



y Tecnológicas

EXCELENCIA MARÍA DE MAEZTU

#### DUNE detector design and lowenergy reconstruction capabilities

#### Inés Gil Botella



Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas



Supernova Physics at DUNE Workshop, March 11-12, 2016

#### Outline

- The DUNE detector design
  - Single-phase option
  - Dual-phase option
- Current DUNE prototypes
  - 35-ton detector
  - protoDUNE SP
  - protoDUNE DP
- Other LAr TPC detectors
- Low-energy reconstruction capabilities
  - Scientific motivation: SN neutrino burst events, solar neutrino events, low-energy backgrounds
  - Low-energy neutrino interactions
  - Experimental challenges and detector requirements



#### **DUNE** Design

# The DUNE Project



- Deep Underground Neutrino Experiment: **40 kton LAr TPC** far detector **at 1480 m depth** (4300 mwe) at SURF measuring neutrino spectra at 1300 km in a wide-band high purity  $v_{\mu}$  beam with peak flux at 2.5 GeV operating at ~1.2 MW and upgradeable to 2.4 MW
- 4 x 10 kton (fiducial) modules (**single and/or dual-phase**) with ability to detect SN burst neutrinos (+ nucleon decay, LBL oscillations, atmospheric vs)



# Staged approach to 40 kton

- Four caverns hosting four independent 10 kton (fiducial mass) FD modules
  - Assumed four identical cryostats 15.1 (W) x 14.0 (H) x 62 (L) m
  - Phase-in approach
  - Allows alternate designs (single vs dual-phase LAr TPCs)
- Installation of #1 module starts in 2022
- Complete TDR should be ready for 2019



#### **DUNE Far Detector at SURF**

LBNF and DUNE CDR Volume 4: The DUNE Detectors at LBNF (arXiv:1601.02984)



#### **LBNF-DUNE Construction Schedule**

LBNF-DUNE Summary Construction Schedule as of December 2015



- First data in 2024!
- Beam ready in 2026
- DUNE construction finished in 2028



#### **Single-phase LAr TPC detection principle**

- Neutrino interactions in Ar produce charged particles that cause ionization and excitation of Argon
  - High electric field drifts electrons towards finely segmented anode wire planes
  - Excitation of Ar produces prompt scintillation light giving  ${\rm t}_{\rm 0}$  of the interaction
- Technology pioneered and **demonstrated by the ICARUS experiment** (the largest LAr TPC ever operated - 600 ton)



• Independent views provided by multiple wire orientations (2D position information)

7

**Jiem** 

- PMTs detect the light produced providing timing information
- 3D reconstruction of tracks and showers
- Time Projection Chamber



# **Dual-phase LAr TPC principle**



Ionization signals amplified and detected in gaseous argon above the liquid surface



- Ionizing particle in LAr (2.12 MeV/cm for mip)
- Two measurements:
  - Charge from ionization: tracking and calorimetry

Double-phase: multiplication in gas to increase gain and allow for long drift distances (> 5m) and low energy thresholds

- Scintillation light: primary scintillation (trigger and t0) & secondary scintillation in gas
- Large surface instrumented with PMTs in LAr
- WArP, ArDM, DarkSide, ...



#### **DUNE Far Detector**

- The **FD detector design is optimized** (in the energy range of few MeV to few GeV) **for**:
  - pattern recognition
  - energy measurement
  - particle ID
- The LAr TPC technology provides:
  - excellent 3D imaging capabilities
    - few mm scale over large volume detector
  - excellent energy measurement capability
    - totally active calorimeter
  - particle ID by dE/dx, range, event topology, ...





# Two proposed technologies

#### **Single-phase** *reference design for the CDR*

#### **Dual-phase**

alternative design for the CDR

| able 1: Parameters of the DUNE Far | Detector LArTPC                 |
|------------------------------------|---------------------------------|
| Parameter                          | Value                           |
| Module height                      | 12.0 m                          |
| Module width                       | 14.5 m                          |
| Module length                      | 58.0 m                          |
| channels per APA                   | 2,560                           |
| APAs per module                    | 150                             |
| Active height (APA)                | 6.0 m                           |
| Active width (APA)                 | 2.3 m                           |
| Drift distance in Liquid Argon     | 3.6m                            |
| Drift velocity                     | $1.6\mathrm{mm}/\mathrm{\mu s}$ |
| Drift time                         | $2.25\mathrm{ms}$               |
| # drifts/readout factor            | 2.4                             |
| readout time                       | $5.4\mathrm{ms}$                |
| bytes/sample                       | 1.5                             |
| sample rate                        | 2.0 MHz                         |
| samples/readout                    | 10,800                          |
| # of detector modules              | 4                               |
| Total $\#$ of channels             | 1,536,000                       |

| Parameter              | Value                          |  |
|------------------------|--------------------------------|--|
| Full length            | 60.0 m                         |  |
| Detectors              | 4.0                            |  |
| channel/CRP            | 1,920                          |  |
| CRP/detector           | 80                             |  |
| Active height          | 12.0 m                         |  |
| Active width           | 12.0 m                         |  |
| Drift distance         | $12.0\mathrm{m}$               |  |
| Drift velocity         | $1.6\mathrm{mm}/\mu\mathrm{s}$ |  |
| Drift time             | $7.5\mathrm{ms}$               |  |
| bytes/sample           | 1.5                            |  |
| sample rate            | $2.5\mathrm{MHz}$              |  |
| # drifts/readout       | 1.0                            |  |
| Readout time           | $7.5\mathrm{ms}$               |  |
| Samples/readout        | 18,750                         |  |
| Total $\#$ of channels | 614,400                        |  |

2: Basic parameters of the alternative Far Detector design.



