Cover 18 different experiments
e Summarize the view of all group
members
e Many topics:
o CLFV (muons,colliders)
o g2
o Proton radius puzzle
O




CLFV evidence: A clear signature of New Physics

SM with massive neutrinos (Dirac) BSM

B(ut — ety) > 107>

B(;L+ — €+",r’) ~ 10—-‘34

. an experimental evidence:
too small to access experimentally . .
a clear signature of New Physics NP
(SM background FREE)

Current upper limits on Bz';
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Muon CLFV experiments strive to keep backgrounds <<1 event and achieve single event

sensitivity.
Angela Papa



Pulsed v/s DC Muon Beams

Dedicated beam lines for high precision and high sensitive SM test/BSM probe
at the world’s highest beam intensities

oo s DC or Pulsed? r:bea" N
- ~ 10 -l T m 1011 f
\peam __ - - IJ/S
N « DC beam for coincidence « Pulse beam for non-
experiments coincidence experiments
u—eyr, u—eee . M-e conversion
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@PS . FERMILAB
~20 ns 1-2 ps
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History of CLFV Searches:

e Fully reconstruct electron and photon.
e DC beam helps control combinatorial

bkg.

e Current best limit from MEG at PSI.
— Br<4.2x10-" 183 MEG at PSI
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History of CLFV Searches:

e Track all three electrons.

DC beam helps control combinatorial bkg 10!

e Current best limit 20 years old! o
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History of CLFV Searches:

1
10" u .
Monoenergetic electron ~mass of muon. = Cosmic ray muons
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Pulsed beam controls prompt bkg 107 .
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A Renaissance for Muon Physics?
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A Renaissance for Muon Physics?
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We heard updates on all of these muon CLFV experiments.



The MEG-II Experiment

New electronics:
Wavedream
Liquid xenon photon detector

COBRA TV TIGN (LXe)

superciducting magne

x2 Resolution x2 Beam Intensity

everywhere §

Pixelated timing counter

Updated and Tc
new Calibration (pTO)
methods Muon stopping target

Cylindrical drift chamber
Radiative decay counter (CDCH)
(RDC)
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Angela Papa
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MEG-II Status

Assembly of new single-volume chamber is
complete.




MEG-II

Status

AT 8L

New LXe assembled a

-

nd filled - commissioning ongoing.

Assembly of new single-volume chamber is
complete.
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The Mu3e Experiment

Standard Model branching ratio 5¢ 0

Mu3e aims for a single event sensitivity
of 1¢10°'6 (Phase II)
of 2¢10°!% (Phase | = this talk)

— Search for new physics

outer pixel layers

scintillating /=3

fibres

— Previous limit 1¢10-'2 (SINDRUM, 1988)

Complementary to p—~>ey and pN—>e in technique
and new physic "

&

/‘4-{'

Contact

e 2 xdouble layer of Si pixel detectors
e Each layeris < 0.1 % of a radiation
length
e  Scintillating fiber and tile layers provide
excellent timing:
o 350 ps < 500 ps (fibres)
o 70 ps <100 ps (tiles)

14
Frederik Wauters




Mu3e Status

e Area/services at PSI under construction.
e Working toward vertical slice test.
e Magnet coming <1 yr.

Finalizin teD for the HV-MAPS )
High Voltage Monolithic Active Pixel Sensors Detector production tools are underway...

15



Mu3e Status

e Area/services at PSI under construction.
e Working toward vertical slice test.
e Magnet coming <1 yr.

Finalizin the R&D for the HV-MAPS )
High Voltage Monolithic Active Pixel Sensors Detector production tools are underway...
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All of these experiments used pulse beams.

Stop muons -> muonic atoms e

Reconstruct

ed e Momentum

3.6e+20 Protons On Target
6.7e+17 Stopped 1~
R, = 1e-16
I CE=3.8 +0.03

CE SES= 2.6e-17 +7e-19
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i
It
x,;#,‘w# i

L M A&'.

