T2K Near Detector Upgrades and Plans for T2HK

Thorsten Lux On behalf of the ND280 Upgrade Working Group

Downstream

Barrel ECAL

ECAL

ND Purpose: Measurement of neutrinos before oscillation

ND components:

- UA1 magnet: 0.2 T
- π 0 detector (POD)
- 2 Fine Grain Detectors (FGD):
 - target, FGD2 with H2O
 - XY scintillator bars
 - 1 ton each
- 3 Time Projection Chambers (TPC)
- Electromagnetical Calorimeter (ECAL)
- Side Muon Range Detector (SMRD)

T2K-II

arxiv:1609.04111

- aim: systematics from 5-6% to 4%
- beam power upgrade: 485 kW \rightarrow 1.3 MW
- statistics:

3E21 POT (2018) \rightarrow 20E21 POT (2026)

 \bullet Aim for CPV observation in optimal scenario at 3σ

T2K-II Protons-On-Target Request

Phys. Rev. D, 96:092006, 2017

Source of uncertainty	ν_e CCQE-like	$ u_{\mu}$	$\nu_e \operatorname{CC1} \pi^+$
	$\delta N/N$	$\delta N/N$	$\delta N/N$
Flux	3.7%	3.6%	3.6%
(w/ ND280 constraint)			
Cross section	5.1%	4.0%	4.9%
(w/ ND280 constraint)			
Flux+cross-section			
(w/o ND280 constraint)	11.3%	10.8%	16.4%
(w/ ND280 constraint)	4.2%	2.9%	5.0%
FSI+SI+PN at SK	2.5%	1.5%	10.5%
SK detector	2.4%	3.9%	9.3%
All			
(w/o ND280 constraint)	12.7%	12.0%	21.9%
(w/ ND280 constraint)	5.5%	5.1%	14.8%

N280 Upgrade replace POD by:

- 1 fine graned scintillator target (SuperFGD)
- 2 high angle TPCs (HA-TPC)
- 6 time of flight panels (TOF)

	Current (FGDs)	Upgrade (FGDs + SuperFGD)
Target mass (tons)	2.2	~4.2

SuperFGD

- scintillator, WLS fibers + MPPCs
 classical 2D approach reconstruction limitations
- new 3D approach: 1x1x1 cm³ cubes with 3 WLS fibers
- size: ~1.8x0.6x2 m³

Parameter	Cube edge: 1 cm
# of cubes	2,160,000
$\# ext{ of channels}$	58,800
Total fiber length	$65{ m km}$

SuperFGD

Simulation studies:

 high granularity allows excellent pattern recognition

• light yield from the 3 fibers helps to distinguish 1 from 2 particles => e/γ separation

 significant improvement on p reconstruction efficiency

Efficiency

SuperFGD

- \bullet Cube production by injection mold method at INR RAS (uncertainty ~35 $\mu m)$
- \bullet Reflector coating (~50 $\mu m)$ by chemical etching Uniplast (Russia)
- 2017: prototype of 5x5x5 tested at CERN testbeam:
 - light yield
 - cross talk
 - timing resolution

SuperFGD: Is it scaleable?

- prototype of 9216 cubes
- size: 8x24x48 cm³
- 1728 fibers/MPPCs
- 3 type of MPPCs
- adapted Baby MIND electronics (based on CITIROC chip) for readout
- Testbeam at CERN beginning of July
- e, μ , π , protons and γ (!)

SuperFGD:

- very successful data taking
- important step towards full size detector
- detailed data analysis ongoing

vent XZ35

MSv 14.6

22 24

Simulation

Mean x 18.31 Mean y 3.069 Std Dev x 1.615

Stopping proton

event_XZ1443

Photon beam

200

60 50

30

300

event XZ8854

HA-TPC:

- 2 rectangular TPCs
- inner dimensions:
 - 1.8 m wide
 - 0.7 m height
 - 2 x 1.06 m drift
- single gas volume
- composite material FC
- radiation length: 2-3% X₀
- 8 resistive MicroMegas
- T2K gas: 93% Ar, 3% CF4, 2% iC4H10
- Cathode voltage: ~25 kV
- readout electronics based on AFTER chip
- 10% $\Delta p/p$ at 1 GeV/c

Material	Thickss (mm)
Copper coated polymide film	~ 0.15
Aramid Fiber Fabric (Kevlar)	2.00
Aramide HoneyComb panel	30.00
Aramid Fiber Fabric (Kevlar)	2.00
Polymide film (insulation)	~ 0.10
Strips (double later) on Kapton foil	~ 0.15
TOTAL	~34.40

HA-TPC:

- avalanche size in MM few microns => no charge sharing between pads
- adding resistive layer to spread charge (NIM A518 (2004) 721) => reduction of electronics channels
- first prototype tested with cosmics and 15 cm drift at Saclay
- testbeam with 150 cm drift end of August

TOF: JINST 12 (2017) no.11, P11023 (arXiv:1709.08972)

Baseline choice:

- Cast plastic scintillator: EJ-200
- 8 SiPM (6x6 mm2) directly coupled to scintillator
- readout from both sides
- tested in CERN testbeam 2017
- ~70 ps time resolution for 1.5 m bars achieved

TOF:

ND280 panels: 12x230x1 cm³
readout electronics based on MUSIC ASIC (UB) and SAMPIC digitizer (LAL)
purpose: identify if particles from target to magnet and improve backward efficienty for current tracker

true cos q

Beyond T2K II:

- T2K-II will improve systematics to 4%
- aim for HK is 3%
- idea is to add intermediate detector
- Water Cherenkov detector doped with Gd
- intense R&D program
- 2 phases:
 - Phase 0: 50 ton test experiment at Fermilab or CERN (2021/22)
 - Phase 1: full detector, movable (2025 and beyond)

Conclusions

- ND280 and Beam Upgrade for T2K-II
 - High angle acceptance and low momentum measurement by SuperFGD, HA-TPCs and ToF counters
 - R&D and simulation studies in progress
 - Proposal submitted Jan 2018 (SPSC@CERN & PAC@J-PARC)
 - Beam power increased to 1.3 MW
- Schedule for the ND280 Upgrade:
 - June August 2018: SuperFGD and HA-TPC beam test @ CERN
 - Acknowledgement: Many thanks to CENF for support!
 - End of 2018: Technical Design Report
 - 2021: Installation and commissioning in Japan
 - Reduction of systematics to about 4%
- Plans for time beyond T2K-II well progressing:
 - Intermediate water Cherenkov detector, movable
 - Aim: reduce systematics to 3%

BACKUP SLIDES

Event displays (decay candidate)

e/γ Separation in ND280 Upgrade Target

- Goal to distinguish e/γ events that are single-track, electron-like, low momentum (200 < p < 600 MeV/c)
- Distinction between 1 (e^-) and 2($\gamma \rightarrow e^-e^+$) MIP events using the MPPC light yield from the tracks
 - Considering the light yield before and after the e^-e^+ tracks split into different scintillator segments

Ζ

y

A Photon beam in T9 area

A. Blondel, L. Gatignon

Principle

best is probably around 2 GeV/c efor 200-800 MeV photons (should be simulated)

hodoscope(measures electron momentum→ photon energy)

A. BIOHUERSuperFGD test beam

Off-axis spanning

• A detector that spans 1-4 degrees off the neutrino beam axis will measure the final states for varying neutrino spectra.

ICRC 2017

Off-axis spanning

