OVERVIEW OF NEUTRINO PHYSICS

A.K.Ichikiawa, Kyoto University

Preamble or excuse

I have been working on accelerator-based long baseline neutrino oscillation experiments and recently on R&D of double β -decay detector.

http://www.takaratomyarts.co.jp/specials/pandan oana/kangaenai/

- This 40' opening talk by theorist in last two conferences.
- Next talk, accelerator-based neutrino.
- The latest results will come from each projects in this workshop
- What should I talk??? Why & Why?
- As a result, I will talk about subjects which I am unfamiliar in front of experts! Many mistakes, biases and Questions!

Be patient!

Neutrino Oscillation and neutrinoless double beta decay = Physics of MASS

What we know – mass of fermions-

Mass $m = 1776.86 \pm 0.12$ MeV

 $I(J^P) = 0(\frac{1}{2}^+)$

 $Charge = \frac{2}{3} e Top = +1$

Mass (direct measurements) $m = 173.0 \pm 0.4$ GeV ^[a,b] (S = 1.3) Mass (from cross-section measurements) $m = 160^{+5}_{-4}$ GeV ^[a] Mass (Pole from cross-section measurements) $m = 173.1 \pm 0.9$ GeV

Neutrino Mixing

t

 $J = \frac{1}{2}$ The following values are obtained through data analyses based on the 3-neutrino mixing scheme described in the review "Neutrino Mass $m = (548.579909070 \pm 0.000000016) \times 10^{-6}$ u Mass, Mixing, and Oscillations" by K. Nakamura and S.T. Petcov in this *Review*.

$$\begin{split} & \sin^2(\theta_{12}) = 0.307 \pm 0.013 \\ & \Delta m_{21}^2 = (7.53 \pm 0.18) \times 10^{-5} \text{ eV}^2 \\ & \sin^2(\theta_{23}) = 0.421^{+0.033}_{-0.025} \quad (S = 1.3) \quad (\text{Inverted order, quad. I}) \\ & \sin^2(\theta_{23}) = 0.592^{+0.023}_{-0.030} \quad (S = 1.1) \quad (\text{Inverted order, quad. II}) \\ & \sin^2(\theta_{23}) = 0.417^{+0.025}_{-0.028} \quad (S = 1.2) \quad (\text{Normal order, quad. I}) \\ & \sin^2(\theta_{23}) = 0.597^{+0.024}_{-0.030} \quad (S = 1.2) \quad (\text{Normal order, quad. II}) \\ & \sin^2(\theta_{23}) = 0.597^{+0.024}_{-0.030} \quad (S = 1.2) \quad (\text{Normal order, quad. II}) \\ & \Delta m_{32}^2 = (-2.56 \pm 0.04) \times 10^{-3} \text{ eV}^2 \quad (\text{Inverted order}) \\ & \Delta m_{32}^2 = (2.51 \pm 0.05) \times 10^{-3} \text{ eV}^2 \quad (S = 1.1) \quad (\text{Normal order}) \\ & \sin^2(\theta_{13}) = (2.12 \pm 0.08) \times 10^{-2} \end{split}$$

data), etc. the Planck Collaboration reported the updated upper limit on the sum of the neutrino masses [78], which, depending on the data-set used, varies in the interval: $\sum_j m_j < (0.340 - 0.715) \text{ eV}, 95\%$ CL. Adding data on the Baryon Acoustic Oscillations (BAO) lowers the limit to [78]:

$$\sum_{j} m_j < 0.170 \ eV, \quad 95\% \ CL.$$

As an experimentalist, I made a mass distribution plot.

log distribution of elementary fermion mass

log-normal distribution

- Wikipedia, "a continuous probability distribution of a random variable whose logarithm is normally distributed. A log-normal process is the statistical realization of the multiplicative product of many independent random variables, each of which is positive. "
- example: annual incomes, reserve of oil fields
- People has n opportunities to multiply one's income. n follows normal distribution, but each time your income multiplicatively increase.

For example, I can imagin

Universe expanded exponentially. If particle mass (Yukawa coupling) is inversely proportional to the space size, time fluctuation of mass determination results in lognormal distribution.

