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Preamble or excuse

 This 40’ opening talk by theorist in last two conferences.
 Next talk, accelerator-based neutrino.
 The latest results will come from each projects in this workshop
 What should I talk??? Why & Why? 
 As a result, I will talk about subjects which I am unfamiliar in 

front of experts!  Many mistakes, biases and Questions!
Be patient! 2

theorist experimentalist

http://www.takaratomy-
arts.co.jp/specials/pandan
oana/kangaenai/

I have been working on 
accelerator-based long 
baseline neutrino 
oscillation experiments 
and recently on R&D of 
double 𝛽-decay detector.



Neutrino Oscillation and 
neutrinoless double beta decay
= Physics of MASS
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What we know  – mass of fermions-
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As an experimentalist, 
I made a mass distribution plot.
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log-normal distribution
 Wikipedia, “a continuous probability distribution of a random variable 

whose logarithm is normally distributed. A log-normal process is the 
statistical realization of the multiplicative product of many independent 
random variables, each of which is positive. “

 example: annual incomes, reserve of oil fields 
 People has 𝑛 opportunities to multiply one’s income. 𝑛 follows normal 

distribution, but each time your income multiplicatively increase.
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For example,  I can imagin

7

Universe expanded 
exponentially.

If particle mass 
(Yukawa coupling) 

is inversely 
proportional to the 
space size, time 

fluctuation of mass 
determination 
results in log-

normal distribution.



What is the origin of mass?
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Seesaw?
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Minkowski,(’77), Yanagita(’79), GellMannn, Ramondo, Slansky(’79),Glashow(‘79)

If neutrino is Majorana-type,

mass term = 𝑁ഥ௅, 𝑁ഥோ
0 𝑚஽

𝑚஽ 𝑀ோ

𝑁௅
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↓ diagonalize
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Neutrino mass is suppressed by 
very high energy physics? 
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𝑈௉ெேௌ ൎ
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Mixing between mass eigenstates
up-type vs. down-type in quark
charged vs. neutral in lepton
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S. Stone, ICHEP2012
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Q. about Yukawa coupling 
(~diagonal matrix)
Did Fermions pick up similar 
weight particles as partner?
Or did partners pick up similar 
weight?



Prospect of mixing angle determination
High precision and redundant measurements
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Prospect of mixing angle determination
High precision and redundant measurements
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~2027?

PDG18
Let’s hear talks for 
the latest values.

~2020
future~2025?

~2030?
assuming maximal 
mixing

Ploted sin 𝜃ଶ to see the size of mixing

* may not be precise comparison



Mass Ordering
 normal ሺ𝑚ଵ ൏ 𝑚ଶ ൏ 𝑚ଷሻ or inverted ሺ𝑚ଷ ൏ 𝑚ଵ ൏ 𝑚ଵሻ?
 Big impact for neutrinoless double-beta decay search

 normal ordering → lighter 𝑚ఉఉ

 Detector necessary ~1 ton vs ≳100 ton 

 two ways proposed
A) Matter effect in Earth for (anti-)𝜈ఓ ↔ ሺantiሻ𝜈௘

B) Amplitude difference for two frequencies
15



Mass Ordering
A) Matter effect in Earth for (anti-) ఓ ௘

𝐻 ൌ 𝑈௉ெேௌ

0 0 0

0
∆𝑚ଶଵ

ଶ

2𝐸 0

0 0
∆𝑚ଷଵ

ଶ

2𝐸

𝑈௉ெேௌ
∗ ൅

േ
2 2𝐺ி𝑛௘𝐸

2𝐸 0 0
0 0 0
0 0 0

Especially, resonance happens at 𝐸 ൌ ୼௠మ ୡ୭ୱ ଶఏ
ଶ ଶீಷ௡೐

Effect of Earth matter has not yet observed due to relatively small sin 2ଶ 𝜃ଵଷ
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sign different for NO and IO
sign different for 𝜈 and 𝜈



