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Introduction 

• Neutrino emission is the main process driving the early 
stages of neutron stars’ cooling.

• Neutrino interactions with nuclei play a crucial role in 
supernovae, as they impact 

• The mechanisms for neutrino production depend on the 
nuclear equation of state, which is in turn dictated by 
nuclear interactions.

• The explosion
• The nucleosynthesis

• Their detection is also affected by neutrino-nucleus 
interaction

Neutrino interaction rate with nuclei and nuclear 
matter and equation of state (possibly at finite 
temperature) from the same nuclear dynamics, 

extensively tested on few-body nuclear systems



4

energy for argon [16] and the actual excitation level of
the residual nucleus. We set its total value to a constant
Emiss=30 MeV. This is an approximation of the average
energy to remove a np pair from a Ar nucleus extrapo-
lated from single nucleon removal energy spectra for Ar
nuclei [17].
From the reconstructed neutrino energy and the mea-
sured muon kinematics, the components of the 4-
momentum transfer (!,~q) can eventually be inferred.
The muon momentum resolution is 5-10% [13]. The pro-
ton angular resolution (1-1.5�, depending on the track
length) and the proton energy resolution (about 6% for
protons above the Fermi momentum) are estimated by
MC simulation. The overall resolution in our neutrino
energy and transfer momentum reconstruction is dom-
inated by muon momentum resolution, as in CC inter-
actions the muon takes the largest fraction on the in-
cident neutrino energy. Discussion - Nucleon-nucleon
correlations are essential components of modern poten-
tials describing the mutual interaction of nucleons in nu-
clei. The strong, repulsive short-range correlations (NN
SRC) cause the nucleons to be promoted to states above
the Fermi level in the high-momentum tail of the nucleon
momentum distribution [20]. Thus, SRC cause nucleons
to form pairs with large relative momentum and small
center-of-mass momentum, i.e. pairs of nucleons with
large, back-to-back momenta. Due to NN tensor correla-
tions, SRC pairs are dominantly in iso-singlet (deuteron
like) state (np)I=0 [21].
Two-nucleon knock-out from high energy scattering pro-
cesses is the most appropriate venue to probe NN correla-
tions in nuclei. Two nucleons can be naturally emitted by
two-body mechanisms [4]: MEC - two steps interactions
probing two nucleons correlated by meson exchange cur-
rents, and “Isobar Currents” (IC) - intermediate state
�, N⇤ excitation of a nucleon in a pair with the pion
from resonance decay reabsorbed by the other nucleon.
It should be noted that the NN pairs in these two-body
processes may or may not be SRC pairs.
One-body interactions can also lead to two-nucleon ejec-
tion. This happens when the struck nucleon is in a SRC
pair and the high relative momentum in the pair would
cause the correlated nucleon to recoil and be ejected as
well [12].
It should also be noted that in both cases final state
interactions (FSI) - momenta or charge exchange and in-
elastic reactions - between the outgoing nucleons and the
residual nucleus [10] may alter the picture.

Hadron scattering experiments were extensively per-
formed to probe NN SRC in nuclei. In pion-nucleus ex-
periments in the intermediate energy range (incident en-
ergy fixed in the �-resonance range, 100-500 MeV) the
cross section is high and the main contribution is from ab-
sorption processes. Pion absorption is highly suppressed
on a single nucleon in the nucleus. Thus, absorption re-
quires at least a two-nucleon interaction. The simplest
and most frequent absorption mechanism (for A�12) is
on np pairs (“quasi-deuteron absorption (QDA)”: e.g.

FIG. 4. 2D views of one of the four “hammer events”,
with a forward going muon and a back-to-back proton pair
(pp1 = 552 MeV/c, pp2 = 500 MeV/c). Transformations
from the TPC wire-planes coordinates (w,t “Collection plane”
[Top], v,t “Induction plane” [Bottom]) into Lab coordinates
are given in [13].

⇡+ + (np) ! pp). Most of the pion energy is carried
away by the ejected nucleons (whose separation energy
contributes to the missing energy budget) and part of
the momentum can be transferred to the recoil nucleus
(missing momentum). Observation, e.g. from bubble-
chamber experiments, of pairs of energetic protons with
3-momentum pp1, pp2 � kF detected at large opening an-
gles in the Lab frame (cos�  �0.9) suggested first hints
for SRC in the target nucleus [22].

Electron scattering experiments extensively studied
SRC. Experiments of last generation probe SRC by triple
coincidence - A(e, e0np or pp)A-2 reaction - where the
two knock-out nucleons are detected at fixed angles. The
SRC pair is typically assumed to be at rest prior to the
scattering and the kinematics reconstruction utilizes pre-
defined 4-momentum transfer components determined
from the fixed beam energy and the electron scattering
angle and energy. NN SRC are associated with finding
a pair of high-momentum nucleons, whose reconstructed

initial momenta are back-to-back and exceed the charac-
teristic Fermi momentum of the parent nucleus, while the
residual nucleus is assumed to be left in a highly excited
state after the interaction [23]. Recent results from JLab
(on 12C) indicate that �20% of the nucleons (for A�12)
act in correlated pairs. 90% of such pairs are in the form
of high momentum iso-singlet (np)I=0 SRC pairs; 5% are
in the form of SRC pp pairs; and, by isospin symmetry,
it is inferred that the remaining 5% are in the form of
SRC nn pairs [24].

Neutrino scattering experiments, to our knowledge,
have never attempted to directly explore SRC through
detection of two nucleon knock-out. The main limita-
tion compared to electron scattering comes from the in-
trinsic uncertainty on the 4-momentum transfer. This
originates from the a priori undetermined incident neu-

Argon: the beauty 
• Recently, the liquid Argon detector ArgoNeuT was able to elucidate the role of nuclear 
correlations in neutrino-nucleus scattering events.
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Argon: the beast
40Ar is NOT a magic nucleus: open shells for neutrons and protons!
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I. INTRODUCTION

The energy spectrum of high-energy leptons !elec-
trons in particular" scattered from a nuclear target dis-
plays a number of features. At low energy loss !"",

peaks due to elastic scattering and inelastic excitation of
discrete nuclear states appear; a measurement of the
corresponding form factors as a function of momentum
transfer #q# gives access to the Fourier transform of
nuclear !transition" densities. At larger energy loss, a
broad peak due to quasielastic electron-nucleon scatter-
ing appears; this peak—very wide due to nuclear Fermi
motion—corresponds to processes by which the electron
scatters from an individual, moving nucleon, which, after
interaction with other nucleons, is ejected from the tar-
get. At even larger ", peaks that correspond to excita-
tion of the nucleon to distinct resonances are visible. At
very large ", a structureless continuum due to deep in-
elastic scattering !DIS" on quarks bound in nucleons ap-
pears. A schematic spectrum is shown in Fig. 1. At mo-
mentum transfers above approximately 500 MeV/c, the
dominant feature of the spectrum is the quasielastic
peak.

*benhar@roma1.infn.it
†dbd@virginia.edu
‡ingo.sick@unibas.ch

FIG. 1. Schematic representation of inclusive cross section as a
function of energy loss.
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Schematic representation of the inclusive cross section as a function of the energy loss.

• Elastic scattering and 
inelastic excitation of discrete 
nuclear states.

• Broad peak due to quasi-
elastic electron-nucleon 
scattering.

• Excitation of the nucleon to 
distinct resonances (like the Δ) 
and pion production.

Electron-nucleus scattering 



Lepton-nucleus scattering 
The inclusive cross section of the process in which 
a lepton scatters off a nucleus and the hadronic 
final state is undetected can be written in terms of 
five response functions

• The response functions contains all the information on target structure and dynamics
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Our strategy: ab initio methods 
We are aimed at computing the response functions of Argon in the broad kinematical region covered by 
neutrino experiments along with a realistic estimate of the theoretical uncertainty of the calculation.


Sources of theoretical uncertainty

• Modeling nuclear dynamics:

nuclear potential, currents, form 
factors…

• Many-body technique: 

quantum Monte Carlo, spectral 

function, CBF effective interaction


In ab initio approaches these 
two sources of theoretical 

uncertainty are disentangled 
and can be properly estimated



Our strategy: ab initio methods 
Green’s function Monte Carlo (GFMC)

• Limited to nuclei large as 12C
• Virtually exact up to the quasielastic region for q . 500MeV

Auxiliary field diffusion Monte Carlo (AFDMC)

• Can be used to treat nuclei like 40Ar (and bigger!) as well as nuclear matter 

• Difficulties in extracting the response functions due to the large sign problem

Spectral function

• Fully relativistic kinematics and matrix elements for the current operators 

• Reliable only for relatively large momentum transfer:                         (No collective modes!)