What is the origin of mass?

Minkowski, ('77), Yanagita ('79), GellMannn, Ramondo, Slansky ('79), Glashow ('79)

Neutrino mass is suppressed by very high energy physics?

Mixing between mass eigenstates up-type vs. down-type in quark charged vs. neutral in lepton

Mixing between mass eigenstates up-type vs. down-type in quark charged vs. neutral in lepton

Prospect of mixing angle determination High precision and redundant measurements

Prospect of mixing angle determination High precision and redundant measurements * may not be precise comparison

Ploted sin $^{2}\theta$ to see the size of mixing

Mass Ordering

- ▶ normal $(m_1 < m_2 < m_3)$ or inverted $(m_3 < m_1 < m_1)$?
- Big impact for neutrinoless double-beta decay search
 - \checkmark normal ordering \rightarrow lighter $m_{\beta\beta}$
 - ✓ Detector necessary ~1 ton vs ≥100 ton

- two ways proposed
- A) Matter effect in Earth for $(anti-)\nu_{\mu} \leftrightarrow (anti)\nu_{e}$
- B) Amplitude difference for two frequencies

Q. Is it important to

find the true model?

If so, why?

Mass Ordering A) Matter effect in Earth for $(anti-)\nu_{\mu} \leftrightarrow (anti)\nu_{e}$

Especially, resonance happens at $E = \frac{\Delta m^2 \cos 2\theta}{2\sqrt{2}G_F n_e}$

Effect of Earth matter has not yet observed due to relatively small sin ${}^{2}2\theta_{13}$

Mass Ordering B) Amplitude difference for two frequencies

Prospect of Mass Ordering determination

* may not be precise comparison

Prospect of Δm^2 determination High precision and redundant measurements * may not be precise comparison

Dirac CP phase

$$U_{\text{PMNS}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & +c_{23} & +s_{23} \\ 0 & -s_{23} & +c_{23} \end{pmatrix} \begin{pmatrix} +c_{13} & 0 & +s_1 e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13} e^{i\delta} & 0 & +c_{13} \end{pmatrix} \begin{pmatrix} +c_{12} & +s_{12} & 0 \\ -s_{12} & +c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ (c_{ij} = \cos \theta_{ij}, s_{ij} = \sin \theta_{ij})$$

• Quark case $\delta_{CP}^{CKM} \sim 60^{\circ} \sim 70^{\circ}$

looks large, but cannot explain matter-dominant universe.

- ► Lepton case $\delta_{CP}^{MNS} \sim -90^{\circ}??? \rightarrow$ Accelerator long baseline
- δ_{CP} is dependent on definition.

Jarlskog Invariant : independent of definition. show the size of CP violation effect.

 $J_{CP} \equiv Im (U_{\mu3}U_{e3}^*U_{e2}U_{\mu2}^*) = \frac{1}{8}\sin 2\theta_{12}\sin 2\theta_{23}\sin 2\theta_{13}\cos \theta_{13}\sin \delta_{CP}$ $J_{CP}^{CKM} \approx 3 \times 10^{-5}$ $J_{CP}^{PMNS} \approx 0.033\sin \delta_{CP}$

Leptonic CPV can be much larger than Quark's

 δ_{CP} may or may not be related to matter-dominant universe, but...

 δ_{CP} may cause CPV which is sufficiently large to produce matter-dominant universe

Leptogenesis

► CPV in $N_R \rightarrow l^{\pm} + H^{\mp}$ etc. \rightarrow Lepton asymmetry

 \rightarrow sphaleron \rightarrow Baryon asymmetry

PDG2015 "NEUTRINOMASS, MIXING, AND OSCILLATIONS"

A value of $|\sin \theta_{13} \sin \delta| \gtrsim 0.09$, and thus $\sin \theta_{13} \gtrsim 0.09$, is a necessary condition for a successful "flavoured" leptogenesis with hierarchical heavy Majorana neutrinos when the CP violation required for the generation of the matter-antimatter asymmetry of the Universe is provided entirely by the Dirac CP violating phase in the neutrino mixing matrix [191]. This condition is comfortably compatible both with the measured value of $\sin^2 \theta_{13}$ and with the best fit value of $\delta \cong 3\pi/2$.

