

Recent Results from the T2K Near Detector

Xianguo LU/ 卢显国 University of Oxford on behalf of the T2K Collaboration NuFACT 2018, Blacksburg, 15 August 2018

oscillation between flavor states as a function of time ~distance/energy

Only 2 flavors, same oscillation behavior

Xianguo Lu, Oxford

a function of time ~distance/energy

Xianguo Lu, Oxford

V

е

The T2K Experiment

T2K far detector: Super-Kamiokande

- 50 kt water-Cherenkov
- 11129 20-inch PMTs in inner detector; 1885 8-inch PMTs in outer veto detector

Xianguo Lu, Oxford

Source: http://www.ps.uci.edu/~tomba/sk/tscan/th

The big picture of neutrino detection in oscillation measurements

The T2K Experiment

T2K off-axis near detector (ND280)

T2K off-axis near detector (ND280)

P0D: π^0 Detector Scintillator-based ECal CH w/ and w/o H₂O

Tracker:

- FGD: Fine-Grained Detector 1. CH target
 - 2. $CH + H_2O$ target
- Time Projection Chamber (TPC)
- constrain beam flux and cross section for oscillation analysis
- stand-alone neutrino interaction measurements

Cross-section measurements from T2K

	CC inclusive	CC QE(-like)	СС π
H ₂ O	$[\bar{\nu}_{\mu}/\nu_{\mu}:1706.04257]$ $\nu_{e}:1503.08815$	ν _μ :1708.06771	ν _μ :1605.07964
СН	$v_{\mu}:1801.05148$ $\overline{v}_{\mu}/v_{\mu}:1706.04257$ $v_{e}:1407.7389$ $v_{\mu}:1407.4256$ $v_{\mu}:1302.4908$	v_{μ} :1802.05078 v_{μ} :1602.03652 v_{μ} :1503.07452 v_{μ} :1411.6264	ν _μ :1604.04406
Fe	ν _μ :1509.06940 [ν _μ :1407.4256]		
	NC Elastic	NC π	CC: Charged Cur NC: Neutral Curr
H ₂ O	v _µ :1403.3140	ν _µ :1704.07467	

(A) T2K measurement of v_{μ} CC inclusive cross section on CH

• Signal event: $1 \mu^{-}$, 4π phase space [arXiv:1801.05148 to appear in PRD]

Forward

Better resemblance to SK acceptance

Backward

High Angle

Xianguo Lu, Oxford

(A) T2K measurement of ν_{μ} CC inclusive cross section on CH

• Signal event: $1 \mu^{-}$, 4π phase space [arXiv:1801.05148 to appear in PRD]

(A) T2K measurement of $v_{_{II}}$ CC inclusive cross section on CH

• Signal event: 1 μ^- , 4π phase space [arXiv:1801.05148 to appear in PRD]

•

•

(B) T2K measurement of ν_{μ} CC0 π cross section on water

Signal event: 1 μ⁻, 0 π, no other mesons, restricted phase space [Phys.Rev. D97 (2018) 012001, on CH: Phys.Rev. D93 (2016) 112012]

Xianguo Lu, Oxford

ν

Cross section on water obtained by subtraction: $H_2O = (CH+H_2O) - CH = WaterIn - WaterOut$

(B) T2K measurement of v_{μ} CC0 π cross section on water

Signal event: 1 μ⁻, 0 π, no other mesons, restricted phase space [Phys.Rev. D97 (2018) 012001, on CH: Phys.Rev. D93 (2016) 112012]

(C) T2K measurement of v_{μ} NC1 π^0 cross section on water

• Signal event: $0 \mu^{-}$, $1 \pi^{0}$, no other mesons, restricted ph [Phys.Rev. D97 (2018) 032002]

P0D as target, same subtraction scheme

- One of the largest background sources for v_{e} appearance in SK
- π^0 on water by subtraction 106 ± 41 (stat) ± 69 (sys) events
- Measured/NEUT = 0.68 ± 0.26 (stat) ± 0.44 (sys) ± 0.12 (flux) \rightarrow consistent within errors

Transverse kinematic imbalances

Stationary nucleon target

 $\delta \vec{p}_{\rm T} = \vec{p}_{\rm T}^{\rm N} - \Delta \vec{p}_{\rm T}$

Convolution of Fermi motion and **Intranuclear Momentum Transfer (IMT)** due to FSI, resonance production, 2p2h etc.

