LHC Results on Heavy Neutrino Searches

Un-ki Yang Seoul National University On behalf of the ATLAS & CMS collaborations

NuFact 2018, Aug. 13 – 18, 2018, Virginia Tech

Neutrino Oscillation

Neutrino oscillationsSmall neutrino mass

Lepton Number Violation (LNV)
 Neutrino Mass Generation

Beyond the Standard Model

See WG4 LNV talks this afternoon (ATLAS, CMS, LHCb)

Neutrino: Physics Beyond SM

- > A natural way to generate LNV and neutrino mass
 - Introduce an effective operators to the SM

$$\frac{Y_L}{\Lambda_L}LLH^2 + \frac{Y_B}{\Lambda_B^2}qqqL + \dots$$

Seesaw Mechanism (type I, II, III)

Type I: weak-singlet

Type III: weak-triplet

Physics behind the Seesaw? Left-Right Symmetry model offers the Seesaw scale and heavy neutrinos

$$SU(2)_L \otimes SU(2)_R \otimes U(1)_{B-L} \quad M_{W_R} \gg M_{W_L}$$

Heavy Neutrino (N) at the LHC

> LHC: direct production of heavy N (\rightarrow Iqq, IIv)

- Same-sign two leptons + 2 jets (3 leptons)
- Type I: probe light-heavy mixing & m_N
- LRSM: a resonance W_R production & m_N
- Complementary to the $0\nu\beta\beta$

LHC Experiments at the Energy Frontier

LHC Experiments at the Energy Frontier

CMS Integrated Luminosity, pp Data included from 2010-03-30 11:22 to 2018-08-16 04:37 UTC 50 50 Total Integrated Luminosity (${ m fb}^{-1}$) 5 6 6 6 **2010, 7 TeV, 45.0** pb⁻¹ **2011, 7 TeV, 6.1** fb⁻¹ **2012, 8 TeV, 23.3** fb⁻¹ 40 **2015, 13 TeV, 4.2** fb⁻¹ **2016, 13 TeV, 40.8** fb⁻¹ 30 **2017, 13 TeV, 49.8** fb⁻¹ **2018, 13 TeV, 39.6** fb⁻¹ 20 10 n 1 Jan Date (UTC)

Before Searching for New Physics

Standard Model Total Production Cross Section Measurements Status: July 2018 σ [pb] 10^{11} **ATLAS** Preliminary Theory -₹ Run 1,2 $\sqrt{s} = 7,8,13$ TeV LHC pp $\sqrt{s} = 7$ TeV 10^{6} Data 4.5 - 4.6 fb⁻¹ -0-LHC pp $\sqrt{s} = 8$ TeV 10⁵ -0--0-Data 20.2 - 20.3 fb⁻¹ 10^{4} LHC pp $\sqrt{s} = 13$ TeV Data 3.2 - 79.8 fb⁻¹ 10³ -**O**-▲ _ ■ 0 10² ***** • 10¹ **▲** •• <u>▲</u> 2.0 fb⁺ 1 tīH 🔺 10^{-1} t tīW tīZ tZj W Ζ tī WW Н Wt WZ ΖZ pp t t-chan s-chan

> Impressive agreements with the SM

Search for Type I (dilepton)

- > s-channel production
- > Events Selection
 - 2 same sign leptons (50%)
 - Njets: W jets (2 jets or 1 jet)

> ATLAS

- 25/20 GeV lepton pt cuts
- Single lepton trigger
- Search for m(N)>100 GeV
- Use m(W(jj)) for signals

> CMS

- 25/10 GeV lepton pt cuts
- Di-lepton triggers
- Search for m(N)>20 GeV
- Use m(IW),m(IIW) for signals
- Include t-channel

Backgrounds: ee/µµ/eµ+2 jets

> No excess, upper limits on $|V_{eN}|^2$ and $|V_{uN}|^2$

arXiv:1806.10905 CMS:EXO-17-028

35.9 fb⁻¹ (13 TeV)