Mass Ordering
B) Amplitude difference for two frequencies

𝑃 𝜈௘ → 𝜈௘
ൌ leading term

െ sin 2ଶ 𝜃ଵଷ cos 𝜃ଵଶ
ଶ sin Δ𝑚ଷଵ

ଶ 𝐿
4𝐸

ଶ ൅ sin 𝜃ଵଶ
ଶ sin Δ𝑚ଷଶ

ଶ 𝐿
4𝐸

ଶ
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0.69 0.31∆𝑚ଷଵ
ଶ ൐ ∆𝑚ଷଶ

ଶ for NO
∆𝑚ଷଵ

ଶ ൏ ∆𝑚ଷଶ
ଶ for IO

JUNO



Prospect of Mass Ordering determination
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This is sensitivity.
Let’s hear talk for 

actual result.

if 𝛿=−𝜋/2 and NO
(if not, NOvA+T2K)

~2027?

~2025?

~2024?
~2030?

~2030?

* may not be precise comparison



Prospect of ଶ determination
High precision and redundant measurements
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PDG18
Let’s hear talks for 
the latest values.

future

0.4%
~2027?

~2027?

<1%

~2025?

~2030?

similar for 
NOvA?

(NO case)

* may not be precise comparison



Dirac CP phase 

 Quark case 𝛿஼௉
஼௄ெ~60°~70°

looks large, but cannot explain matter-dominant universe.

 Lepton case 𝛿஼௉
ெேௌ~ െ 90°???   →  Accelerator long baseline

 𝛿஼௉ is dependent on definition. 

Jarlskog Invariant : independent of definition.

show the size of CP violation effect.

𝐽஼௉ ≡ 𝐼𝑚 𝑈ఓଷ𝑈௘ଷ
∗ 𝑈௘ଶ𝑈ఓଶ

∗ ൌ ଵ
଼

sin 2𝜃ଵଶ sin 2𝜃ଶଷ sin 2𝜃ଵଷ cos 𝜃ଵଷ sin 𝛿஼௉

஼௉
஼௄ெ ିହ

஼௉
௉ெேௌ

஼௉

Leptonic CPV can be much larger than Quark’s
20
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஼௉ may or may not be related to matter-dominant universe, 
but…

஼௉ may cause CPV which is sufficiently large to produce 
matter-dominant universe

Leptogenesis

 CPV in 𝑁ோ → 𝑙േ ൅ 𝐻∓ etc.→ Lepton asymmetry
→ sphaleron → Baryon asymmetry

21

PDG2015 “NEUTRINOMASS,MIXING, AND OSCILLATIONS”

sin 𝜃ଵଷ sin 𝛿 ൒ 0.09 →  sin 𝛿 ൒ 0.58



Majorana CP phase

 If neutrino is Majorana type,
𝑈

ൌ
1 0 0
0 ൅𝑐ଶଷ ൅𝑠ଶଷ
0 െ𝑠ଶଷ ൅𝑐ଶଷ

൅𝑐ଵଷ 0 ൅𝑠ଵଷ𝑒ି௜ఋ

0 1 0
െ𝑠ଵଷ𝑒௜ఋ 0 ൅𝑐ଵଷ

൅𝑐ଵଶ ൅𝑠ଵଶ 0
െ𝑠ଵଶ ൅𝑐ଵଶ 0

0 0 1

ൈ
1 0 0
0 𝑒௜ఈమభ

ଶ 0
0 0 𝑒௜ఈయభ

ଶ

𝑐௜௝ ൌ cos 𝜃௜௝ , 𝑠௜௝ ൌ sin 𝜃௜௝

Another two CP phases which cannot be accessible by 

oscillation
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Neutrinoless double-beta decay
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If measured, absolute mass and possibly 
Majorana phase



24A. Giuliani “The Mid and Long Term Future of 
Neutrinoless Double Beta Decay”, Neutrino 2018



GERDA

25

CUORE

Neutrinoless double- decay

EXO-200

KamLAND-Zen

Majorana



Neutrinoless double- decay

26PRL 117, 082503 (2016)

136Xe

130Te

76Ge
KamLAND 2016 result

Recent release



Neutrinoless double- decay

27PRL 117, 082503 (2016)

Liquid Scinti.

TPC

136Xe

130Te

76Ge

Bolometer
Semiconductor

KamLAND 2016 result

Recent release

future(a few year scale) sensitivity



Neutrinoless double- decay

28PRL 117, 082503 (2016)

Liquid Scinti.