[XL et al. Phys.Rev. C94 (2016) 015503]

• Signal event: $1 \mu^{-}$, 0π , at least 1 p, restricted ph [arXiv:1802.05078 to appear in PRD]

• Signal event: $1 \mu^{-}$, 0π , at least 1 p, restricted ph [arXiv:1802.05078 to appear in PRD]

Fermi motion: Spectral Function (SF) is preferred

• Signal event: $1 \mu^{-}$, 0π , at least 1 p, restricted ph [arXiv:1802.05078 to appear in PRD]

• Signal event: $1 \mu^{-}$, 0π , at least 1 p, restricted ph [arXiv:1802.05078 to appear in PRD]

Transverse boosting angle – non-flatness indicates strength of IMT: Mild strength of IMT at T2K energy

Nuclear Effect Diagnostics

- Initial state
- Final state
- Non-exclusive dynamics
- Energy dependence

- 1) T2K measured $\delta \alpha_{T}$ at $\langle E_{v} \rangle = 0.6$ GeV on same target with slightly different signal phase space definitions
- 2) Difference in upper quadrant indicates different IMT strength.
- 3) Sensitivity to isospin assignment (T=0, 1) in GiBUU 2p2h model.
- T2K data: arXiv:1802.05078 to appear in PRD, see also my T2K talk tomorrow
- GiBUU: Phys.Rept. 512 (2012) 1-124 see also arXiv:1804.09488 for T2K-GiBUU comparison

74. MINERvA Cross Section Results Xianguo Lu 14/08/2018, 14:00 WG1+WG2

Summary

- Neutrino-nuclear cross section measurements important for oscillation analysis.
- New measurements of neutrino interactions
 - Inclusive
 - (A) 1 μ -, 4 π phase space, CH
 - Semi-inclusive
 - (B) 1 μ⁻, 0 π, restricted phase space, H₂O
 (C) 0 μ⁻, 1 π⁰, restricted ph, H₂O
 (D) 1 μ⁻, 0 π, at least 1 p, restricted ph., CH
 - (previous results on exclusive measurement: coherent pion production [Phys.Rev.Lett. 117 (2016) 192501])
- More cross section results:
 - 135. T2K Cross Section Model / Oscillation Needs
 Clarence Wret (University of Rochest...)
 17/08/2018, 14:30
 WG2

- Extensive program at ND280 to improve SK measurements
 - Phase space
 - Signal/background channels
- New measurement of single-transverse kinematic imbalances
 - Surgical diagnostics of nuclear effects
 - More on final-state correlations:
 74. MINERvA Cross Section Results
 Xianguo Lu
 14/08/2018, 14:00
 WG1+WG2
- Near Detector Upgrade see next talk:

28. T2K Near Detector Upgrades and Plans for T2HK
Thorsten Lux
15/08/2018, 10:20
Plenary VI

BACKUP

(D) T2K measurement of v_{μ} CC1 π^+ cross section on water

• Signal event: $1 \mu^{-}$, $1 \pi^{+}$, no other mesons, restricted ph [Phys.Rev. D95 (2017) 012010]

(D) T2K measurement of v_{μ} CC1 π^+ cross section on water

• Signal event: $1 \mu^{-}$, $1 \pi^{+}$, no other mesons, restricted ph [Phys.Rev. D95 (2017) 012010]

- One of signal channels in oscillation analyses
- NEUT agrees with data; GENIE over data by 2σ in normalization

FIG. 17. The extracted differential cross section as a function of the single transverse variables compared to: the GENIE 2.12.4 simulation (left) and the GiBUU 2016 simulation (right). GENIE uses the Bodek and Richie RFG initial state model and this prediction also includes GENIE's empirical 2p2h prediction $(2p2h_E)$. This GENIE prediction is similar that used as a starting point for the NO ν A experiment's oscillation analyses. More details of these models can be found in Sec. IV A. The inlays on the plots show a close-up of the tail regions of $\delta p_{\rm T}$ and $\delta \phi_{\rm T}$.

END