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OUTLINE

* Neutrino-nucleon interaction at low energy
% Neutrino-nucleus interaction at low energy
* Models of nuclear structure and dynamics

> Nuclear Hamiltonian
> Correlated Basis Functions

* Interaction effects

> Mean Field
> Correlations
> Collective excitations

* Summary & Outlook



LOW-ENERGY NEUTRINO-NUCLEON INTERACTIONS

* Neutrino interactions are mediated by the gauge bosons W+ and
Zy, whose masses are in the range ~ 80 — 90 GeV

% In the regime of momentum transfer discussed in this talk,
g ~ 10 MeV, Fermi theory of weak interactions works just fine
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* The nucleon current can be cast in the non relativistic limit
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NEUTRINO-NUCLEON X-SECTION

* Consider, as an example, the x-section of the neutral-current
process v(k) + n(p) = V' (K') +n(p+q), ¢g=k — K

do oc Ly, W
> Ly, specified by lepton kinematical variables

Ly, = k‘Ak/H + kuk/)\ — g)\u(kk/) + iexp‘wkpk‘w

> W™ written in terms of five structure functions W;(¢?, (p - ¢))
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% In the following, I will assume that the neutrino-nucleon cross
section be known



NEUTRINO-NUCLEUS X-SECTION

% Consider again a neutral current process

v+A—->1V+X

* The nucleon tensor is replaced by the nuclear response tensor

Interaction rate

W(q,w)
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where cos§ = (k- k') /(|k||k’|), while S” and S” are the nuclear

responses in the density and spin-density channels, respectively.



NUCLEAR WEAK RESPONSES AT LOW ENERGY

% density response

1
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* spin-density response (o, 8 =1,...3)
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* Neutral weak current
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* Outstanding issues

> Model nuclear dynamics (determine H)
> Solve the many-body Schrodinger equation H|n) = E,|n)



MODELING NUCLEAR DYNAMICS

* ab initio (bottom-up) approach
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> v;; provides a very accurate descritpion of the two-nucleon system,
and reduces to Yukawa’s one-pion-exchange potential at large
distances

> inclusion of v;;x needed to explain the ground-state energies of the
three-nucleon systems

> v;; is spin and isospin dependent, and strongly repulsive at short
distance

> nuclear interactions can not be treated in perturbation theory in the
basis of eigenstates of the non interacting system

* Mean field (independent particle) approximation
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Energy (MeV)

*

Quantum Monte Carlo and variational calculations performed
using phenomenological nuclear Hamiltonians explain the
energies of the ground- and low-lying excited states of nuclei
with mass A < 12, as well as saturation of the equation of state of
cold isospin-symmetric nuclear matter
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CORRELATED BASIS FUNCTIONS

* Replace the basis states of the non-interacting system with a set
of correlated states
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% the structure of the two-nucleon correlation operator reflects the
complexity of nuclear dynamics
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* shapes of frg(r;;) and fir(r;;) determined form minimization of
the ground-state energy



NN POTENTIAL AND CORRELATION FUNCTIONS
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EFFECTIVE INTERACTION

* The effective interaction in nuclear matter at density p is defined
through the relation [kr = (37%p/2)'/3]
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% unlike the bare NN potential, Vg is well behaved, and can be
used to perform perturbative calculations in the basis of
eigenstates of the non interacting system

* the response can be also computed using the Fermi gas states
and the corresponding effective operators, defined through

(n|J"|0) = (nralJig0ra)
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EFFECTIVE INTERACTION
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EFFECTS OF NN INTERACTIONS

* Mean field effects

> Change of nucleon energy spectrum
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> Effective mass
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* Correlation effects

> Effective operators couple the ground state to
two-particle-two-hole (2p2h) final states, thus removing strength
from the 1p1h sector

Mapon = (2p2h|Jf510) # 0 = Mipin = (1plh|J(0) < (1p1h|J*|0)



* Nucleon energy spectrum and
Effective mass in
isospin-symmetric matter at
equilibrium density * Quenching of Fermi transition
strength in isospin-symmetric

50k A matter at equilibrium density
100 s E
S - E 1.05 T
ERN q=037fm™"
100 ———-——=——— -]
ook E
_ 1 1 1 1 1 [ -
luooﬂ 0.5 10 1. 2.0 25 3.0 N: 0.95
k [fm™] I
z
2 0.90 - -
=
0.8 -
0.85— |
0.8 -
\ \ \
L .| 0.80
£ o7 1.0 11 12 13 14
5 b [MeV]
2 o8l B
0.5 =]
0.4 1 1 1 1
0.0 0.1 0.2 0.3 0.4 0.5

p [tm™]

13/19



q-EVOLUTION OF INTERACTION EFFECTS

* Density response of isospin-symmetric matter at equilibrium

density
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LONG-RANGE CORRELATIONS

* At low momentum transfer the space resolusion of the neutrino

becomes much larger than the average NN separation distance
(~ 1.5 fm), and the interaction involves many nucleons

* Write the nuclear final state as

a superposition of 1plh states
(RPA scheme)
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TAMM-DANCOFF (RING) APPROXIMATION

* Propagation of the particle-hole pair produced at the interaction
vertex gives rise to a collective excitation. Replace

Iph) = |n) = ZC Ipihs)

* The energy of the state |n) and the coeff1c1ents C; are obtained
diagonalizing the hamiltonian matrix

Hij = (Eo + ey, — en,)dij + (hipi| Vest | hjp;)
kQ
= — kk' kk'
€k om + < ‘Vveff | >a
k/
* The appearance of an eigenvalue, w;,, lying outside the
particle-hole continuum signals the excitation of a collective
mode
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EFFECTS OF LONG-RANGE CORRELATIONS

* Density response of isospin-symmetric nuclear matter at
equilibrium density
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EXCITATION OF COLLECTIVE MODES

* Density (a) and spin-density (b) responses of isospin-symmetric

nuclear matter at equilibrium density
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* |q| =0.1,0.15,0.20, 0.25, 0.30, 0.40 and 0.50 fm !



SUMMARY

% A consistent theoretical framework for the description of the
weak response of nuclear matter at low energy is available

* Recent studies have signifcantly advanced the understanding of
the relevant reaction mechanisms, pinning down the role of both
short- and long-range correlations

% The generalization to atomin nuclei, while being demanding
from the computational point of view, does not involve
conceptual difficulties

% As an intermediate step, nuclear cross sections can be estimated
exploiting nuclear matter results within the conceptual
framework of the local density approximation
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NEUTRINO MEAN FREE PATH IN NEUTRON MATTER

* The mean free path of non degenerate neutrinos at zero
temperature is obtained from

2 3
s=Ef gy [+ cos0)S(a.) + CL(3 = cost)S(a)]

where § and S are the density (Fermi) and spin (Gamow Teller)
response, respectively

A Lovato et al, arXiv 1310.0510 [nucl-th]
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% Both short and long range correlations important
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* Mean free path of a non degenerate neutrino in neutron matter.
Left: density-dependence at ky = 1 MeV and 7" = 0 ; Right:
energy dependence at p = 0.16 fm ™ and 7' = 0,2 MeV

I
N T=0

6000 — - ph only ] |

. B o PR

N zero sound

<
4000~ o o to—0t——o—=2 B
2000 — - _ e -
0.0 0‘1 o‘z o‘a : ‘ ‘ ’
: : D - 0 5 10 20
p [tm™] ko [MeV]



% Density and temperature dependence of the mean free path of a
non degenerate neutrino at ko = 1 MeV and p = 0.16 fm™*
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