CBF effective interaction

• Accurate for small values of momentum transfer (long and short-range correlations)

q & 300 MeV

• Ideally suited for nuclear matter, but possible local density approximation implementation



Our strategy: ab initio methods 
• Use GFMC whenever it is possible and seek a fruitful interplay between AFDMC, SF and CBF 
effective interaction approaches to estimate the systematic error of the many-body approach

All these many-body techniques are 
based on the same nuclear dynamics:
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Our strategy: ab initio methods 
QE e/⌫

Scattering

Nuclear
interactions

Correlations

Nuclear
currents

e/⌫
scattering

Interference

Summary

Electromagnetic current operators

Set of (conserved) EM current operators

contain no free parameters and are consistent with
short-range behavior of v and V 2⇡

Many-body EM charge operators represent relativistic
corrections to ⇢(1), and lead to small corrections
These many-body corrections are important to
reproduce a variety of nuclear EM observables

Δ

QE e/⌫
Scattering

Nuclear
interactions

Correlations

Nuclear
currents

e/⌫
scattering

Interference

Summary

Electromagnetic current operators

Set of (conserved) EM current operators

contain no free parameters and are consistent with
short-range behavior of v and V 2⇡

Many-body EM charge operators represent relativistic
corrections to ⇢(1), and lead to small corrections
These many-body corrections are important to
reproduce a variety of nuclear EM observables

QE e/⌫
Scattering

Nuclear
interactions

Correlations

Nuclear
currents

e/⌫
scattering

Interference

Summary

Electromagnetic current operators

Set of (conserved) EM current operators

contain no free parameters and are consistent with
short-range behavior of v and V 2⇡

Many-body EM charge operators represent relativistic
corrections to ⇢(1), and lead to small corrections
These many-body corrections are important to
reproduce a variety of nuclear EM observables

QE e/⌫
Scattering

Nuclear
interactions

Correlations

Nuclear
currents

e/⌫
scattering

Interference

Summary

Electromagnetic current operators

Set of (conserved) EM current operators

contain no free parameters and are consistent with
short-range behavior of v and V 2⇡

Many-body EM charge operators represent relativistic
corrections to ⇢(1), and lead to small corrections
These many-body corrections are important to
reproduce a variety of nuclear EM observables

10

-3

-2

-1

0

1

2

3

4

µ
 (µ

N
)

EXPT

GFMC(IA)
GFMC(TOT)

n

p

2H

3H

3He

6Li

7Li

7Be

8Li 8B

9Li

9Be

9B

9C

FIG. 4: (Color online) Magnetic moments in nuclear magne-
tons for A ≤ 9 nuclei. Black stars indicate the experimen-
tal values [35–37], while blue dots (red diamonds) represent
GFMC calculations which include the IA one-body EM cur-
rent (total χEFT current up to N3LO). Predictions are for
nuclei with A > 3.

and the NLO OPE term contributes in both the trinu-
cleon clusters and in between the trinucleon clusters and
the valence pp (nn) pair. The IA m.m. for 9Be is close
to the experimental value, while those for 9Li and 9C
are far from the data, so this pattern of small and large
MEC corrections provides good overall agreement with
the data.

The χEFT results reported in Tables III and V are
summarized in Fig. 4, where the experimental data [34–
37] (there are no data for the m.m. of 9B) are repre-
sented by black stars. We show also the experimen-
tal values for the proton and neutron m.m.’s, as well
as their sum, which corresponds to the m.m. of an S-
wave deuteron. The experimental values of the A = 2–3
m.m.’s have been utilized to fix the LECs, therefore pre-
dictions are for A > 3 nuclei. The blue dots labeled
as GFMC(IA) represent theoretical predictions obtained
with the standard IA one-nucleon EM current entering
at LO: diagram (a) of Fig. 1. The GFMC(IA) results
reproduce the bulk properties of the m.m.’s of the light
nuclei considered here. In particular, we can recognize
three classes of nuclei with non-zero m.m.’s, i.e., odd-
even nuclei whose m.m.’s are driven by an unpaired va-
lence proton, even-odd nuclei driven by an unpaired va-
lence neutron, and odd-odd nuclei with either a deuteron
cluster or a triton-neutron (3He-proton) cluster outside
an even-even core. Predictions which include all the con-
tributions to the N3LO χEFT EM currents illustrated
in Fig. 1 are represented by the red diamonds of Fig. 4,
labeled GFMC(TOT). In all cases except 6Li and 9Be
(where the IA is already very good and the MEC correc-
tion is very small) the predicted m.m.’s are closer to the
experimental data when the MEC corrections are added
to the IA one-body EM operator.

It is also interesting to consider the spatial distribution
of the various contributions to the m.m., i.e., to examine
the magnetic density. The one-body IA contributions
from the starting VMC wave functions are shown in Fig. 5
for the isobaric analog pairs 7Li–7Be, 8Li–8B, and 9Li–
9C. (The VMC values for the IA m.m.’s are within a few
% of the final GFMC values, so we expect their spatial
distribution to be reasonably accurate.) In the figure, the
red upward-pointing triangles are the contribution from
the proton spin, µp[ρp↑(r)−ρp↓(r)], and similarly the blue
downward-pointing triangles are the contribution from
the neutron spin. The green diamonds are the proton
orbital (convection current) contribution, and the black
circles are the sum. The integrals of the black curves over
d3r give the total m.m.’s of the nuclei in IA.

For the neutron-rich lithium isotopes, there is one un-
paired proton (embedded in a p-shell triton cluster) with
essentially the same large positive contribution in all
three cases. The proton orbital term is also everywhere
positive, but relatively small. For 7Li and 9Li, the neu-
trons are paired up, and give only a small contribution,
so the total m.m. is close to the sum of the proton spin
and orbital parts. However 8Li has one unpaired neu-
tron which acts against the proton and significantly re-
duces the overall m.m. values. For the proton-rich iso-
baric analogs, there is one unpaired neutron (embedded
in a p-shell 3He cluster) with the same sizable negative
contribution in all three cases. In 7Be and 9C, the pro-
tons are paired up and give little net contribution, but
the orbital term is always positive and acts against the
neutron spin term. In 8B there is also one unpaired pro-
ton, which gives a bigger contribution than the unpaired
neutron and results in a net positive m.m. value.

In Table VI, we explicitly show the various contribu-
tions entering the χEFT operator. The labeling in the
table has been defined in Sec. III A. We list the contribu-
tions at each order. At N3LO, we separate the terms that
do not depend on EM LECs (i.e. the LOOP contribution
and the contact MIN currents; the former depends on the
known axial coupling constant, gA, and pion decay am-
plitude, Fπ , while the latter depends on the strong LECs
entering the NN χEFT potential at N2LO) and those
that depend on them (i.e. the contact NM and the OPE
current whose isovector component has been saturated
with the ∆ transition current). In most cases, chiral
convergence is observed but for the isovector N3LO OPE
contribution whose order of magnitude is in some cases
comparable to the OPE contribution at NLO. It is likely
that the explicit inclusion of ∆ degrees of freedom in the
present χEFT would significantly improve the conver-
gence pattern, since in such a theory this isovector OPE
current, presently entering at N3LO, would be promoted
to N2LO.

In Table VI, we do not provide the errors associated
with the individual terms at each order because they are
highly correlated. We limit ourselves to report the errors
associated with the IA, MEC, and total results. Also
in this table, we denote calculations performed enforcing

• The inclusion of two-body currents is essential for low-momentum and low-energy transfer transitions.

 The nuclear electromagnetic current is constrained by the Hamiltonian through the continuity equation

• The above equation implies that          involves two-nucleon contributions. They account for 
processes in which the vector boson couples to the currents arising from meson exchange between 
two interacting nucleons.

r · JEM + i[H, J0
EM] = 0

JEM

Pastore at al., PRC 87, 035503 (2013)



Diffusion Monte Carlo
• Diffusion Monte Carlo methods use an imaginary-time projection technique to enhance the 

ground-state component of a starting trial wave function.

• Any trial wave function can be expanded in the complete set of eigenstates of the the 
hamiltonian according to
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X
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which implies 

where    is the imaginary time. Hence, GFMC and AFDMC project out the exact lowest-energy 
state, provided the trial wave function it is not orthogonal to the ground state.
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Diffusion Monte Carlo
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• The integral transform of the response function are generally defined as

• Using the completeness of the final states, they can be expressed in terms of ground-state 
expectation values
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At finite imaginary time the contributions 
from large energy transfer are quickly 
suppressed

Euclidean response function 
The the Kernel of the Euclidean response 
defines the Laplace transform

The system is first heated up by the transition operator. How it cools down determines the 
Euclidean response of the system
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Inverting the Euclidean response is an ill posed problem: any set of observations is limited and 
noisy and the situation is even worse since the kernel is a smoothing operator.

E↵�(⌧,q) R↵�(!,q)

Nature,  272, 688 (1978)

Euclidean response function 



4He electromagnetic response 
R
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q=300 MeV

Two-body currents do not provide significant changes in the longitudinal response.

The agreement with experimental data appears to be remarkably good.  



4He electromagnetic response 
R

C
p

,E

Ê

O b

O b b

q=700 MeV

Two-body currents do not provide significant changes in the longitudinal response.

