The DUNE Experiment: Status & Prospects

Sowjanya Gollapinni (UTK) (On behalf of DUNE Collaboration)

NuFact 2018, Aug. 16, 2018 Blacksburg, Virginia

AVALALA

The <u>D</u>eep <u>U</u>nderground <u>N</u>eutríno <u>E</u>xperíment

- MW-scale intensity neutrino beam from Fermilab to South Dakota over 1300 km
- Massive Liquid Argon Time Projection Chamber (LArTPC) as Far detector ~1 mile underground with 40 kilotons of fiducial mass
- Rich Physics program: Mass hierarchy, CP Violation, Supernovae physics, Nucleon Decay, New Physics etc.

The DUNE Collaboration

1132 collaborators from 179 institutions in 32 countries

The collaboration is rapidly evolving and is becoming highly international 3

DUNE: The Neutríno Beam

- 60–120 GeV protons from Fermilab's Main Injector
 - 1.2 MW beam power initially, upgradable to 2.4 MW power — compare to MINOS (<400 kW) and NOvA (600 - 700 kW)
- Achieving 1.2 MW beam power requires PIP II (proton improvement plan), a \$0.5B upgrade — DOE CD-1 approval in Aug 2018!

200 m decay pipe at -5.8° pitch, angled at South Dakota

٠

DUNE: The Neutríno Beam

DUNE: A Hybrid Near Detector

- Near Detector (ND) will be located about 600 m from the target
- ND goals: constrain the systematic uncertainties for oscillations by measuring
 - "unoscillated" fluxes, neutrino-nucleus cross sections and likely detector physics
- Near detector conceptual design being finalized will be composed of multiple systems
 - A highly segmented LArTPC (50 M v_{μ} CC events in 1 year; 15 k v_{e} CC events in 5 years)
 - a magnetized multi-purpose tracker
 - A PRISM concept (movable detector) for off-axis measurements

DUNE: The Near Detector

- Near Detector (ND) will be located about 600 m from the neutrino source
- ND goals: constrain the systematic uncertainties for oscillations by measuring
 - unoscillated fluxes, neutrino-nucleus cross sections and likely detector physics
- Near detector conceptual design being finalized
 - will be compared of multiple evetor
 - A highly s
 - a magnet
 - A PRISM
- DUNE ND Cor

See the talk given by Albert De Roeck on "Plans for the DUNE Near Detector" on Wednesday morning. ke instrumented chambers (5 layers

The DUNE Far Síte (Sanford Lab)

Sanford Underground Research Facility (Lead, South Dakota)

The DUNE Far Detector

- Four identical caverns for four independent Far detector modules, allows for staged approach to 40 kt
 - Plan to deploy first detector in 2024 with subsequent detectors deployed every 2 years after that
 - gives flexibility in detector technology & design
 - Similar (but not identical) 10 kt detector modules all LArTPCs

Far detector desígn features

- A highly capable LArTPC
 - Argon makes an excellent target (dense, abundant, cheap etc.)
 - Fine granularity & excellent calorimetry
 - Can separate Signal (v_e CC) from background (NC π^0)
 - Low energy thresholds
 - Technology allows for scalability \rightarrow massive detectors

Bonus:

"bubble chamber" quality images (high resolution — extract maximum information from every interaction)

A neutríno event ín the MícroBooNE LArTPC

Time direction

e/γ separatíon: Benefíts of a LArTPC

For v_e Appearance searches, e/γ separation is critical — Combine topology and charge information

Far Detector Desígn(s)

Two designs under consideration

- First 10 kt module will be a Single Phase (SP): drift and readout all in liquid phase
- Second 10 kt module will be a Dual Phase (DP): drift in liquid; amplification and read out in gas

The Single-Phase Far Detector

- 12 m x 14 m x 58 m active volume
- Cryostat has membrane design
- 150 APAs with 384,000 readout wires
- Each Anode-Cathode chamber has 3.5 m drift
- Cathode at 180 kV
- Anode planes have wrapped wires (readout on both sides)
- 6000 photon detection system
 (PDS) channels for light readout

APA = Anode Plane Assembly CPA = Cathode Plane Assembly

The Dual-Phase Far Detector

- 12 m x 12 m x 60 m active volume
- Larger drift at 12 m and higher fields
- Cathode at 600 kV
- 80 Charge Readout planes (CRP) with 153,600 channels
- 720 PMT Channels for light readout 15

DUNE Oscíllatíon Physics: v_e Appearance & Matter Effects

• A v_e appearance experiment (in matter) will be sensitive to rich physics (θ_{23} , θ_{13} , δ and matter effects)

$$P(\nu_{\mu} \rightarrow \nu_{e}) \simeq \frac{\sin^{2} \theta_{23} \sin^{2} 2\theta_{13} \frac{\sin^{2} (\Delta_{31} - aL)}{(\Delta_{31} - aL)^{2}} \Delta_{31}^{2}}{(\Delta_{31} - aL)} \Delta_{31} \frac{\sin aL}{aL} \Delta_{21} \cos(\Delta_{31} - \delta_{CP})} \qquad a = G_{F} N_{e} / \sqrt{2}$$

$$+ \frac{\sin 2\theta_{23} \sin 2\theta_{13} \sin 2\theta_{12} \frac{\sin(\Delta_{31} - aL)}{(\Delta_{31} - aL)} \Delta_{31} \frac{\sin aL}{aL}}{\Delta_{21} \cos(\Delta_{31} - \delta_{CP})} \qquad D_{ij} = \frac{Dm_{ij}^{2}L}{4E}$$

$$+ \frac{\cos^{2} \theta_{23} \sin^{2} 2\theta_{12} \frac{\sin^{2} aL}{aL^{2}} \Delta_{21}^{2}}{(aL)^{2}} \Delta_{21}^{2}, \qquad \text{(For antineutrinos, a $\rightarrow -a \text{ and } \delta \rightarrow -\delta_{12}^{2}}$$$