101 102

Momentum resolution must be good (typically <200 keV
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Production sole

Transport solenoid

Bkg from cosmic rays must be controlled.
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Th e M u 26 EXDe rl me nt SES of 3x10-17 is the target (10,000x better than current results)

Proton Beam

: , (pulsed) ,
Production Soleno'd/ Detector Solenoid
/—_‘;’ \
A 1 \ )

¥~ ~ Transport Solenoid
. - —— - — . 7
(e == Bl

Calorimeter
Tracker

e

~
~

Muon _
Stoppin
Stopping Target DIO Peak \\

Cosmic ray induced | \
Muon decay in orbit ‘

I Antiproton induced | |

\ /

I Radiative muon capture

I Muon decay-in-flight \ | ) /
Radiative pion capture Conversior
Pion decay-in-flight A\

Il Beam electrons

Steve Boi



MuZ2e Status

Prototype Tracker
Panels

Cosmic Ray Veto

Production Underway =

Prototype Calorimeter
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MuZe-Il

Another factor of ten in sensitivity over Mu2e is
compelling regardless of its outcome:
— If signal in Mu2e

* <5 o, improve statistical accuracy
* >5 o, use different targets to sort out nature of interaction = =

— If no signal in Mu2e
* Extend sensitivity to find signal or set new limits

— Either way, BSM theories strongly constrained!

* Recent Expression of Interest.
* Upgrade to Mu2e — improve sensitivity by a factor of 10.

» Utilize the increased proton intensity afforded by PIP-1l upgrade.
* Use as much Mu2e infrastructure as possible.

* Upgrade apparatus where needed to handle improved beam intensity.

PIP-Il CDR V0.01 Appendix A (http://pxie.fnal.gov/PIP-Il_CDR/default.htm|

— Working to identify high-priority R&D so that work can begin soon: Mu2e workshop in two weeks at

Northwestern — join us! https://indico.fnal.gov/event/17536/ 21
Craig Group



https://indico.fnal.gov/event/17536/

The COMET Experiment (phase |)

FecliedenEcsas ) Cylindrical Drift Chamber / Muon Stopping Target
(Graphite) =

90-deg
Transpol

Solenoid

Capture Solenoid

Detector Solenoid

Goal of Phase-I
v Physics measurement — CyDet

® u-e conversion search, SES: 3 X 10-1> (x100 improve), 150 days running

v Beam measurement — StrECAL 29
® to understand beam quality and background (PID, momentum, timing) Manabu Moritzu



The COMET Experiment (phase |l)

[ ]|

Electron Spectrometer Solenoid

® SES: 2X10-17 (x10,000 improve)
® Beam: 56 kW
® ] year running

23
Manabu Moritzu



COMET Status

Beamline wall construction is complete.
e Transport Solenoid installed,
e Production Solenoid winding in progress, and Detector
Solenoid are complete.

CyDet Cylindrical Drift Chamber cosmic ray studies ongoing.
FEBs have been fabricated.

e Straws for StrECAL fabricated.
e Other StrECAL components also being
produced/purchased.

24



COMET Status

==

ding in progress, and Detector Solenoid are complete.
Beamline wall construction is complete.

CyDet Cylindrical Drift Chamber cosmic ray studies ongoing.
FEBs have been fabricated.

e Straws for StrECAL fabricated.
e Other StrECAL components also being 25
produced/purchased.



PRISM/PRIME: A Next-Generation uy— N — e— N Experiments

PRISM:

e Phase Rotated Intense Slow Muon beam

e Requires compressed proton bunch and
high power proton beam

e Phase rotation in muon storage ring

PRISM/PRIME:

e potential upgrade to COMET
e SES 3x10'° suggested with new proton
driver

I I I I I I I 1 I I I I I I
High Energy
Advanced Phase

Spread

Energy
C

Energy

- Low Enorgy - - -
Dlelayeld Phlase

1 1 1 1 1 1 | 1 1 1 1

Phase

Detector Solenoid

Spectrometer Solenoid

Muon Storage Ring

(Phase Rotator) Pion and Muon

Transport Solenoid

Pulsed Proton Beam

Pion Capture Solenoid

e R&D is ongoing...

® PRISM is becoming a serious option for the next generation
cLFV experiment.