The agreement with experimental data appears to be remarkably good.  



4He electromagnetic response 
R

x
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q=300 MeV

Two-body currents significantly enhance the transverse response function, not only in the dip 
region, but also in the quasielastic peak and threshold regions. They are needed for a better 
agreement with the experimental data.



4He electromagnetic response 
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12C electromagnetic response 

• Very good agreement with the experimental data. Small contribution from two-body currents.

• We were recently able to invert the electromagnetic Euclidean response of 12C: 
first ab-initio calculation of the electromagnetic response of 12C!

q=300 MeV



12C electromagnetic response 

• Very good agreement with the experimental data. Small contribution from two-body currents.
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q=380 MeV



q=570 MeV

12C electromagnetic response 

• Very good agreement with the experimental data. Small contribution from two-body currents.

• We were recently able to invert the electromagnetic Euclidean response of 12C: 
first ab-initio calculation of the electromagnetic response of 12C!



12C electromagnetic response 

• Very good agreement with the experimental data. Small contribution from two-body currents.
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12C electromagnetic response 

• Very good agreement with the experimental data. Small contribution from two-body currents.

• We were recently able to invert the electromagnetic Euclidean response of 12C: 
first ab-initio calculation of the electromagnetic response of 12C!

q=380 MeV



• We were recently able to invert the electromagnetic Euclidean response of 12C: 
first ab-initio calculation of the electromagnetic response of 12C!

q=570 MeV

12C electromagnetic response 

• Very good agreement with the experimental data once two-body currents are accounted for!



• Inelastic neutrino– 4He reactions are supposed to play an important role in supernovae explosion

• Gazit and Barnea found very little effect from meson-exchange currents PRL 98, 192501 (2007)

• Preliminary results of GFMC calculations seem to indicate enhancement at high-energy transfer

Neutral current response at low q

q=20 MeV 
!

q=20 MeV 



At large momentum transfer, scattering off a nuclear target reduces to the incoherent sum of 
scattering processes involving individual bound nucleons


Σ
i

2 2
q,ω q,ω

i

The spectral function yields the probability of removing a nucleon with momentum    from the 
target ground state leaving the residual system with excitation energy     .

Spectral function approach 

Jµ !
X

i

jµi

d�IA

d⌦e0dEe0
=

Z
d3p dE P (p, E)


Z

d�ep

d⌦e0dEe0
+ (A� Z)

d�en

d⌦e0dEe0

�

p
E

| f i ! |pi ⌦ | f̃ iA�1



e� - 12C inclusive cross section

The contribution given by the interference term and MEC currents turns
out to be sizable in the dip region.

Noemi Rocco (INFN) MEC in electron-nucleus interactions February 16, 2016 45 / 59

Using relativistic MEC and realistic description of the nuclear ground state requires the extension of the 
factorization scheme to two-nucleon emission amplitude

12C calculations indicate a sizable enhancement of the electromagnetic  transverse response

| f i ! |pp0i ⌦ | f̃ iA�2

Spectral function approach 



At lower momentum transfer the factorization ansatz is no longer reliable. However, if final state 
interactions are properly accounted for

Spectral function approach 
5
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FIG. 2. (color online). Double differential electron-carbon cross sections, dσ/dωdΩ. The results obtained with Pauli blocking
accounted for in the local-density (solid lines) and step-function (short-dashed lines) approximations are compared to the
experimental data reported by (a)–(g) Barreau et al. [15], (h) Baran et al. [16], and (i) Whitney et al. [17]. The IA (long-
dashed lines) and RFG calculations (dotted lines) are also shown, for reference. The panels are labeled according to beam
energy, scattering angle, and values of |q| and Q2 at the quasielastic peak.

interference between the mechanisms leading to the ex-
citation of 2p2h final states are large, and must be taken
into account in a consistent fashion [59]. Therefore, the
accurate description of the high-ω tail of the QE peak is
beyond the scope of the present work.

It is noteworthy that at low scattering angles, QE scat-
tering may be the dominant reaction mechanism even for
high beam energy. In such cases, our calculations are in
good agreement with the data, as shown in Fig. 2(h).

To account for Pauli blocking, we apply two clearly
different approximations, corresponding to Eqs. (9) and
(10). It turns out, however, that in most cases discussed

here, they yield rather similar results in the region of
the QE peak. Where other reaction mechanisms do not
contribute and a distinction can be made, the data show
only a slight preference for the LDA prescription, see
Figs. 2(c)–2(e).

At low energy transfers, Pauli blocking plays an im-
portant role. Should it be neglected, the agreement with
experimental cross sections would be spoiled, as shown
in Fig. 3. The influence of Pauli blocking decreases when
the momentum transfer becomes comparable with a typ-
ical nucleon momentum, of the order of pF , and vanishes
at |q| exceeding 2pF . This behavior is well understood

Ee = 240.4MeV , ✓ = 60.0 deg

FG

IA

IA+FSI

• Satisfactory description of the 
quasi elastic region

• Missing elastic scattering and inelastic 
excitation of discrete nuclear states
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FIG. 19 GFMC propagated energy versus imaginary time for
the first two 0+ states of 12C.

It is a particularly di�cult state for shell model calcu-
lations as it is predominantly a four-particle four-hole
state. However the flexible nature of the variational trial
functions allows us to directly describe this aspect of the
state.

To do this (Pieper and Carlson, 2015) two di↵erent
types of single-particle wave functions have been used in
the |�N i of Eq. (30): 1) the five conventional 0+ LS-
coupled shell model states and 2) states that have an
explicit three-alpha structure. The first alpha is in the
0s shell, the second in the 0p shell and the third in either
the 0p or 1s0d shells. The latter can have four nucleons in
1s or four in 0d or two in 1s and two in 0d. In addition we
allow the third alpha to have two nucleons in 0p and two
in 1s0d (a two-particle two-hole excitation). This gives
us a total of 11 components in |�N i; a diagonalization
gives the  T for the ground and excited 0+ states.

The resulting ground state has less than 1% of its  T

in the 1s0d shell while the second state has almost 70% in
the 1s0d shell. The GFMC propagation is then done for
the first two states; the resulting energies are shown as a
function of imaginary time ⌧ in Fig. 19 which has results
for two di↵erent initial sets of  T . The GFMC rapidly
improves the variational energy and then produces stable
(except for Monte Carlo fluctuations) results to large ⌧ .
The resulting ground state energy is very good, �93.3(4)
MeV versus the experimental value of �92.16 MeV. How-
ever the Hoyle state excitation energy is somewhat too
high, 10.4(5) versus 7.65 MeV.

Figure 20 shows the resulting VMC and GFMC den-
sities for one of the sets of  T . The GFMC propagation
builds a dip at r = 0 into the ground-state density which
results in good agreement with the experimental value.
However the Hoyle-state density is peaked at r = 0 in
both the VMC and GFMC calculations. A possible in-
terpretation of these results is that the ground state is
dominated by an approximately equilateral distribution
of alphas while the Hoyle state has an approximately lin-
ear distribution.

0 1 2 3 40.00

0.02

0.04

0.06

0.08

0.10

r (fm)

ρ p
  (

fm
-3

)

g.s., ΨV
g.s., GFMC
2nd 0+, ΨV
2nd 0+, GFMC
Experiment

12C(0+)
GFMC with AV18+IL7

FIG. 20 VMC and GFMC point-proton densities for the first
two 0+ states of 12C. The experimental band was unfolded
from electron scattering data in Ref. (De Vries et al., 1987)
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FIG. 21 VMC and GFMC E0 transition form factor between
the first two 0+ states of 12C in the impulse approximation.
The data is from Chernykh et al. (2010)

The calculated impulse E0 transition form factor is
compared to the experimental data in Fig. 21. The insert
is scaled such that (linear) extrapolation to k2 = 0 gives
the B(E0). The GFMC more than doubles the VMC
result and gives excellent agreement with the data.

E. Magnetic moments and electroweak transitions

In the impulse approximation (IA), magnetic moments
are calculated as

µIA =
X

i

(eN,iLi + µN,i�i) , (124)

where eN,i = (1 + ⌧i,z)/2, µN = eN + N , N =
(S+V ⌧i,z)/2, and S = �0.120 and V = 3.706 are the
isoscalar and isovector combinations of the anomalous
magnetic moment of the proton and neutron. The mag-
netic moment corrections associated with the two-body

! [MeV]PRD 91, 033005 (2015)
RMP 87, 1067 (2015)



The effective interaction approach has shown to satisfactorily account for short- and long-range 
correlations (Omar’s talk) in both symmetric nuclear matter and pure neutron matter

CBF - Effective interaction approach 

7
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Figure 5. (Color online) Spin-transverse (dashed line) and spin-longitudinal (dot-dash line) responses of pure neutron matter,
computed within the CTD and CHF approximations at ⇢ = ⇢0 = 0.16 fm�3 for momentum transfer q = 0.1 fm�1. The solid
line has been obtained from Landau theory, according to the approach of Refs. [9, 11] .
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Figure 6. (Color online) Energy dependence of the ratio be-
tween the neutrino mean free path in pure neutron matter ob-
tained within the approximation schemes discussed in Section
IIIA and that corresponding to the noninteracting Fermi gas.
Solid line: full CTD approximation; dashed line: CTD ap-
proximation without tensor interactions; dot-dash line: CHF
approximation. All calculations have been carried out at den-
sity ⇢ = ⇢0.