TPC

136Xe

130Te

76Ge

Bolometer
Semiconductor

KamLAND 2016 result

future(a few year scale) sensitivity

Recent release



Direct mass measurement by -decay end point
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Figs from D. Parno, Neutrino 2018

• KATRIN Sensitivity : 0.24 eV in 5 years
• Other brand-new projects following, but lower sensitivity yet
• KATRIN Sensitivity : 0.24 eV in 5 years
• Other brand-new projects following, but lower sensitivity yet



Constraint from Cosmology

Relic  𝜈 background 

 relativistic=radiation at early time (during CMB acoustic 
oscillation)

 non-relativistic=dark matter at late time (during structure 
formation)

 𝑁௘௙௙ and ∑ 𝑚ఔ change both CMB and matter power spectra 
in peculiar manner  

- 𝑁௘௙௙ : effective number of neutrino species = relativistic 
energy density excluding that by photons, in units of one 
neutrino.  Sterile 𝜈, if mix with active 𝜈 should be counted.

- ∑ 𝑚ఔ : total light 𝜈 mass, 𝑚ଵ ൅ 𝑚ଶ ൅ 𝑚ଷሺ൅𝑚ସ … ሻ

 Current bound 𝑁௘௙௙ ൌ 3.04 േ 0.18 (note. 3.045 for 
standard three 𝜈)
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Constraint from Cosmology

31
J. Lesgourgues “Neutrino Properties from Cosmology”, neutrino2018



Neutrino and the new physics 
or nuclear physics?

32



 Oscillation → Δ𝑚ଶଵ
ଶ , Δ𝑚ଷଶ

ଶ , MO
 CMB →  𝑚ଵ ൅ 𝑚ଶ ൅ 𝑚ଷ
 Double-𝛽 →  𝑚ఉఉ
 𝛽 →  𝑚ఉ

If inconsistent,
• Non-standard interaction
• ∆𝐿 ൌ 2 lepton # violation
• sterile-𝜈
• cosmological problem
• ….

In ~10 years,

33
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Inverted MO
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𝛽-decay

DBD life time is affected by 
∆𝐿 ൌ 2 new physics.

F.Deppisch, neutrino 2016

CMB



neutrinoless double- decay

𝑇ଵ/ଶ
଴ఔ ିଵ ൌ 𝐺଴ఔ ⋅ 𝑀଴ఔ ଶ ⋅ 𝑚ఉఉ

ଶ

𝑀଴ఔ ଶ : nuclear matrix element
 cannot be directly measured 

 only partial strength

 factor 2~3 different for different calculation
 axial current coupling constant 𝑔஺ might be significantly 

smaller in nuclei

𝑇ଵ/ଶ
଴ఔ ିଵ ∝ 𝑔஺

ସ
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Coherent Elastic Neutrino-Nucleus Scattering 
(CE NS)  Summation at amplitude level  

𝜎 ൎ
𝐺ி

ଶ𝑁ଶ

4𝜋 𝐸ఔ
ଶ

 First detection by 
COHERENT.  and 
many projects 
following.

 Let’s hear!

35
𝑀𝑆 renormalization

sensitivity by CE𝜈NS 
experiments

CsI[Na]
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H. Wong “Neutrino-nucleus Coherent Scattering with Reactor and Solar Neutrinos”, neutrino2018



Reactor `anomaly’

37

RENO : 𝒚ഥ𝒇 = (5.785 +‐ 0.113) x 10‐43 cm2/fission
H‐M model : 𝒚ഥ𝒇 = (6.271 +‐ 0.150) x 10‐43 cm2/fission

Reno, Daya Bay, 
Double Chooz

See talks 

I. Yu, “Recent Results from RENO” neutrino 2018



Reactor another issue

 Excess at ~5 MeV 
all for RENO/Daya
Bay/Double Chooz

 Right plot by RENO 
with 458-days data

 Let’s hear updates

38Phys.Rev.Lett. 116 (2016) no.21, 211801



Reactor `anomaly’ could be ~1eV sterile , but…

 Reactor flux predicted by using measured fission 𝛽-
spectra and/or nuclear databases for > 1000 daughters 
and > 6000 𝛽-branches

 𝜈௘ spectrum of each 𝛽-decay :

39

S(Ee, Z, A)  GF
2

2 3 peEe(E0 Ee )2C(E)F(Ee, Z, A)(1corr (Ee, Z, A))

Recent measurements with 
fuel evolution giving hints.