® Novel ideas in generating muon beams may open new

horizons:

o Neutrino factory

O  Muon collider 26
O

J. Pasternak



The DeeMe EXDerIment Singleeventsensitivity(1year=2><107 sec)

1)(10_13 - - 2X10—14
2_5x10_14(4years) Upgrade to SiC > 5%10~15 (4 years)

e Unique: production target is also the stopping

target.
3 . e Spectrometer is Pacman magnet with MWPC.
*| @ m~ Production e Optimization of MWPC to handle beam flash.
]. . @ in-ﬂight T~ U~ e Working to measure decay in orbit spectrum -
. . . Carbon.
. @ Muonic Atom Formation

s o ool @ u-eConversion

Proton |¢e® A
low-P BG <
— high? 1|
?roductlon Signal | | Magnet
arget Secondary Beamline Spectrometer 27

Daiki Nagao



The DeeMe EXDerIment : Singleeventsensitivity(1year=2><107 sec)

< 1)(10_13 . - 2X10—14
§ 2_5x10_14(4years) Upgrade to SiC . 5><10‘15(4years)

e Unique: production target is also the stopping

target.
_ . Spectrometer is P2~ with MWPC.
*| @ m~ Production Optimizatic= beam flash.

spectrum -

]_ . @in-flight m= u-
« °| @®Muonic Atom Fs

Proton |¢ed

o M
. high? 11/
?rodutctlon Signal | Magnet
arge Secondary Beamline Spectrometer 28

Daiki Nagao



New Proposal: y—e—— e—e-

M. Koike, Y. Kuno, J. Sato, & M. Yamanaka,
using muonic atoms Al
/ P El
/ Vs \
1
proposal in COMET I @
R. Abramishvili et al., ‘\ \ p
COMET Phase-| Technical Design Report | *, ™ _
(2016). N
~ ~
Features(-~-——————————————————
"

« 2 CLFV mechanisms

I

o o |

v' contact ( ueee vertex ) X \!? |
v" photonic ( uey vertex ) /5\ |
I

N\
{ * clear signal : E; + E; ~m, + m, — B, — B,
I
I
I
I

(similarto u* = e*ete™)

\ +atomic#Z :large = decayrateT :large (M« (Z-1)%)

Extra CLFV channel to provide a unique handles on the
type of physics interaction leading to CLFV signal.

Joe Sato
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g,-2 at FNAL: Experimental

1) Polarized beam what does a calorimeter see

w
o

4) Parity violating decay
— positron (electron) prefers

positron energy [GeV]

(prefers opposite) spin direction.

2) Precession proportional to g-2
I
1.9 frmem ) T

3) “Magic” y for the muon

Michel
spectrum

muon decay
anomalous precession frequency

> ‘ boosted

0 5 10 15 20 25 30 35 40
Adobe Acrobat Pro hit time [usec]

Jarek Kasper 30



g,-2 Experimental Approaches

Wg = — — |layB — |ay —
“ m| " a v2 -1 c

e Measure w, - want to extract a,
e Either:

o E=0 (J-PARC)

o “Magic” y (FNAL)

FNAL

7 m radius storage ring
B=145T

weak electric focusing
high-rate 3 GeV/c beam
spin polarization 97 %
data taking 2018 - 2020
100 ppb by end of 2021

J-PARC

0.33 radius storage bottle
B=3T

no E -field, week mag. focusing
0.3 GeV/c beam

spin polarization 50 %

data taking 2020 - 2023

400 ppb by end of 2023 y



gu-z at FNAL: Status | Goal is 4x improvement relative to BNL

Standard Model prediction

experiment
e More beam and improved purity

W e Improved instrumentation:
1 —a— o Improved B field uniformity, calibration,
AT and monitoring
. | o New tracker with large azimuthal
n e } acceptance and no dead time
A E821
a7 - Vo 6.2 o New segmented calorimeter with better
BNL (x4 accurac y) 700 S8 1 ng- . H
.................. | atFNAL timing and energy resolution
160 170 180 190 200 210 220 . .
(2, x 10'%-11659000 o New laser calibration SyStem
100 1 6 ~191—9 Integrated Muon g-2 POT (5.8E+19)
| data —— Integrated with g-2 DAQ live (90%)
107F fit i s | —~ Rawe total as % of BNL (%) (196.3%) 2
0 WW\NV\fVWV\/\/\N\N\,\M z
WWMMNWVW\/\\AANWWVV\“NWV\NWNW | First physics run completed in July!
wJM’WV\/VW\N\/\/\/W\ E'z 10
100 WM’VVW\’VWV\ J\W £ 3
10) “} Fermilab Muon g-2 Collaboration 1 e
> et sl g
1079026 30 40 50 60 70 80 90 o - , . . . . 32
time modulo 100 us \a“nb V\:) ‘m"& ‘w"i‘ m"xﬁ Mﬂ_gﬁ .m‘i""b “0_\6 Q'Q‘)