A detailed description of the evaluation of observables
within AFDMC can be found in, e.g., Refs. [21, 22]. Be-
cause in the case of operators that do not commute with
the Hamiltonian the result depends on the trial wave
function, we have computed the spin-density sum rule ex-
ploiting the Helmann-Feynmann theorem and using the
modified Hamiltonian

Ĥ 0
↵

= Ĥ + 2↵
X

j>i

cos(q · r
ij

)�
i

· �
j

. (34)

For each value of q the simulation has been performed

S
fl

| | ≠

Figure 7. (Color online) Density sum rule of pure neutron
matter at ⇢ = ⇢0, as a function of the magnitude of the mo-
mentum transfer. The crosses show the results of the direct
integration of the CTD response, whereas the dashed line and
the dots have been obtained computing the ground state ex-
pectation value of Eq. (32) within the variational FHNC and
AFDMC approaches, respectively. For comparison, the den-
sity sum rule of the noninteracting Fermi gas is also shown
by the dashed line.

several times using small values of ↵, and the sum rule
has been obtained from

S�(q)� 1 = lim
↵!0

@E
↵

@↵
, (35)

where E
↵

= hĤ 0
↵

i.
The CTD sum rule of the density response exhibits the

correct behaviour in the |q| ! 0 limit, while, owing to the
approximations involved in the variational approach, the

q=20 MeV

PRC 89, 025804 (2012)

h f |J↵(q)| 0i ! h�f |F† J↵(q)F|�0i



However, only correlated one-particle one-hole final state have been considered

CBF - Effective interaction approach 

En
er
gy

✏FEn
er
gy

✏F|�f i =
X

p,h

Cf
p,h|�p,hi

He↵|�f i = (E0 + !f )|�f i

The missing strength due to many-
particle many-hole states can be 
estimated using AFDMC
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Figure 6. Energy dependence of the ratio between the neu-
trino mean free path in pure neutron matter obtained within
the approximation schemes discussed in Section IIIA and that
corresponding to the non interacting Fermi gas. Solid line:
full CTD approximation; dashed line: CTD approximation
without tensor interactions; dot-dash line: CHF approxima-
tion. All calculations have been carried out at density ρ = ρ0.

form

Sρ(q) =

∫

dω Sρ(q,ω) (30)

= 1 + ρ

∫

dr12e
iq·r12 [gc(r12)− 1]

Sσ(q) =
1

3

∫

dω Sσ(q,ω) (31)

= 1 +
1

3
ρ

∫

dr12e
iq·r12gσ(r12) ,

where the central and spin distribution functions are de-
fined as [17]

gc(r) =
1

A

1

2πr2ρ

∑

j<i

⟨ δ(rij − r) ⟩ , (32)

gσ(r) =
1

A

1

2πr2ρ

∑

j<i

⟨ δ(rij − r)(σi · σj) ⟩ , (33)

and ⟨ . . . ⟩ denotes the expectation value in the neu-
tron matter ground state. As the distribution functions
(32) and (33) can be accurately evaluated within micro-
scopic many body approaches using the same Hamilto-
nian employed in the CTD calculation, comparison be-
tween the integrated CTD responses, given by the first
line of Eqs. (30) and (31), and the sum rules obtained
from the second line provides a quantitative estimate of
the role of np-nh final states.
In Figs. 7 and 8 the sum rules extracted from the CTD

responses (crosses) are compared to those computed us-
ing the FHNC distribution functions (solid lines). We
also show the results of the AFDMC approach (dots with
error bars), in which Sρ(q) and Sσ(q) are obtained from
a direct calculation of the ground state expectation value
of the operators (5) and (6).

S
ρ

| | −

Figure 7. Density sum rule of pure neutron matter at ρ = ρ0,
as a function of the magnitude of the momentum transfer.
The crosses show the results of the direct integration of the
CTD response, whereas the dashed line and the dots have
been obtained computing the ground state expectation value
of Eq. (32) within the variational FHNC and AFDMC ap-
proaches, respectively. For comparison, the density sum rule
of the non interacting Fermi gas is also shown by the solid
line.

S
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Figure 8. Same as in Fig. 7, but for the spin-density sum
rule. The dashed line and the dots signs have been obtained
computing the ground state expectation value of Eq. (33).

A detailed description of the evaluation of observables
within AFDMC can be found in, e.g., Refs. [18, 19]. Be-
cause in the case of operators that do not commute with
the Hamiltonian the result depends on the trial wave
function, we have computed the spin-density sum rule ex-
ploiting the Helmann-Feynmann theorem and using the
modified Hamiltonian

Ĥ ′
α = Ĥ + 2α

∑

j>i

cos(q · rij)σi · σj . (34)

For each value of q the simulation has been performed
several times using small values of α, and the sum rule
has been obtained from

Sσ(q)− 1 = lim
α→0

∂Eα

∂α
, (35)

Contribution from (mainly) 
2particle-2hole states important at 
low momentum transfer



AFDMC 
9

The simple phenomenological fit (dashed line - Eq. (6.2) and the fit to the quasi-particle form (solid line - Eqs.
(5.5) and (6.1)) produce very similar response functions. In addition to the sum-rule constraints, we are forcing the
response to go to zero at low frequency, have a single peak structure, and to fall o↵ fairly rapidly at high-energy as
obtained from the two-neutron response. Combined, these considerations place fairly tight constraints on the spin
response of neutron matter.
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Figure 3: (Color online) The spin response function S�(q = 0,!) of neutron matter at ⇢ = 0.12, 0.16, and 0.20 fm�3 from fits
to AFDMC sum-rules results at zero temperature .

In Figure 3 we compare the response functions obtained over a range of densities ⇢ = 0.12, 0.16 and 0.20 fm�3. As
expected from the sum-rules, the peak of the response functions shifts to larger energy with increasing density. The
tensor and spin-orbit correlations are naturally of shorter range at the higher densities where the mean inter-particle
spacing is shorter, and hence the peak shifts to higher energy. The total strength in the response is fairly flat over
the regime of densities we consider as obtained in the sum-rule calculations for S

0

.
Finally, at higher density the distribution is somewhat broader as !

1

increases more rapidly with density than
!
0

. Both !
0

and !
1

increase rapidly, presumably associated with the increasing importance of the shorter-range
components of the nuclear force at and above saturation density. While we expect this trend to be qualitatively
correct contributions due to three-body forces and from two-body currents are able to play a role in modifying this
behavior.

VII. EXTENSION TO FINITE TEMPERATURE AND IMPACT ON NEUTRINO PRODUCTION

The AFDMC method we employ is restricted to zero temperature and we have not explicitly computed the tem-
perature corrections to the sum-rules. Hence there will be several caveats to consider when using our results in finite
temperature applications such as supernova where S

�

(!) plays a role in neutrino production rates. To discus these
we first note that there are three fundamental energy scales inherent to our present analysis of the structure function
and the neutrino emissivity. They are: (i) typical energy at which the structure function has significant strength and
is given by !̄

0

and !̄
1

; (ii) the energy scale at which the structure function is sampled in the neutrino emissivity and

q=0 MeV

PRC 87, 025802 (2012)

AFDMC will be exploited to compute the Euclidean response functions of density and spin-
transition operators in neutron matter, relevant for neutrino propagation

From the energy weighted sum rules computed with AFDMC it was possible to gather information 
on the spin-density response of neutron matter at zero momentum transfer



Conclusions

• 4He and 12C results for the electromagnetic response obtained using Maximum Entropy 
technique are in very good agreement with experimental data. 

• For relatively large momentum transfer, the two-body currents enhancement is effective in the 
entire energy transfer domain.

• Fruitful interplay between GFMC, SF, CBF effective interaction and AFDMC approaches. This is 
possible as they are all based on the same model of nuclear dynamics.

• We are tackling the computation of the neutrino-Argon cross section using different approaches 
and benchmarking them were possible. However,

It is a very difficult problem, especially for the 
low-energy transitions to nuclear excited states

• For low momentum transfer, two-body currents enhancement is more pronounced in the high 
energy transfer region.



 The results we obtained are very nice, but are not yet completely satisfactory 

Future developments

Within this framework, the theoretical error arising from modeling 
the nuclear dynamics cannot be properly assessed!