• correlation with fuel 
composition change

• Maybe, in coming talks

Daya Bay, Chinese Physics C, 2017, 41



Very short baseline experiments
 Tring to catch oscillation feature (𝐿/𝐸 dependence)

40

T. Lasserre

NEOS(Korea)

SOLID
(Belgium)

DANSS
(Russia)

STEREO
(France)

Prosepect(US)



!??

41

DANSS

Plots from neutrino2018 talks
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Atmospheric and accelerator experiments

 Flux prediction affected by hadron production 
uncertainty

 neutrino-nucleus interaction 
..........

Let’s hear talks!

42



LSND & MiniBooNE anormaly

 New (positive) results from MiniBooNE!

 Conflicting with ICECUBE, MINOS+, Daya Bay if mixing with 
4th 𝜈

 Acc. short baseline experiments in FNAL and J-PARC will 
investigate.    IsoDAR, too.

 Let’s hear talks. 43

LSND, 1995



Neutrino as a window to Universe

44



astrophysical neutrino spectrum

45J. Becker, Phys. Rept. 458 (2008)173



Solar neutrino

46

A. Serenelli, Eur.Phys.J. A52 (2016) no.4, 78

And the density is as high as 𝜌 ൌ ~150g/cmଷ at the center.
Significant matter effect

Predicted flux



Borexino

47

>5𝜎 for pep signal>5𝜎 for pep signal
O. Smirnov, “Solar neutrino from pp-chain and other results of Borexino” , neutrino 2018

Ethreshold=250keV

Data taking 
phase I 2007~2010
phase II 2011~2017



Supernovae neutrino
waiting since 1987

48

K.Scholberg@ Rencontres du Vietnam, 2017



Supernova Burst neutrino 
expectation by Hyper-K, DUNE and IceCube

 Even 𝜈െ𝜈 interaction plays role

 Explosion mechanism, NS/BH 
formation

 multi-messenger observation

49

Sensitive to ~4Mpc. 
Then, 0.3~1 events/yrs

Hyper-
K

DUNE

I.Tamborra et al. Phys. Rev. D 90, 045032 (2014)



Supernova Relic Neutrino 

50J. F. Beacom, M. R. Vagins, Phys.Rev.Lett. 93 (2004) 171101



SK-Gd project aiming to detect Supernova Relic 
Neutrino 

 dissolve Gd to SK 
water

 detect 𝜈௘ ൅ 𝑝 → 𝑒ା ൅ 𝑛
neutron tagged by Gd
neutron capture (~8 MeV 
𝛾’s released.)

 Late 2019 or later

51



Origin of heavy elements and neutrino
 r(rapid)-process is necessary to produce gold etc.

 Requires 10ଶ଴~10ଷ଴ neutrons/cm3

52http://www.ph.sophia.ac.jp/~shinya/research/research.html

~1 seconda few hours 
to days~1s



Origin of heavy elements and neutrino
Supernova explosion

Gravitational collapse of massive star

↓

Proto‐Neutron star

↓

Explosion by neutrinos

Two reactions happen

 𝜈௘ ൅ 𝑛 → 𝑝 ൅ 𝑒ି

 𝜈௘ ൅ 𝑝 → 𝑛 ൅ 𝑒ା

fraction of neutrons decreases

↓

r-process unlikely to happen

Gravitational collapse of massive star

↓

Proto‐Neutron star

↓

Explosion by neutrinos

Two reactions happen

 𝜈௘ ൅ 𝑛 → 𝑝 ൅ 𝑒ି

 𝜈௘ ൅ 𝑝 → 𝑛 ൅ 𝑒ା

fraction of neutrons decreases

↓

r-process unlikely to happen

53https://astro.physik.unibas.ch/fileadmin/user_upload/astro
physik-unibas-ch/liebendoerfer/Supernova_Models.html



Origin of heavy elements and neutrino

54

 Binary neutron-star merger

 Gravitational wave observation GW170817
 ele. mag. observation of kilonova : thermal glow by radioactive decay of 

isotopes of the heavy elements

 Binary neutron-star merger can be a dominant mode of r-process 
production

Astrophys.J. 848 (2017) no.2, L12

 high neutron fraction→ 
only heavy elements

 neutrino irradiation lower

neutron fraction → light 
elements

 Observation of those 
neutrinos would be very 
interesting, but the event 
rate may be too low…. 