g,-2 at FNAL: Status

DHMZ10 [ ———
Js11 ._-._._‘
HLMNT11 —_—
FI17 L
DHMZ17 r—i-—.
i
KNT18 —
BNL (x4 accurac y)
...............

Standard Model prediction

- .
(=]

o
% =
ul

count /149 ns

Goal is 4x improvement relative to BNL
experiment
e More beam and improved purity
e Improved instrumentation:
o Improved B field upi ty, calibration,

" } Fermilab Muon g-2 Collaboration
N\ Production Run 1, 22-25 Apr 2018

N
/«@u\ PRELIMINARY, no quality cut

10 20 30 40 50 60 70

First physics run completed in July!
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The diagram to be evaluated:

Standard Model Predictions for _qu-2

u
KNT18 (liM update [KNT18: arXiv:1802.02995, PRD (in press)] had.
2011 2017 pQCD not useful. Use the dispersion
QED 11658471.81 (0.02) —>  11658471.90 (0.01) moxwrzosm relation and the optical theorem.
EW 15.40 (0.20) — 15.36 (0.10) Phys. Rev. 0 88 (2013) 053005] d
S
LO HLbL 10.50 (2.60) — 9.80 (260) [EPJ Web Conf. 118 (2016) 01016] ﬂ’\'.'\": f - O\ Im “'.M
m(s—q?)
NLO HLbL 0.30 (0.20) [Phys. Lett. B 735 (2014) 90] had had
HLMNT11 KNT18 2
) HVI 694.91 (4.27) —» 693.27 (2.46) this work 21m .W‘M,: Z ﬁ(I) ‘M‘
NLO HVP -9.84 (0.07) —» -9.82 (0.04) this work had. had.
NNLO HVP 1.24 (001) [Phys. Lett. B 734 (2014) 144]
; 5 T 2 oo
total 11650182.80 (4.94) ——»  11659182.05 (3.56) this work . .
| = : ~had,LO __ 7n#‘ d lK ,
Experiment 11659209.10 (6.33) world avg (I# — 12 3 S — (S)O-ha.d(b)
™ S
Exp - Theory 26.1 (8.0) —» 27.1 (7.3) this work Sth
Aay 330 —» 370 this work @ Lots of new input o(ete~ — hadrons) data
2ot June 2018 12/ 124 ® Improvements in the estimatesof
(HVP: Hadronic Vacuum Polarization) uncertainties due to radiative corrections
(HLbL: Hadronic Light-by-Light) (Vacuum Polarization Radiative Corrections
Slide by A. Keshavarzi (Liverpool) at ‘Muon g — 2 Workshop’ at Mainz, June 18-22, 2018 & Final State Radiations)
@ Improvements in data-combination method

34
Daisuke Nomura



CLFV at CIIiders

140

-
N
o

ATLAS
Preliminary

[JLHC Delivered  Recorded: 11410

{s=13TeV

Delivered: 122 fb’'

o) C ]
2> C ]
2 ]
o L i
£100— ]
E [ [JATLAS Recorded .
3 I ]
Rl 80— -
] = ]
(1] = _
& 60— -
o [ ]
E | -
= 40 -
° r ]
= 20— -
B L — 1 oy
30 2 3 12108 A8 AT AT 1B 1@

Month in Year

uoneIqIed 810z [emu)

LHC experiments have enough Z bosons to compete with LEP:
o /—eu
o J—etlut
Can also search in Higgs boson decays:
e H—etlut
Tau decays:
o 13U
And, hypothetical channels (exclude masses above ~3TeV):
e Heavy gauge bosons (Z')
e R-parity violating SUSY (sneutrino)
e Quantum Black Holes