• The continuity equation only constraints the longitudinal components of the current

• The transverse component and the axial terms are phenomenological (the coupling 
constant is fitted on the tritium beta-decay)

Chiral effective field theory (   EFT) has witnessed much progress during the two decades since the 
pioneering papers by Weinberg  (1990, 1991, 1992)

In    EFT, the symmetries of quantum chromodynamics (QCD), in particular its approximate chiral 
symmetry, are employed to systematically constrain classes of Lagrangians describing the interactions 
of baryons with pions as well as the interactions of these hadrons with electroweak fields

�

�

• Two- and three- body forces not fully consistent



Chiral EFT 
Recently chiral nuclear interactions have been developed that are local up to next-to-next-to-leading 
order (N2LO). These interactions employ a different regularization scheme from previous chiral 
interactions, with a cutoff in the relative NN momentum.

They are therefore fairly simple to treat with standard QMC techniques to calculate properties of nuclei

and neutron matter,
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FIG. 2. (color online). Ground-state energies and point pro-
ton radii for A = 3, 4 nuclei calculated at NLO and N2LO
(with VD2 and VE⌧ ) compared with experiment. Blue (red)
symbols correspond to R0 = 1.0 fm (R0 = 1.2 fm). The er-
rors are obtained as described in the text and also include the
GFMC statistical uncertainties.

We show the energies for R0 = 1.0 fm for the NN and
full 3N interactions. We use VD2 and the three di↵erent
VE structures: VE⌧ (blue band), VE (red band), and
VEP (green band). The error bands are determined as in
the light nuclei case. The VEP interaction fits A = 4, 5
with a vanishing cD, hence this choice of VE leads to
an equation of state identical to the equation of state
with NN + VC as in Ref. [22] (the projector P is zero
for pure neutron systems) and qualitatively similar to
previous results using chiral interactions at N2LO [32]
and N3LO [33].

As discussed, the contributions of VD and VE are only
regulator e↵ects for neutrons. However, they are sizable
and result in a larger error band. At saturation den-
sity n0 ⇠ 0.16 fm�3 the di↵erence of the central value of
the energy per neutron after inclusion of the 3N contacts
VE or VE⌧ is ⇠2 MeV, leading to a total error band
with a range of ⇠6.5 MeV when considering di↵erent VE

structures. This relatively large uncertainty can be quali-
tatively explained when considering the following e↵ects.
Because the expectation value h

P
i<j ⌧ i · ⌧ ji has a sign

opposite to that of the expectation value h i in 4He, cE
will also have opposite signs in the two cases to fit the
binding energy. However, in neutron matter both oper-
ators are the same, spreading the uncertainty band. A
similar argument was made in Ref. [34].
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FIG. 3. (color online). The energy per particle in neutron
matter as a function of density for the NN and full 3N inter-
actions at N2LO with R0 = 1.0 fm. We use VD2 and di↵erent
3N contact structures: the blue band corresponds to VE⌧ , the
red band to VE and the green band to VEP . The green band
coincides with the NN+2⇡-exchange-only result because both
VD and VE vanish in this case. The bands are calculated as
described in the text.

With the regulators used here, the Fierz-
rearrangement invariance valid at infinite cuto↵ is
only approximate at finite cuto↵, and hence the di↵erent
choices of VD and VE can lead to di↵erent results.
The di↵erent local structures can lead to finite relative
P -wave contributions. These can be eliminated by
choosing VEP , which has a projection onto even-parity
waves (predominantly S waves). The usual nonlocal
regulator in momentum-space does not couple S and P
waves.

In conclusion, we find for the first time that chiral in-
teractions can simultaneously fit light nuclei and low-
energy P -wave n-↵ scattering and provide reasonable es-
timates for the neutron matter equation of state. Other
commonly used phenomenological 3N models do not pro-
vide this capability. These chiral forces should be tested
in light p-shell nuclei, medium-mass nuclei, and isospin-
symmetric nuclear matter to gauge their ability to de-
scribe global properties of nuclear systems.

We also find that the ambiguities associated with
contact-operator choices can be significant when mov-
ing from light nuclei to neutron matter and possibly to
medium-mass nuclei where the T = 3

2 triples play a
more significant role. The reason for the sizable impact
may be the regulators used here, which break the Fierz-

Neutron matter 
equation of state

Binding 

energies 

and radii

 Lynn, Tews et al. arXiv:1509.03470
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)LJXUH ��� 'LDJUDPV WKDW JLYH ULVH WR QXFOHDU IRUFHV LQ &K()7 EDVHG RQ :HLQEHUJ¶V SRZHU FRXQWLQJ�
6ROLG DQG GDVKHG OLQHV GHQRWH QXFOHRQV DQG SLRQV� UHVSHFWLYHO\� 6ROLG GRWHV� ILOOHG FLUFOHV DQG ILOOHG
VTXDUHV DQG FURVVHG VTXDUHV UHIHU WR YHUWLFHV ZLWK ∆i = 0, 1, 2 DQG 4� UHVSHFWLYHO\�

7KH TXDQWLW\ κi ZKLFK HQWHUV WKLV H[SUHVVLRQ LV QRWKLQJ EXW WKH FDQRQLFDO ILHOG GLPHQVLRQ RI D YHUWH[ RI
W\SH i �XS WR WKH DGGLWLRQDO FRQVWDQW −4� DQG JLYHV WKH LQYHUVH PDVV GLPHQVLRQ RI WKH FRUUHVSRQGLQJ
FRXSOLQJ FRQVWDQW� ,Q IDFW� WKLV UHVXOW FDQ EH REWDLQHG LPPHGLDWHO\ E\ FRXQWLQJ LQYHUVH SRZHUV RI WKH
KDUG VFDOH Λχ UDWKHU WKDQ SRZHUV RI WKH VRIW VFDOH Q �ZKLFK LV� RI FRXUVH� FRPSOHWHO\ HTXLYDOHQW��
,QGHHG� VLQFH WKH RQO\ ZD\ IRU WKH KDUG VFDOH WR EH JHQHUDWHG LV WKURXJK WKH SK\VLFV EHKLQG WKH /(&V�
WKH SRZHU ν LV MXVW WKH QHJDWLYH RI WKH RYHUDOO PDVV GLPHQVLRQ RI DOO /(&V� 7KH DGGLWLRQDO IDFWRU −2
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2QH LPPHGLDWHO\ UHDGV RII IURP (T� ������� WKDW LQ RUGHU IRU SHUWXUEDWLRQ WKHRU\ WR ZRUN� WKH HIIHFWLYH
/DJUDQJLDQ PXVW FRQWDLQ QR UHQRUPDOL]DEOH DQG VXSHU�UHQRUPDOL]DEOH LQWHUDFWLRQV ZLWK κi = 0 DQG
κi < 0� UHVSHFWLYHO\� VLQFH RWKHUZLVH DGGLQJ QHZ YHUWLFHV ZRXOG QRW LQFUHDVH RU HYHQ ORZHU WKH FKLUDO
GLPHQVLRQ ν� 7KLV IHDWXUH LV JXDUDQWHHG E\ WKH VSRQWDQHRXVO\ EURNHQ FKLUDO V\PPHWU\ RI 4&' ZKLFK
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Chiral EFT 
Within    EFT two- and three- body potentials and currents can be consistently derived and obey a 
power counting scheme
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Chiral EFT 
    EFT provides a framework to derive consistent many-body forces and currents and the tools to 
rigorously estimate their uncertainties, along with a systematic prescription for reducing them.
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FIG. 9: Estimated theoretical uncertainty of the np phase shifts at NLO, N2LO and N3LO based on the cuto↵ of R = 0.9 fm
in comparison with the NPWA [41] (solid dots) and the GWU single-energy np partial wave analysis [89] (open triangles). The
light- (color online: yellow), medium- (color-online: green) and dark- (color-online: blue) shaded bands depict the estimated
theoretical uncertainties at NLO, N2LO and N3LO, as explained in the text. Only those partial waves are shown which have
been used in the fits at N3LO.

R = 1.2 fm. In summary, we find that the suggested approach for error estimation is more reliable than the standard
procedure by means of cuto↵ bands and, in addition, has the advantage of being applicable for a fixed value of R.
This allows one to avoid the artificial increase of the theoretical uncertainty due to cuto↵ artefacts, the issue which
is especially relevant at high energies where the chiral expansion converges slower. The issue with using the cuto↵
bands is expected to become particularly important at next-to-next-to-next-to-next-to-leading order (N4LO) in the
chiral expansion. In particular, we expect that the residual cuto↵ dependence at N4LO will be comparable to that
at N3LO, and that it will significantly overestimate the real N4LO uncertainty at higher energies in a close analogy
to what is observed at N2LO. Last but not least, the ability to carry out independent calculations with quantified
uncertainties also provides a useful consistency check.