Ultra high energy cosmic ray

55

𝜈ఓ, 𝜈௘ 𝛾

𝑝 ൅ 𝑝/𝛾 → 𝑁 ൅ 𝜋േ ൅ 𝜋଴ ൅ ⋯

Accelerated by ? 

50~100 PeV proton is necessary to produce 25 TeV~5 PeV neutrino

CMB etc. 

A. Connolly, “Reaching for the 
highest energy neutrinos”, 
neutrino2018 



Astrophysical -rays and neutrinos 

 Let’s hear updates 
from IceCube

 Especially, 
multimessager
observation :  
IceCube-170922A & 
Blazer TXS 0506+056

56
No evidence for point sources at this point

F.Halzen “High-energy neutrino astrophysics”,
Nature Phys. 13 (2016) no.3, 232-238 



Cosmic neutrino background (C B)
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J. Becker, 
Phys. Rept. 458 (2008)173

Can see Universe 1s after Big Bang.
c.f. 380,000 years for CMB
λ~7 mm if 𝑚ఔ ൌ0
λ~0.6 mm if 𝑚ఔ ൌ10meV



C B interaction

 Huge cross section thanks to 
volume coherence.

 If 𝜎 ൌ 10ିଷହ𝑐𝑚ଶ and Φ ൌ
10ଵଶ/𝑐𝑚ଶ𝑠, 𝜈௘ ൅ 𝑒ି

interaction rate is ∼ 3/g ⋅ 𝑠 !

 But… almost no recoil with 
~1mm3 target 

58

P.F.Smith “Prospects for Relic Neutrino 
Detection” RAL-91-017



How to detect C B?

 End point of electrons from Tritium 𝛽-decay
 Proposed by S. Weinberg in 1962

 a few projects trying direct 𝜈 mass measurements

 C𝜈B by accelerator???
Accelerate Heଷ and detect tritium and positron

Heଷ ൅ 𝜈௘ → 𝑡 ൅ 𝑒ା

Necessary Heଷ  energy = 520 TeV for 𝑚ఔ ൌ100meV…. 

(cf. 10 MeV for reactor 𝜈௘ )

 Superconducting detectors?
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Inspired this topic, one idea.
𝜈ఓ appearance experiment:
 reactor (𝜈௘ → 𝜈ఓሻ ൅accelerator 𝑝 → 𝜇ା ൅ 𝑛
 𝐸௧௛ ൌ 19 GeV
At J-PARC proton beam energy,  cross 
section is comparable to that at 𝐸ఔ ൌ~1 GeV
There is a reactor.
I will calculate event rate during this 
workshop.



Conclusion

 To prepare this talk, I read through PDG 
reviews and neutrino2018 slides.

 Impressed by variety and high activity in this 
field!!!
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ఓ appearance experiment:
 reactor peak energy 3~4 MeV 

 baseline length 1.5 km

 Luminosity 
ℒ ൌ 2𝑐𝑁௣𝜌ఔ

 𝑁௣ for J-PARC
 one turn case ~3E14 /s 
 storage ring 100m x3 straight section ~3E20 /s

 𝜌ఔ for Tokai-Daini-nuclear pant
 Thermal power 3 GW → 6E20 𝜈/s


଺ாଶ଴

ସగ௥మ௖
ൌ2.1E9/c /cm3

 ℒ=1.3E30 /s

 cross section
 𝑠 ൌ 1146 MeV for 𝐸ఔ ൌ 3.5 MeV ⟺ 𝐸ఔ ൌ231 MeV for fixed target
 𝜎 ൌ1E-40 cm2

 Event rate (storage case) 
1E-10 /s (times oscillation probability)

 Hmmmm 62