> 191. S. Pascoli, S.T. Petcov, and A. Riotto, Phys. Rev. D75, 083511 (2007) and Nucl. Phys. B774, 1 (2007); E. Molinaro and S.T. Petcov, Phys. Lett. B671, 60 (2009).

 $|\sin \theta_{13} \sin \delta| \ge 0.09 \rightarrow |\sin \delta| \ge 0.58$

Majorana CP phase

If neutrino is Majorana type,

IJ

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & +c_{23} & +s_{23} \\ 0 & -s_{23} & +c_{23} \end{pmatrix} \begin{pmatrix} +c_{13} & 0 & +s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & +c_{13} \end{pmatrix} \begin{pmatrix} +c_{12} & +s_{12} & 0 \\ -s_{12} & +c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\frac{\alpha_{21}}{2}} & 0 \\ 0 & 0 & e^{i\frac{\alpha_{31}}{2}} \end{pmatrix} \\ \begin{pmatrix} (c_{ij} = \cos \theta_{ij}, s_{ij} = \sin \theta_{ij}) \end{pmatrix}$$

Another two CP phases which cannot be accessible by oscillation

Neutrinoless double-beta decay

How difficult is it?

Direct mass measurement by β -decay end point

- KATRIN Sensitivity : 0.24 eV in 5 years
- Other brand-new projects following, but lower sensitivity yet

Constraint from Cosmology

Relic ν background

- relativistic=radiation at early time (during CMB acoustic oscillation)
- non-relativistic=dark matter at late time (during structure formation)
- N_{eff} and $\sum m_{\nu}$ change both CMB and matter power spectra in peculiar manner
 - N_{eff} : effective number of neutrino species = relativistic energy density excluding that by photons, in units of one neutrino. Sterile v, if mix with active v should be counted.
 - $\sum m_{\nu}$: total light ν mass, $m_1 + m_2 + m_3(+m_4...)$
- ► Current bound N_{eff} = 3.04 ± 0.18 (note. 3.045 for standard three v)

Constraint from Cosmology

95%CL upper bounds on $\Sigma_i m_i$ for 7 parameters

J. Lesgourgues "Neutrino Properties from Cosmology", neutrino2018

Neutrino and the new physics or nuclear physics?

32

In ~10 years,

- ✓ Oscillation → Δm^2_{21} , Δm^2_{32} , MO
- $\checkmark \text{ CMB} \rightarrow m_1 + m_2 + m_3$
- ✓ Double- β → $m_{\beta\beta}$
- $\checkmark \beta \rightarrow m_{\beta}$

If inconsistent,

- Non-standard interaction
- $|\Delta L| = 2$ lepton # violation
- sterile-ν
- cosmological problem

• ...

DBD life time is affected by $|\Delta L| = 2$ new physics.

$$T_{1/2}^{0\nu\beta\beta}\approx 10^{25}{\rm yr}\rightarrow\Lambda_{LNV}\approx 1~{\rm TeV}$$

$$T_{1/2}^{0\nu\beta\beta} \approx 10^{25} \mathrm{yr} \rightarrow m_{\nu} \approx 0.1 \mathrm{eV}$$

F.Deppisch, neutrino 2016

neutrinoless double- β decay

$$\left(T_{1/2}^{0\nu}\right)^{-1} = G^{0\nu} \cdot |M^{0\nu}|^2 \cdot \left\langle m_{\beta\beta} \right\rangle^2$$

 $|M^{0\nu}|^2$: nuclear matrix element

- cannot be directly measured
 - only partial strength
- factor 2~3 different for different calculation
- axial current coupling constant g_A might be significantly smaller in nuclei

$$\left(T_{1/2}^{0\nu}\right)^{-1} \propto g_A^4$$

Coherent Elastic Neutrino-Nucleus Scattering $(CE\nu NS)$

Summation at amplitude level

$$\sigma \approx \frac{G_F^2 N^2}{4\pi} E_{\nu}^2$$

 First detection by COHERENT. and many projects following.