Next, we show in Fig. 9 the estimated uncertainty of the S-, P- and D-wave phase shifts and the mixing angles ✏1 and
✏2 at NLO, N2LO and N3LO based on R = 0.9 fm. The various bands result by adding/subtracting the estimated
theoretical uncertainty, ±��(Elab) and ±�✏(Elab), to/from the results shown in Fig. 3. In a similar way, we also
looked at selected neutron-proton scattering observables at di↵erent energies shown in Figs. 10-13. For the lowest
considered energy of Elab = 50MeV, we show, in addition to the results using R = 0.9 fm, also our predictions for the
softest cuto↵ choice of R = 1.2 fm. While the uncertainty is clearly increased, the results actually still appear to be
rather accurate at this energy. Our results agree with the ones of the NPWA for all considered observables and energies
indicating that the employed way to estimate the uncertainties is quite reliable. Generally, we find that chiral EFT
at N3LO allows for very accurate results at energies below Elab ⇠ 100MeV and still provides accurate description of
the data at energies of the order of Elab ⇠ 200MeV. These findings are particularly promising for the ongoing studies
of the three-nucleon force whose contributions to nucleon-deuteron scattering observables are believed to increase at
energies above EN, lab ⇠ 100MeV. It would be interesting to perform a similar analysis of nucleon-deuteron scattering
data based on the improved chiral NN potentials in order to see whether accurate predictions are to be expected at
such energies at N3LO. Work along these lines is in progress.

Finally, we emphasize that our results depend little on the specific choice of the regulator function. In order to

QMC allows to disentangle the theoretical uncertainty arising from the nuclear interaction from 
the one associated with the many-body computational scheme.
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Maximum entropy algorithm 
We estimate the mean and the covariance matrix from NE Euclidean responses

Ē(⌧i) =
1

N

X

n

En(⌧i) C(⌧i, ⌧j) =
1

N(N � 1)

X

n

(Ēn(⌧i)� En(⌧i))(Ē
n(⌧j)� En(⌧j))

• The covariance matrix in general is NOT diagonal, and it is convenient to 
diagonalize it

1.4.2 Likelihood and covariance

The �2 definition of Eq. (4) is valid only in the case of uncorrelated data. In the more general
case, the �2 reads

�2 =
N⌧X

ij

(Ēi � Ei)[C
�1]ij(Ēj � Ej) (23)

with Ēi and Ei being defined in Eqs. (3) and (2). The covariance matrix can be estimated by the
set of NE Euclidean responses by

Cij =
1

NE(NE � 1)

NEX

n=1

(Ēi � En
i )(Ēj � En

j ) . (24)

In general, the covariance is not diagonal because the values of the Euclidean response at di↵erent
⌧i are correlated. In this case, the use of the chi2 of Eq. (5), where �i are obtained from the square
root go the diagonal elements of the covariance, is inappropriate.
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Figure 9: Spectrum of the covariance matrix eigenvalues obtained from NE = 50 Euclidean re-
sponses at |q| = 500 MeV

Following the procedure described in Ref. [3], we first find the transformation U that diago-
nalizes the covariance matrix

(U�1
CU)ij = �0 2

i �ij (25)

then we rotate both the data and the kernel in this diagonal representation

K

0 = U

�1
K Ē

0 = U

�1
Ē . (26)
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2

MAXIMUM ENTROPY APPROACH FOR THE INVERSION OF THE EUCLIDEAN RESPONSE

Correlated errors

We generated a set of N
E

' 2500 GFMC estimates of the Euclidean response functions, obtained from independent
imaginary-time propagations, on a grid of ⌧ points uniformly distributed between 0 to 0.05 MeV�1 with �⌧ = 0.0005
MeV�1. The estimates were each started from statistically uncorrelated sets of 20, 000 VMC configurations. Let

E
(n)
i

= E(n)(⌧
i

) be the Euclidean response function corresponding to the nth GFMC propagation. The average
Euclidean response function and covariance matrix elements are given by
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In general, the covariance matrix is non-diagonal because The GFMC errors on E
i

are strongly correlated in ⌧ , as
individual steps involve only small spatial distances and evolutions of the spin-isospin amplitudes.

≠

≠

≠

≠

≠

≠

≠

‡
Õ i

≠

Ê

NE

NE
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Following the procedure described in Ref. [1], we first find the transformation U that diagonalizes the covariance
matrix

(U�1CU)
ij

= �0 2
i

�
ij

(3)

then we rotate both the data and the kernel K
ij

= exp(�⌧
i

!
j

) in this diagonal representation

K0 = U�1K Ē0 = U�1Ē . (4)

The likelihood, which in general is given by

�2 =
N⌧X

i,j=1

�
E

i

� E
i

� �
C�1

�
ij

�
E

j

� E
j

�
, , (5)

where

E
i

=
N!X

j=1

K
ij

R
j

, (6)

• If N is not sufficiently large, 
the spectrum of the 
covariance eigenvalues 
becomes pathological.
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• We rotate both the data and the kernel in the diagonal representation of the 
covariance matrix
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• The likelihood can be written in terms of the statistically independent 
measurements and the rotated kernel

3

can written in terms of the statistically independent measurement Ē0 and the rotated kernel,

�2 =
1

N
⌧

X

i

(
P

j

K 0
ij

R
j

� Ē0
i

)2

�0 2
i

. (7)

To simplify the notation, from now on we assume that the data and the kernel are rotated, so that the prime is
understood.

It has to be remarked that if N
E

is not large enough, the covariance and its spectrum of eigenvalues are likely to
show a pathological behavior. When diagonalizing the covariance matrix, N

⌧

independent eigenvectors are found,
provided that there are su�cient data to determine them. The empirical rule to get a well behaved spectrum is to
consider at least N

E

= 2N
⌧

independent estimates of the Euclidean response function [1]. As shown in Fig. 1, if such
requirement is not fulfilled, the spectrum of the eigenvalues of the covariance matrix displays a sharp break.

The algorithm

The key point in the inversion of the Laplace transform resides in the minimization of Q[R] = ↵S[R] � �2[R]/2.
We adopted the so called “Bryan algorithm” [2], the first step of which consists in performing the singular value
decomposition (SVD) of the kernel

K = V⌃UT . (8)

In the above equation, U and V are N
⌧

⇥ N
⌧

and N
!

⇥ N
!

orthogonal matrices, while ⌃ is a N
⌧

⇥ N
!

diagonal
matrix. The smallest element on the diagonal are essentially zero for the numerical precision of the computer, since
the kernel is e↵ectively singular. Within Bryan algorithm, only the N

s

diagonal elements of ⌃ which are larger than
the numerical precision of the machine are considered, while the other are disregarded. Hence, only the first N

s

column of U are relevant for representing the kernel. Moreover, because

KT

ij

=
NsX

k=1

U
ik

V T

kj

, (9)

the vector space spanned by the column of KT is the same as the space spanned by the column of U. Since the
gradient of the likelihood lies is defined by the columns of KT ,
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@R
i

=
X

j

@L

@E
j

@E
j

@R
i

=
X

j

KT

ij

@L

@E
j

. (10)

all the search directions for the minimum are spanned, within machine precision, by the first N
s

columns of U. Bryan
called this reduced space the singular space.

In the singular space, the extreme condition for Q[R] reads

@Q

@R
i

= ↵
@S

@R
i

� @L

@R
i

= 0 ! �↵ ln(R
i

/M
i

) =
X

j

KT

ij

@L

@E
j

(11)

and the solution can be represented in terms of the vector u

ln
⇣R

i

M
i

⌘
= KT

ij

u
j

. (12)

Since only the first N
s

elements of ⌃ are di↵erent from zero, not all the components of u are independent. However,
since, as shown above, KT and U belong to the same vector space and since most of the relevant search directions lie
in the singular space, Bryan proposed the solution to be written in the form

R
i

= M
i

exp
⇣ NsX

j=1

U
ij

u
j

⌘
. (13)

Hence, to the machine-precision level, the most general solution of Eq. (11) only depends on the N
s

coordinates of u.
Searching the global maximum of Q[R] in the N

s

-dimensional singular space is computationally much less demanding
than in the full N

!

-dimensional space and can be performed by a straightforward Newton-Marquardt method.



Maximum entropy algorithm 
Maximum entropy approach can be justified on the basis of Bayesian inference. 
The best solution will be the one that maximizes the conditional probability
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Figure 8: Normalized tranverse response function extracted from the GFMC Euclidean response
by artificially increasing �Ē. Saclay data are also shown.

shown above have been obtained by averaging over many of these response functions. However,
there are other criteria to establish which is the best response function we can extract from Monte
Carlo data.

In this Section, I will report on the very promising results that have been obtained implementing
the Maximum Entropy method. In the following I will outline the main features of the method, for
further details, see the excellent Refs. [1, 3]. Within this approach, based on Bayesian statistical
inference, the “most probable” response function is the one that will be selected.