35



CLFV at CMS and Atlas LEp | Ak | cMs | Lio

R T e 1.0 (5.4)x10°
> ARBLIASRE AR T ) = VR R— 3.76x10” 4.6x10°
8 300 ATLAS — s X x
2 is=8TeV,203fb" + . E Z—ep 1.7x107¢ 7.5x107 7.3x107 R—
o 250— —

L — Fit
o . Z—et 9.8x107° 58x10° | - e
200f- B
u === B=75x107 7
L ] Z—ut 1.2x107° 13%x10° | e | e
1501~ +2/DOF = 0.75 E
- H—er | - 1.04x1072 0.6x102 = e
100}
n H-ur | - 1.43%1072 0.25x1072 ————-
50—
- B(H— pu1) <1.51% (2.40 excess |)
Pl R
= 20E||e - 19.7 " (8 TeV) T 197" (8 TeV)
L 10;'_ *® "| 8 -:CMS o Dl 8 [ cms Dwuwuwmvuw:
c;'.i 0§0 8 I et =:m“‘"m E’, of [T7] exoc. uncontainey 1
Q ! Ile'fer . g i g ¢ -
70 75 80 85 90 95 100 105 110 3~ R T B
m,, [GeV] £ 1 i
Note: Indirect low-energy Br (Z-ep) limit: 5 x10-13 A 2
(very strict, but still worth checking at high energy) ’ ¢

§E++-+- e s N S

Diego Beghin (CMS) Wing Sheung Chan (Atlas) T " i, 6oV 0



LHCB: CLFV and Lepton Universality

P Z/y { "
w+ j
{ jf _{ N V‘ - l
0/ b < [ P Bo b %0
B {d > d [P’ d K
S Flavour-changinge CHARGED current (b = ¢cfv Flavour-changing NEUTRAL current (b = s(d)£1¢
ging Zing

[JHH’ 08 (3017 055)

d ) i ] ) d |
< < o 10F vaee
BO K*0 BO K*0 [iYaee
. \ 0.8 -
b t rs b o t s b4 l
‘\ w . \\ %% . 06p - ! ® LHCb ]
2~-_’2 d T ‘ “‘132'172')0 24-2.50 v ?ii}-\n ]
T ="M ‘ 02} ¢ flav.io
7 et [ LHCb e IC
“_(] 1 P - i i ’ -
0 1 2 3 4 6
q° [C eV?/ct]
Several other 2-3 ¢ anomalies reported.

Will improve experimental reach significantly as dataset improves.

~2x improvement in new physics scale probed! 37

Francesca Dordei



CLFV at NAG2

Kaon fixed-target experiment at CER
NAb62 (2014-2018):

* 2014: Pilotf run

* 2015: Commissioning

« 2016-2018:

e Kt - mwtun

« HNL
» Rare/forbidden kaon decays
» Exofics
Primary beam E | STRAW CHOD
« 400 GeV/c protons from LAV NUV1,2
1] t %t RICH
SPS Target KTAG GTK MUV3
Secondary beam 0 - ——a=ag:x CHANTI Vacuum . s‘:c
* 6% kaons, 75 GeV/c ' I RICH
-- ] RG  Dump
momentum 2 RDeC_ay = LKr
. - egion — — .
* Rest: 70% pions, 24% . | | | |
protons 0 100 150 200 250 ZIm]

Stoyon Trilov



Searches for LF/LN violation at NA62

Lepton number violating decays

« Kt >a utu®t (BR <1.1x1077) NA48/2@CERN [PLB 697 (2011) 107]

« Kt >m utet (BR <5.0x10719)

« Kt >mn etet (BR < 6.4x10719)
Lepton flavour violating decays

« Kt >ntu~et (BR <5.2x10719)

« Kt > natute™ (BR < 1.3x10711) BNL E777/E865 [PRD 72 (2005) 012005]
e Kt 5>a*tn% 7% - utet (BR < 3.6x10719) kTeV@FNAL [PRL 100 (2008) 131803]
« Kt 5> puvetet(BR < 2.1x107%) Geneva-Saclay [PL 62B (1976) 485]

AS = AQ violating modes

BNL E865 [PRL 85 (2000) 2877]

« K* > a*n*u™v, (BR < 3.0x107°) LRL [PR 139 (1945) B1600]

« Kt > ntnte v, (BR < 1.3%x1078) Geneva-Saclay [PL 608 (1976) 393]