Let's hear! ►

H. Wong "Neutrino-nucleus Coherent Scattering with Reactor and Solar Neutrinos", neutrino2018

- ✓ Typical threshold for Liq-Xe experiments with "(S1,S2)" for ER/NR differentiation is light yield corresponding to "averaged" <~4 keVnr>, nominally too high for solar ∨A_{el}
 - ➤ Large spread in event-wise keVnr ⇔light yield conversion (Poisson, energy resolution, fiducial non-uniformity) ⇒ thorough understanding necessary
 - Observable 0.2-0.3 events / ton-year (~5 events in 20 t-y XE-nT; ~100 events in 400 t-y DARWIN)

✓ "S2-Only" has lower "<~1 keVnr>" threshold, rates much larger (~90 events / tonyear); but no ER/NR discrimination ⇒ suppression & understanding of ER background crucial

Reactor `anomaly'

Reactor another issue

- ► Excess at ~5 MeV all for RENO/Daya **Bay/Double Chooz**
- Right plot by RENO with 458-days data
- Let's hear updates

Reactor `anomaly' could be ~1eV sterile v, but...

- \blacktriangleright Reactor flux predicted by using measured fission β spectra and/or nuclear databases for > 1000 daughters and > 6000 β -branches
- $\bar{\nu}_e$ spectrum of each β -decay :

$$S(E_{e}, Z, A) = \frac{G_{F}^{2}}{2\pi^{3}} p_{e} E_{e} (E_{0} - E_{e})^{2} C(E) F(E_{e}, Z, A) (1 + \delta_{corr}(E_{e}, Z, A))$$

Recent measurements with fuel evolution giving hints.

- correlation with fuel composition change
- Maybe, in coming talks

10 1.

Very short baseline experiments

• Tring to catch oscillation feature (L/E dependence)

Let's hear talks!

Plots from neutrino2018 talks

Atmospheric and accelerator experiments

- Flux prediction affected by hadron production uncertainty
- neutrino-nucleus interaction

Let's hear talks!

LSND & MiniBooNE anormaly

- New (positive) results from MiniBooNE!
- Conflicting with ICECUBE, MINOS+, Daya Bay if mixing with 4th v
- Acc. short baseline experiments in FNAL and J-PARC will investigate. IsoDAR, too.
- Let's hear talks.

Neutrino as a window to Universe

astrophysical neutrino spectrum

Solar neutrino

And the density is as high as $\rho = \sim 150 \text{g/cm}^3$ at the center. Significant matter effect

Supernovae neutrino waiting since 1987

K.Scholberg@ Rencontres du Vietnam, 2017

Summary of supernova neutrino detectors

Detector	Туре	Location	Mass (kton)	Events @ 10 kpc	Status
Super-K	Water	Japan	32	8000	Running
LVD	Scintillator	Italy	1	300	Running
KamLAND	Scintillator	Japan	1	300	Running
Borexino	Scintillator	Italy	0.3	100	Running
IceCube	Long string	South Pole	(600)	(10 ⁶)	Running
Baksan	Scintillator	Russia	0.33	50	Running
HALO	Lead	Canada	0.079	20	Running
Daya Bay	Scintillator	China	0.33	100	Running
NOvA	Scintillator	USA	15	3000	Running
MicroBooNE	Liquid argon	USA	0.17	17	Running
SNO+	Scintillator	Canada	1	300	Under construction
DUNE	Liquid argon	USA	40	3000	Future
Hyper-K	Water	Japan	540	110,000	Future
	Scintillator	China	20	6000	Future
JUNO					

Supernova Burst neutrino expectation by Hyper-K, DUNE and IceCube

- Even $\nu \nu$ interaction plays role
- Explosion mechanism, NS/BH formation
- multi-messenger observation

Supernova Relic Neutrino

J. F. Beacom, M. R. Vagins, Phys.Rev.Lett. 93 (2004) 171101

SK-Gd project aiming to detect Supernova Relic Neutrino

- dissolve Gd to SK water
- detect $\bar{\nu}_e + p \rightarrow e^+ + n$
 - neutron tagged by Gd neutron capture (~8 MeV γ 's released.)
- Late 2019 or later