1.4.1 Bayesian inference

The non negativity and the normalizability of R(!), allow us to interpret it as a probability
function and to use the principle of maximum entropy, in conjunction with the Bayesian methods.
To phrase the problem in terms of Bayesian approach, our events are the functions R(!) and Ē(⌧).
The best solution R̃(!) will be the one that maximize Pr[R|Ē], i.e. the conditional probability of
R given Ē. Using Bayes theorem, we get

Pr[R|Ē] =
Pr[Ē|R]Pr[R]

Pr[Ē]
, (7)

where Pr[R|Ē] is called the posterior probability, Pr[Ē|R] the likelihood function, Pr[R] the prior
probability, and Pr[Ē] the evidence. It can be easily shown that the evidence is nothing but a
normalization constant, only depending on the likelihood function and the prior probability

Pr[Ē] =

Z
DRPr[Ē|R]Pr[R] . (8)
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• The evidence is merely a normalization constant
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probability, and Pr[Ē] the evidence. It can be easily shown that the evidence is nothing but a
normalization constant, only depending on the likelihood function and the prior probability

Pr[Ē] =
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DRPr[Ē|R]Pr[R] . (8)

7

Limiting ourselves to the minimization of the    , we implicitly make the assumption 
that the prior probability is important or unknown.

�2

• When the number of measurements becomes large, the asymptotic limit of the 
likelihood function is
When the number of measurements becomes large, by central limit arguments, the asymptotic

limit of the likelihood function is

Pr[Ē|R] =
1

Z1
e�L[R] =

1

Z1
e�

1
2�

2[R] (9)

where the normalization factor is given by

Z1 =

Z
DĒe��2[R]/2 . (10)

Thus, maximizing the likelihood is equivalent to minimizing the �2. However, by limiting our-
selves to the minimization of the �2, we implicitly make the assumption that the prior probability
is important or unknown. On the other hand, we have some information on the asymptotic limit
of R(!) that we would like to include. Also, since the spectral function is a nonnegative and
normalizable function, it can be interpreted as still another probability function. The principle of

maximum entropy states that the values of a probability function are to be assigned by maximizing
the entropy expression

S[R] ⌘ �
Z

d!(R(!)�D(!)�R(!) ln[R(!)/D(!)]) , (11)

where the function D(!) is called the default model. It is worth mentioning that the above
expression is applicable even when R(!) and D(!) have di↵erent normalization. The entropy
measures how much the response function di↵ers from the model. When A(!) 6= D(!), S[R] is
negative and t has maximum value of zero when R(!) = D(!). What the maximum entropy
method add to the simple minimization of the �2 is simply to use the prior information that the
spectral function can be interpreted as a probability function. For further details on this, please
read the nice kangaroo argument of Ref. [2].

In the limit case, of no data, or with the lack of information about the likelihood function, the
posterior probability is proportional to the prior probability

Pr[R|Ē] / Pr[R] . (12)

Hence, maximizing the posterior probability in absence of data is the same as maximizing S[R]
when

Pr[R] =
1

Z2
e↵S[R] . (13)

where the normalization constant Z2 is given by

Z2 =

Z
DRe↵S[R] . (14)
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In terms of the statistically independent measurement Ē 0 and the rotated kernel, the likelihood
can be written as
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, (27)

If there the set of Euclidean responses is not large enough, the covariance and its spectrum
of eigenvalues can become pathological. When diagonalizing, we are asking for N⌧ independent
eigenvectors, so we should have enough data do determine these directions, so that NE > N⌧ .
Since in our case we have NE = 50 and N⌧ = 100, our original spectrum, represented by the red
filled circles of Fig. 9, displays a sharp break.

The empirical rule to get a non pathological spectrum is to have NE > 2N⌧ . Instead of
computing more Euclidean responses, I decided to consider only one ⌧i every three, so thatN⌧ = 33.
The covariance eigenvalues spectrum is in this case regular, as shown by the black point of Fig. 9.
During the weekend, I will compute ten additional Euclidean responses, in order to be able to use
more imaginary time points.

To simplify the notation, from now on we assume that the data and the kernel are rotated, so
that the prime is understood.

1.4.3 The algorithm

The key point in the inversion of the Laplace transform resides in the minimization of Q[R],
defined in Eq. (16) Typical algorithm, like the simulated annealing I reported on in the previous
section, search for an optimal R(!) in the entire space of Ri, In his algorithm, Bryan first perform
a singular value decomposition (SVD) of the kernel (again, all quantities are now rotated, the
prime is understood)

K = V⌃U

T . (28)

In the above equation, U and V are N⌧ ⇥ N⌧ and N! ⇥ N! orthogonal matrices, while ⌃ is
a N⌧ ⇥ N! diagonal matrix. The smallest element on the diagonal are essentially zero for the
numerical precision of the computer, since the kernel is e↵ectively singular. If we order the diagonal
elements of ⌃, from the largest to the smallest, Bryan algorithm only consider the first Ns, that
are larger than the precision of the machine, disregarding the others.

Therefore, only the first Ns column of U are relevant for representing the kernel. Moreover,
because

KT
ij =

NsX

k=1

UikV
T
kj , (29)

the vector space spanned by the column of KT is the same as the space spanned by the column of
U. Since the gradient of the likelihood lies is defined by the columns of KT ,
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@Ri

=
X

j

@L

@Ej

@Ej

@Ri

= KT
ij

@Ej

@Ri

. (30)
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Maximum entropy algorithm 
Since the response function is nonnegative and normalizable, it can be interpreted 
as a probability distribution function.

The principle of maximum entropy states that the values of a probability function 
are to be assigned by maximizing the entropy expression
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DĒe��2[R]/2 . (10)
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of R(!) that we would like to include. Also, since the spectral function is a nonnegative and
normalizable function, it can be interpreted as still another probability function. The principle of
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with

Q[R] ⌘ 1

2
�2[R]� ↵S[R] , (16)

↵ being a regularization parameter. Thus, the maximization of the posterior probability corre-
sponds to the minimization of Q[R]. The results, however, will depend on ↵. In the limit ↵ ! 1,
the spectrum minimizing Q[R] is the default model D(!), while for ↵ ! 0 the least-squares fit is
regained. In what is often denoted as historic maximum entropy, ↵ is adjusted to make �2 = 1.
This choice is the expected value of �2 when the errors are Gaussian noise, but is otherwise ad

hoc. Bayes statistical inference provides the necessary tools to eliminate the free parameter ↵. Eq.
(7) can be rewritten explicitly including ↵

Pr[R,↵|Ē] =
Pr[Ē|R,↵]Pr[R,↵]

Pr[Ē]
, (17)

By applying Bayes’s theorem to factorize the joint probability Pr[R,↵], it turns out that

Pr[R,↵|Ē] =
Pr[↵]Pr[Ē|R,↵]Pr[R|↵]

Pr[Ē]
. (18)

Hence, integrating over ↵, the following relation for the posterior probability Pr[↵, Ē] can be found

Pr[↵, Ē] =
Pr[↵]

Z1Z2Pr[Ē]

Z
DRe�Q[R] . (19)

To derive the previous equation, we have identified Pr[Ē|R,↵] / exp(��[R]2/2) and Pr[R|↵] /
exp(↵S[R]), while the evidence

Pr[Ē] =

Z
d↵Pr[↵]

R
DRe�Q[R]

Z1Z2
(20)

is an ↵-independent normalization constant. The only unknown quantity in these equations is
Pr[↵], the prior probability of ↵. In the literature (and in the code I have), it is either taken to
be constant or to be the Je↵reys prior 1/↵. However, the choice of Pr[↵] has little influence on
the reconstructed spectra.

In the classical maximum entropy approach, one calculates ↵̂ as the ↵ that maximizes Pr[↵, Ē]
and takes the corresponding R̂↵̂ as the final result for the response function. This method relies
on the assumption that Pr[↵|Ē] is sharply peaked, which is not always the case. To overcome this
di�culty, Bryan’s method can be adopted, where ↵ is addressed by marginalization. In Bryan’s
method, for each ↵ we find R̂↵ that satisfies

�Q[R]

�↵

���
R=R̂↵

= 0 . (21)

Then we choose as the final result for the response function the average R̄(!) defined by

R̄(!) ⌘
Z

d↵R̂↵(!)Pr[↵|Ē] , (22)

where Pr[↵|Ē] is given by Eq. (19).
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4He electromagnetic response 

q=700 MeV

The enhancement is driven by process involving one-pion exchange and the 
excitation of the Delta degrees of freedom 



Nuclear correlations 

• Even in neutron-rich nuclei, protons 
have a greater probability than neutrons 
to have momentum larger than the Fermi 
momentum.