NA62 is able to improve on most of these modes
« Single event sensitivity ~10711

Stoyon Trilov
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The Proton Radius Puzzle

r, determined from:
- ep scattering
- Spectroscopy from muonic hydrogen

Results from these methods are discrepant.
. CODATA-2014
M beam stopped in Hz gas —_—
up 2013
u o 2P
laser (206 meV) up 2010
finite size H spectroscopy (CODATA-2014)
25 { effect (37 mev)
errec .[ me H spectroscopy‘2017 H spectroscopy 2018
99% -
1 1 | 1 1 | 1 | 1 1 1 1 | 1 | 1 1 | | 1 1 1 | 1 1 1 1 | 1 1 11 | 1 1 1 | | 1 1 1 1 | 1 1
0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9
Proton charge radius Rp (fm)
Electron scattering: 0.879 £ 0.011 fm (CODATA 2014)
Muonic spectroscopy: 0.8409 £ 0.0004 fm (CREMA 2010, 2013)
—_—Y H spectroscopy (2017): 0.8335 £ 0.0095 fm (A. Beyer et al. Science 358(2017)6359)
1S H spectroscopy (2018): 0.877 + 0.013 fm (H. Fleurbaey et al. PRL.120(2018)183001)
muonic hydrogen
Lamb shift

AE =209.9779(49) - 522627, +0.03477, meV 40




The MUSE Experiment o —

Sick (2009) F A

Pohl (2010) A

Measure et and u* elastic

scattering off a liquid
hydrogen target.

Challenges

e Secondary beam:
identifying and tracking
beam particles to targef,

e Low beam flux: large
angle, non-magnetic
spectrometer,

® Background: e.g., Mgller
scattering and muon decay
in flight.

Commissioning run with
all detectors ongoing.

Zhan (2011) —e—H
Antognini (2013) A
ODATA:2014 (2016) [——

Beyer (2017) [ F—a&—H
Fleurbaey (2018) ——
Projected MUSE o

Beam
Monitor

-0.02 0.00 0.02 0.04 0.06
o Tun (fm)

Straw-Tube
Tracker (STT)

Are pp and ep interactions
different?

If so, does it arise from 2y
exchange effects (u+ # y-) or
beyond the standard model
physics
(Mt =p-#e)?

"ln.\_.-r
©M1
B _L' M
eam-Line \ —~ oo

Steffen Strauch !



Sick (2005) L
. CODATA:2006 (2008) i
The MUSE Experiment —r
I Pohl (2010) A
i Zhan (2011) —e—
Measure et ﬂnd ﬂt elﬂShc _ i Antognini (2013) A
scattering off a liquid ' Beam e * T
Scattered Particle Lgf ‘ Monitor Fleurbayey (2018) | —a——
hydrogen target. Scintillator (SPS) b | N

0.00 0.02 0.04 0.06

o Tun (fm)

Challenges

® Secondary beam: #
identifying and tracking W .

b ticles to target, ) : :
eam particles to farge < Up and ep interactions

e Low beam flux: large different?

angle, non-magnetic %pe
t ter, S it ari
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The PRad Experlment
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beam

Goal: Measure proton charge radius using ep elastic scattering:
e Unprecedented low Q2 region (~2x10-4 GeV2)

e Covers two orders of magnitude in low Q2

e Normalize to the simultaneously measured Moller scattering

process (control sys)

e Extract the radius with precision from subpercent cross

section measurement
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The PRad Experlment
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Goal: Measure proton charge radius using ep elastic scattering:

Unprecedented low Q2 region (~2x10-4 GeV2)

Covers two orders of magnitude in low Q2

Normalize to the simultaneously measured Moller scattering
process (control sys)

Extract the radius with precision from subpercent cross
section measurement
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The PRad Experlment
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Goal: Measure proton charge radius using ep elastic scattering:
e Unprecedented low Q2 region (~2x10-4 GeV2)
e Covers two orders of magnitude in low Q2
e Normalize to the simultaneously measured Moller scattering

process (control sys)
e Extract the radius with precisi ercent cross
section measuremen K
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Muonium and Muonic Hydrogen Experiments

= What can we learn extract muonic atom spectroscopy?
® Fundamental constants, QED, Nuclear physics...