Origin of heavy elements and neutrino

- r(rapid)-process is necessary to produce gold etc.
- ► Requires 10²⁰~10³⁰ neutrons/cm³

http://www.ph.sophia.ac.jp/~shinya/research/research.html

Origin of heavy elements and neutrino Supernova explosion

https://astro.physik.unibas.ch/fileadmin/user_upload/astro physik-unibas-ch/liebendoerfer/Supernova_Models.html

Origin of heavy elements and neutrino

- Binary neutron-star merger
- Gravitational wave observation GW170817
 - ele. mag. observation of <u>kilonova</u> : thermal glow by radioactive decay of isotopes of the heavy elements
 - Binary neutron-star merger can be a dominant mode of r-process production
- ► high neutron fraction→ only heavy elements
- ▶ neutrino irradiation lower
 neutron fraction → light
 elements
- Observation of those neutrinos would be very interesting, but the event rate may be too low....

Ultra high energy cosmic ray

50~100 PeV proton is necessary to produce 25 TeV~5 PeV neutrino

Which sources can cosmic rays see?

A. Connolly, "Reaching for the highest energy neutrinos", neutrino2018

Astrophysical γ -rays and neutrinos

 Let's hear updates from IceCube

 Especially, multimessager observation : IceCube-170922A & Blazer TXS 0506+056

F.Halzen *"High-energy neutrino astrophysics",* 56 Nature Phys. 13 (2016) no.3, 232-238

Cosmic neutrino background ($C\nu B$)

$C\nu B$ interaction

- Huge cross section thanks to volume coherence.
- If $\sigma = 10^{-35} cm^2$ and $\Phi = 10^{12}/cm^2 s$, $v_e + e^$ interaction rate is ~ $3/g \cdot s$!

 But... almost no recoil with ~1mm³ target

How to detect $C\nu B$?

• End point of electrons from Tritium β -decay

- ✓ Proposed by S. Weinberg in 1962
- \checkmark a few projects trying direct ν mass measurements
- ► CvB by accelerator???

Accelerate ³He and detect tritium and positron ³He + $\bar{\nu}_e \rightarrow t + e^+$

Necessary ³He energy = 520 TeV for m_{ν} =100meV....

(cf. 10 MeV for reactor $\bar{\nu}_e$)

Superconducting detectors?

How to detect $C\nu B$?

Inspired this topic, one idea.

- $\bar{\nu}_{\mu}$ appearance experiment:
 - ✓ reactor $(\bar{\nu}_e \rightarrow \bar{\nu}_\mu)$ +accelerator $p \rightarrow \mu^+ + n$ ✓ $E_{th} = 19 \text{ GeV}$
- At J-PARC proton beam energy, cross
- section is comparable to that at $E_{\nu} = \sim 1 \text{ GeV}$
- There is a reactor.
 - I will calculate event rate during this workshop.

Conclusion

To prepare this talk, I read through PDG reviews and neutrino2018 slides.

Impressed by variety and high activity in this field!!!

$\bar{\nu}_{\mu}$ appearance experiment:

- reactor peak energy 3~4 MeV
 - baseline length 1.5 km
- Luminosity

$$\mathcal{L} = 2cN_p\rho_{\nu}$$

- N_p for J-PARC
 - ▶ one turn case ~3E14 /s
 - storage ring 100m x3 straight section ~3E20 /s
- ρ_{ν} for Tokai-Daini-nuclear pant
 - Thermal power 3 GW \rightarrow 6E20 v/s
 - $\frac{6E20}{4\pi r^2 c} = 2.1 \text{E9/c} / \text{cm}^3$
- ▶ £=1.3E30 /s
- cross section
 - ▶ $\sqrt{s} = 1146$ MeV for $E_{\nu} = 3.5$ MeV $\Leftrightarrow E_{\nu} = 231$ MeV for fixed target
 - $\sigma = 1E-40 \text{ cm}^2$
- Event rate (storage case)
 - 1E-10 /s (times oscillation probability)
- Hmmmm