Science 346, 614 (2014) 

• Nuclear interaction creates short-range 
correlated pairs of unlike fermions with 
large relative momentum and pushes 
fermions from low momenta to high 
momenta creating a “high-momentum tail.”

nuclei. This backward peak is a strong signature
of SRC pairs, indicating that the two emitted
protons were largely back-to-back in the initial
state, having a large relative momentum and a
small center-of-mass momentum (8, 9). This is a
direct observation of proton-proton (pp) SRC
pairs in a nucleus heavier than 12C.
Electron scattering fromhigh–missing-momentum

protons is dominated by scattering from protons
in SRC pairs (9). The measured single-proton
knockout (e,e′p) cross section (where e denotes
the incoming electron, e′ the measured scattered
electron, and p the measured knocked-out pro-
ton) is sensitive to the number of pp and np SRC
pairs in the nucleus, whereas the two-proton
knockout (e,e′pp) cross section is only sensitive to
the number of pp-SRC pairs. Very few of the
single-proton knockout events also contained a
second proton; therefore, there are very few
pp pairs, and the knocked-out protons predom-
inantly originated from np pairs.
To quantify this, we extracted the [A(e,e′pp)/

A(e,e′p)]/[12C(e,e′pp)/12C(e,e′p)] cross-section dou-
ble ratio for nucleus A relative to 12C. The double
ratio is sensitive to the ratio of np-to-pp SRC
pairs in the two nuclei (16). Previous measure-
ments have shown that in 12C nearly every high-
momentum proton (k > 300 MeV/c > kF) has a
correlated partner nucleon, with np pairs out-
numbering pp pairs by a factor of ~20 (8, 9).
To estimate the effects of final-state interac-

tions (reinteraction of the outgoing nucleons in
the nucleus), we calculated attenuation factors
for the outgoing protons and the probability of
the electron scattering from a neutron in an np
pair, followed by a neutron-proton single-charge
exchange (SCX) reaction leading to two outgoing
protons. These correction factors are calculated
as in (9) using the Glauber approximation (22)
with effective cross sections that reproduce pre-
viously measured proton transparencies (23), and
using themeasured SCX cross section of (24).We
extracted the cross-section ratios and deduced the
relative pair fractions from the measured yields
following (21); see (16) for details.
Figure 3 shows the extracted fractions of np

and pp SRC pairs from the sum of pp and np
pairs in nuclei, including all statistical, systematic,
and model uncertainties. Our measurements are
not sensitive to neutron-neutron SRC pairs. How-
ever, by a simple combinatoric argument, even in
208Pb these would be only (N/Z)2 ~ 2 times the
number of pp pairs. Thus, np-SRC pairs domi-
nate in all measured nuclei, including neutron-
rich imbalanced ones.

The observed dominance of np-over-pp pairs
implies that even in heavy nuclei, SRC pairs are
dominantly in a spin-triplet state (spin 1, isospin
0), a consequence of the tensor part of the nucleon-
nucleon interaction (17, 18). It also implies that
there are as many high-momentum protons as
neutrons (Fig. 1) so that the fraction of protons
above the Fermi momentum is greater than that
of neutrons in neutron-rich nuclei (25).
In light imbalanced nuclei (A≤ 12), variational

Monte Carlo calculations (26) show that this re-
sults in a greater average momentum for the
minority component (see table S1). The minority
component can also have a greater average mo-
mentum in heavy nuclei if the Fermimomenta of
protons and neutrons are not too dissimilar. For
heavy nuclei, an np-dominance toy model that
quantitatively describes the features of the mo-
mentum distribution shown in Fig. 1 shows that
in imbalanced nuclei, the average proton kinetic
energy is greater than that of the neutron, up to
~20% in 208Pb (16).
The observed np-dominance of SRC pairs in

heavy imbalanced nuclei may have wide-ranging
implications. Neutrino scattering from two nu-
cleon currents and SRC pairs is important for the
analysis of neutrino-nucleus reactions, which are
used to study the nature of the electro-weak in-
teraction (27–29). In particle physics, the distribu-
tion of quarks in these high-momentum nucleons
in SRC pairs might be modified from that of free
nucleons (30, 31). Because each proton has a
greater probability to be in a SRC pair than a
neutron and the proton has two u quarks for
each d quark, the u-quark distribution modifica-
tion could be greater than that of the d quarks
(19, 30). This could explain the difference be-
tween the weak mixing angle measured on an
iron target by the NuTeV experiment and that of
the Standard Model of particle physics (32–34).
In astrophysics, the nuclear symmetry energy

is important for various systems, including neu-
tron stars, the neutronization of matter in core-
collapse supernovae, and r-process nucleosynthesis
(35). The decomposition of the symmetry energy
at saturation density (r0 ≈ 0.17 fm−3, the max-
imum density of normal nuclei) into its kinetic
and potential parts and its value at supranuclear
densities (r > r0) are notwell constrained, largely
because of the uncertainties in the tensor com-
ponent of the nucleon-nucleon interaction (36–39).
Although at supranuclear densities other effects
are relevant, the inclusion of high-momentum
tails, dominated by tensor-force–induced np-SRC
pairs, can notably soften the nuclear symmetry

energy (36–39). Our measurements of np-SRC
pair dominance in heavy imbalanced nuclei can
help constrain the nuclear aspects of these cal-
culations at saturation density.
Based on our results in the nuclear system, we

suggest extending the previous measurements of
Tan’s contact in balanced ultracold atomic gases
to imbalanced systems in which the number of
atoms in the two spin states is different. The
large experimental flexibility of these systems will
allow observing dependence of the momentum-
sharing inversion on the asymmetry, density,
and strength of the short-range interaction.
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Fig. 3. The extracted
fractions of np (top)
and pp (bottom) SRC
pairs from the sum of
pp and np pairs in
nuclei.The green and
yellow bands reflect
68 and 95% confidence
levels (CLs), respec-
tively (9). np-SRC pairs dominate over pp-SRC pairs in all measured nuclei.
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• Like in a dance party with a majority of 
girls, where boy-girl interactions will make 
the average boy dance more than the 
average girl

tail with equal numbers of majority and minority
fermions, thereby leaving a larger fraction of majo-
rity fermions in low-momentumstates (k< kF) (see
Fig. 1). In neutron-rich nuclei, this increases the
average protonmomentumandmay even result in
protons having higher average momentum than
neutrons, inverting the momentum sharing in im-
balanced nuclei from that in noninteracting sys-
tems. Theoretically, this can happen because of
the tensor part of the nucleon-nucleon interac-
tion, which creates predominantly spin-1, isospin-
0 neutron-proton (np) SRC pairs (17, 18).

Here we identify SRC pairs in the high-
momentum tail of nuclei heavier than carbonwith
more neutrons (N) than protons (Z) (i.e., N > Z).
The data show the universal nature of SRC pairs,
which even in lead (N/Z = 126/82) are still pre-
dominantly np pairs. This np-pair dominance
causes a greater fraction of protons than neutrons
to have high momentum in neutron-rich nuclei.
The data presented here were collected in 2004

in Hall B of the Thomas Jefferson National Ac-
celerator Facility using a 5.014-GeV electron beam
incident on 12C, 27Al, 56Fe, and 208Pb targets. We

measured electron-induced two-proton knockout
reactions (Fig. 2). The CEBAF Large Acceptance
Spectrometer (CLAS) (20) was used to detect the
scattered electron and emitted protons. CLAS uses
a toroidal magnetic field and six independent
sets of drift chambers, time-of-flight scintillation
counters, Cerenkov counters, and electromag-
netic calorimeters for charged-particle identifi-
cation and trajectory reconstruction (Fig. 2) (16).
We selected events in which the electron in-

teracts with a single fast proton from an SRC pair
in the nucleus (9, 16) by requiring a large four-
momentumtransferQ2 ¼ q→2−ðw=cÞ2 > 1:5 GeV2/c2

[where q→ and w are the three-momentum and
energy, respectively, transferred to the nucleus
and c is the speed of light] and Bjorken scaling
parameter xB ¼ Q2=ð2mN ⋅ wÞ > 1:2 (wheremN

is the nucleonmass). To ensure selection of events
in which the knocked-out proton belonged to
an SRC pair, we further required missing mo-
mentum 300 < jp→missj < 600 MeV/c, where
p→miss ¼ p→p − q→ with p→p the measured proton
momentum. We suppressed contributions from
inelastic excitations of the struck nucleon by lim-
iting the reconstructed missing mass of the two-
nucleon systemmmiss < 1.1 GeV/c2. In each event,
the leading proton that absorbed the transferred
momentum was identified by requiring that its
momentum p→p is within 25° of q→ and that
jp→pj=jq

→j ≥ 0:6 (16, 21).
When a second proton was detected with mo-

mentum greater than 350 MeV/c, it was emitted
almost diametrically opposite to p→miss (see fig. S19).
The observed backward-peaked angular distribu-
tions are very similar for all four measured
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Fig. 2. Illustration of the CLAS detector with
a reconstructed two-proton knockout event.
For clarity, not all CLAS detectors and sectors
are shown.The inset shows the reaction in which
an incident electron scatters fromaproton-proton
pair via the exchange of a virtual photon. The
human figure is shown for scale.

Fig. 1. Schematic
representation
of the momentum
distribution, n(k), of
two-component
imbalanced Fermi
systems. Red and blue
dashed lines show the
noninteracting system,
whereas the solid
lines show the effect of
including a short-range
interaction between
different fermions.
Such interactions create
a high-momentum tail
(k > kF, where kF is the
Fermi momentum of
the system). This is
analogous to a dance
party with a majority of girls, where boy-girl interactions will make the average boy dance more than the
average girl.
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