Muon magnetic moment (HFS, pp/pp) <———
Muon mass (1S-2S, my/me)
Muon charge (1S-2S, q,/qe)
Fine structure constant (HFS)
Bound-state QED theory

Muonium

Proton charge radius (Lamb shift)
Proton Zemach radius (HFS) <
Proton polarizability (HFS, Lamb shift) ——

Muonic

Hydrogen

Rydberg constant (Lamb shift)
Bound-state QED theory (Sternheim interval)

Sohtaro Kanda
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Muonium and Muonic Hydrogen Experiments

® What can we learn extract muonic atom spectrose ’

= Fundamental constants, QED, Nuclez 7eX

| al
= M gne 5 «\ON
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n 9 0. e
. e"\\ o\ >
Hycrogen ‘ mea‘é\“e‘“ SRy (HFS, Lamb shift) —
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The JEDI Experiment: EDMs

Baryon Asymmetry Problem: New sources of CP violation can be seen in EDM of

particles. cP-symmetry violation EB
S External fields
d = ) - 1.3 £5 T
2me /
( —
[i=yg- 1.3

. F B
2m \
Pseudo vectors P

The observable quantity - Energy:
« of electric dipole in electric field

« of magnetic dipole in magnetic field H violates Tand »symmetry if d=0
H=Hy+Hgp=—fi-B-d-E T violation
P:H=—ji-B+d-E ..«

- = = cpviolation (¢PT conserved)
T = —ji-B+d-FE
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The JEDI Experiment: EDMs

JEDI goal is direct EDM measurement for charged particles: proton and deuteron
- Very challenging technically!

OUTLOOK

2019 COSY 1% deuteron EDM measurement
Sensitivity: ~ 10%° e-cm

Proof of principle

Test deflectors/instrumentation
Check lifetime

Test CW/CCW operation

Test frozen spin (additional B-field
at low energy)

Prototype ring

) Dedicated ring Highly sensitive EDM measurement

Maria Zu[ek
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e M. Lancaster e Diego Beghin

e Angela Papa e Francesca Dordei
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Focus Questions for WG4: Color code() OO

Q1: Neutrino/Muon Physics: (Overlaps with WG1 and WG5)
e \What overlaps exist to non-standard model neutrino interactions?
e How would these manifest in both the near term muon/precision measurements sector
& in the neutrino sector?

/" Q2: Beam/Machine/Detector Design: (Overlaps with WG3) N\
e Are the ultimate sensitivities really exploited with current facilities?
e How can we improve experiments without increasing the beam power?
e \What will be the ultimate sensitivity that we can reach even by increasing beam power,
and what are its implications?
e Cooled muon beams w/ phase rotations? New methods?
\ /
/"Q3: Program Planning: (Overlaps with WG3) N
e How do you support the physics needs for both DC and pulsed (high sculpted) beam
structures in the planning (and cost) of new facilities?
e How can muon physics benefit from future neutrino facilities?
e Could new ideas from muon physics developments turn out to be useful for future
L neutrino facilities? J




Conclusions

e Successful muon working group!
e Great attendance including many leaders in the field.

e Some productive topics of discussion:
o What additional measurements or searches are being considered at planned muon
experiments?
What future upgrades are being considered for MEG, MuZ2e, and Mu3e?
o Worked to streamline focus questions for NuFact 2019.
o Would like theory talks involving models that could solve neutrino and muon anomalies. What
would these models mean for CLFV experiments? g-27?

e The muon working group is a somewhat unique aspect for NuFact, lacking
from many other neutrino workshops.

e WG4 includes a rich physics program that naturally correlates with
neutrinos from accelerators.
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Suggested WG4 2019 Focus questions:

Q1: Neutrino/Muon Physics: (Overlaps with WG1 and WG5)

e What overlaps exist to BSM neutrino interactions?

e How would BSM physics manifest in the muon/precision
measurements sector and in the neutrino sector?

Q2: Beam/Machine/Detector Design: (Overlaps with WG3)

e \What sensitivity can be reached with current or future
facilities? Improved detectors? Increased beam power?
What are the implications?

Q3: Program Planning: (Overlaps with WG3)

e How do you support the physics needs for both DC and
pulsed beam experiments in the planning of new
facilities? »