Neutrinos travel through matter not anti-matter

electron density in matter causes asymmetry through forward weak scattering = a hierarchy dependent effect

Probe CPV by comparing neutrino and anti-neutrino oscillations

Expected Event Rates

CP Violation Sensitivity

- Sensitivities computed using GLOBES
- Assumes equal running in neutrino and antineutrino mode and staging
 - 75% of $\delta = -\pi/2$ at 5 σ in 6.5 years
 - + 50% of δ range at 5 σ in 9 years
 - + 75% of δ range at 3 σ in 12.5 years

Significant milestones all through the beam program!

Mass Hierarchy Sensitivity

- Assumes equal running in neutrino and antineutrino mode and staging
- In 7 years,
 - definitive MH determination for the overwhelming majority of the $\delta_{\mbox{\tiny CP}}$ and $sin^2 \theta_{\mbox{\tiny 23}}$ parameter space

Improved Monte Carlo studíes

- New sensitivity based on simulation using fully automated reconstruction and event selection exceeds CDR sensitivity
 - Convolutional Visual Network (CVN) selection techniques used for event categorization and υ selection
- Full update planned for TDR in 2019!

Improved Monte Carlo studíes

- New sensitivity based on simulation using fully automated reconstruction and event selection exceeds CDR sensitivity
 - Convoluted Visual Network (CVN) selection techniques used for event categorization and υ selection

DUNE Supernovae Physics

- LArTPCs posses unique capability to detect SN electron neutrinos: CC v_e capture of SN neutrinos on Ar: v_e + Ar⁴⁰(18) \rightarrow K⁴⁰(19) + e⁻
- Detection requires sensitivity to low energy gammas (<50 MeV) and electrons

80 Hntall

70

60

50

40

30

20 10 Neutronization

0.05

Events per bin

40 kton argon, 10 kpc

0.15

0.1

0.2

Time (seconds)

0.25

Other Physics Searches

- Baryon Number non-conservation: nucleon decay and neutron-antineutron oscillations
 - Some GUT models explicitly break the baryon number symmetry predicting proton decay
 - + proton lifetime is too long $\tau > 10^{33}$ years
 - But, huge detector, large exposure (20+ year program) — watch many protons for a single decay

Many Beyond the Standard Model searches possible at DUNE

Dark Matter

٠

. . . .

- Sterile Neutrinos
- Large Extra Dimensions
- Non-standard Interactions

ProtoDUNE-SP $6 \times 7 \times 7 \text{ m}^3$

DUNE Prototypes @ CERN

ProtoDUNE goals:

- Design validation, Operation & Performance
- Test beam data to understand detector response & Particle ID

ProtoDUNE-SP Status

ProtoDUNE-SP Cold Box Results

Allows testing of assembled APA and electronics before installation into protoDUNE cryostat

Promising results of APA wire noise in cold box

350

300

250

200 ≚

150 Temperature /

50

0

80

-50

RTD TT0206 (K)

÷

60

70

ProtoDUNE Dual Phase Status

- ProtoDUNE-DP Field Cage complete in April 2018
- Successful HV tests at 150 kV!
- Collaborators hard at work aim to finish installation in Fall 2018

3x1x1 Dual Phase Prototype

- Successful demonstration of Dual-Phase technology
- Operated at CERN between June and November 2017

ProtoDUNE Dual Phase

- ProtoDUNE DP Field Cage complete in April 2018
- Successful HV tests at 150 kV!

More on the this by Jingbo Wang "Status of ProtoDUNEs" this afternoon

DUNE Timeline

DUNE Interím Desígn Reports (IDRs)

A significant milestone for DUNE — July 2018

Single-Phase

Exciting Physics Ahead with DUNE

Thank you for your attention!

Oscillation Resolution & Milestones

Physics milestone	Exposure (kt · MW · year)	Exposure (years)
1° $ heta_{23}$ resolution ($ heta_{23}=42^\circ$)	29	1
CPV at 3σ ($\delta_{ m CP}=-\pi/2$)	77	3
MH at 5σ (worst point)	209	6
$10^\circ~\delta_{ m CP}$ resolution ($\delta_{ m CP}=0$)	252	6.5
CPV at 5σ ($\delta_{ m CP}=-\pi/2$)	253	6.5
CPV at 5σ 50% of $\delta_{ m CP}$	483	9
CPV at 3σ 75% of $\delta_{ m CP}$	775	12.5
Reactor $ heta_{13}$ resolution ($\sin^2 2 heta_{13} = 0.084 \pm 0.003$)	857	13.5

CVN Event Selection & Efficiency

Reconstructed Energy (GeV)

- Training performed on sets of 500 x 500 DUNE MC images
- Event selection performed by applying cuts on v_{e} CC-like and v_{μ} CC-like CVN classifiers
- v CC-like cut chosen by optimizing CPV sensitivity
- CVN $v_{\rm e}$ event selection efficiency similar to that from CDR Fast MC