CMS Results@13 TeV

600 CMS Stat.+syst. uncert. ее+µµ+еµ Data 500 Prompt lepton bkgd. Misid. lepton bkgd. 400 Mismeas. sign bkgd. $m_N = 40 \text{ GeV}, |V_{\ell N}|^2 = 10^{-4}$ 300 $m_N = 60 \text{ GeV}, |V_{\ell N}|^2 = 10^{-4}$ 200 Low-mass SR2 no m($\ell^{\pm}\ell^{\pm}W_{iet}$) requirement 100 O Dop: 1.5 0.5 0 E 100 200 300 400 500 600 $m(\ell^{\pm}\ell^{\pm}W_{iet})$ (GeV)

SR1W: 1 jet (lost or merged)

Results on Mixing

arXiv:1806.10905 CMS:EXO-17-028

- LHC provides the best direct limits on |V_{eN}|², |V_{μN}|², and |V_{eN}*V_{μN}| for high mass region
 Significant improvement to past searches
 - CMS limits down to 20 GeV, and up to 1.2 TeV
 - Lepton flavor change case by CMS

Searches in tri-lepton @ 13 TeV

- In di-lepton+2 jets: difficulty to explore small m_N region due to jet pt cut (hard to select jets below 20 GeV, but lepton is easier)
- > Tri-lepton channel: smaller BR, but no jet
 - Promising with high-statistics
- No evidence for heavy N

PRL 120.221801

Significant improvement below 40 GeV

Summary on the type I

LHC experiments probed heavy N in mass range: 1~1.6TeV with 10⁻⁵<|V_{IN}|²<1</p>

Search for Type III Seesaw

- Look for decay of new heavy fermions (N⁰, N⁺, N⁻)
- > ATLAS: OS or SS leptons + 2 jets
- CMS: 3 or 4 leptons with MET
- Both used MET + H_T(scalar sum) as search variable

> Used MET + H_T (scalar sum) as search variable

ATLAS-CONF-2018-020

Search for Seesaw Type III Used MET + L_T(scalar sum over leptons)

Searches in the LRSM

Same Final state as type I but very different kinematics

Challenges:

- For m_N<<m_{WR}, jets and lepton from N decays overlap
 → standard isolation will kill signals
- Same challenges as Type I in terms of bkgds

CMS Results @ 8 TeV

ee channel

EPJ C74 (2014) 3149

≻ A local significance, 2.8σ effect
≻ Consistency with the LRSM?

JHEP 1507 (2015) 162

Invariant mass (Iljj)

No excess in ee channel (SS), exclude WR up to 3TeV
 OS channel?

Searches in **TT** channel

- A 2.8σ excess in eejj channel (8 TeV) but no excess in dimuon channel
 - Any broad excess in 3rd generation?
- > Searches in $\tau\tau$:
 - All hadronic channel, τ(h)τ(h) using 2.1 fb⁻¹ at 13 TeV
 →Largest branching ratio, but a large QCD fake-tau
 - Lepton+hadronic channel: τ(e)τ(h), τ(μ)τ(h)
 → Relatively clean events, but a small branching ratio,
 → thus use 12.9 fb⁻¹ at 13 TeV

Results in τ(I)τ(h) channel

2016 data: 12.9 fb⁻¹

- > $p_T(e \text{ or } \mu) > 50 \text{ GeV}, p_T(\tau_h) > 60 \text{ GeV}, MET> 50 \text{ GeV}$
- m(eτ_h or μτ_h) > 150 GeV, m(jτ_h) > 250 GeV,
- > 2 jets with p_T>50 GeV

JHEP07(2017)121

 $S_{\mathrm{T}} = p_T(\ell) + p_T(\tau_{\mathrm{h}}) + p_T(jet_1) + p_T(jet_2) + E_{\mathrm{T}}^{\mathrm{miss}}$

No excess in data, exclude W_R up to 3.2 TeV

JHEP05(2018) 148

The exclusion of W_R up to 4.4 TeV

Neutrino oscillations attract many interesting searches at the LHC

- Nature of neutrino: Majorana or Dirac can be tested at high energy scale, LHC
- Tests of Seesaw models to explain small v mass: heavy N
 ✓ Different Seesaw types
 ✓ Left Dight Summetry model
 - Left-Right Symmetry model
- Searches by ATLAS and CMS show no excess seen in data: set upper limits are set on |V_{IN}|², exclude W_R mass up to 4.4 TeV

 Searches will be explored using the full 13 TeV data, and will be extended to additional channels (t-channel, pair N production, and long-lived N)