# **Two detector designs**

#### Single-phase



- 150 Anode Plane Assemblies (APAs)
  - 6 m high x 2.3 m wide
  - embedded photon detection system
  - wrapped wires read out both sides
  - 1 collection & 2 induction wire planes (wire pitch 5 mm)
- 200 Cathode Plane Assemblies (CPAs)
  - 3 m high x 2.3 m wide
- Cathode at -180 kV for 3.6 m drift
- Cold electronics (384,000 channels)
  - 80 3 x 3 m<sup>2</sup> CRP modules at the gas-liquid interface (2D charge collection)
  - Hanging field cage and cathode at 600 kV (12 m drift)
  - Decoupled PD system (PMTs)
  - Finer readout pitch (3 mm), high S/N ratio, lower energy threshold, better pattern recognition, fewer readout channels (153,600), absence of dead material



#### **Expected detector capabilities**

| Parameter                                | Requirement                 | Achieved Elsewhere         | Expected Performance      |                            |
|------------------------------------------|-----------------------------|----------------------------|---------------------------|----------------------------|
| Signal/Noise Ratio <sup>1</sup>          | 9:1                         | 10:1 [11, 12] <sup>2</sup> | 9:1                       |                            |
| Electron Lifetime                        | 3 ms                        | $> 15 \mathrm{ms}$ [12]    | $> 3 \mathrm{ms}$         |                            |
| Uncertainty on Charge                    |                             |                            |                           |                            |
| Loss due to Lifetime                     | < 5%                        | < 1% [12]                  | < 1%                      |                            |
| Dynamic Range of Hit                     |                             |                            |                           |                            |
| Charge Measurement                       | 15MIP                       |                            | 15 MIP                    |                            |
| Vertex Position Resolution <sup>3</sup>  | (2.5,2.5,2.5) cm            |                            | (1.1,1.4,1.7) cm [13, 14] |                            |
| $e-\gamma$ separation $\epsilon_e$       | > 0.9                       |                            | 0.9                       |                            |
| $e-\gamma$ separation $\gamma$ rejection | > 0.9                       |                            | 0.99                      |                            |
| Multiple Scattering Resolution           |                             |                            |                           |                            |
| on muon momentum <sup>4</sup>            | $\sim 18\%$                 | $\sim 18\%$ [15, 16]       | $\sim 18\%$               |                            |
| Electron Energy Scale                    |                             |                            | From LArIAT               |                            |
| Uncertainty                              | $\sim 5\%$                  | $\sim 2.2\%$ [17]          | and CERN Prototype        | For $E_{\rm e} < 50$ MeV   |
| Electron Energy Resolution               | $0.15/\sqrt{E(\text{MeV})}$ | $0.33/\sqrt{E(MeV)}$ [17]  | From LArIAT               | $11\%/\sqrt{F(MeV)} + 2\%$ |
|                                          | $\oplus 1\%$                | +1%                        | and CERN Prototype        |                            |
| Energy Resolution for                    |                             |                            | From LArIAT               | ICARUS                     |
| Stopping Hadrons                         | < 10%                       |                            | and CERN Prototype        |                            |
| Stub-Finding Efficiency <sup>5</sup>     | > 90%                       |                            | > 90%                     |                            |

| Table 5.1: Performance parameters specific to the dual-phase far detector design |             |                       |                 | 1                                    |
|----------------------------------------------------------------------------------|-------------|-----------------------|-----------------|--------------------------------------|
| Parameter                                                                        | Requirement | Achieved Elsewhere    | Expected Perfor | rmance                               |
| Gas phase gain                                                                   | 20          | 200                   | 20-100          |                                      |
| Electron Lifetime                                                                | 3 ms        | > 3 ms 35-t prototype | > 5  ms         |                                      |
| Minimal S/N after 12 m drift                                                     | 9:1         | > 100:1               | 12:1-60:1       | Advantage for low energy measurement |



#### **DUNE Photon Detection Systems**

• FD single-phase optical detectors: WLS bars + SiPM



- FD dual-phase optical detectors: PMTs with TPB
  - System well understood









### **DUNE** Prototypes

### The DUNE strategy

#### Single-phase



DUNE 35-t @Fermilab (2015)



protoDUNE SP @CERN: 300 ton (2016-2019)



DUNE SP @SURF: 10 kton



### **35-ton prototype @FNAL**

- First complete system test of DUNE singlephase TPC
- Characteristics
  - 2.5 m x 1.5 m x 2 m active volume
  - 2 drift volumes (long/short)
  - 8 sets of wire planes



- Will test
  - FR4 printed circuit board field cage
  - Wrapped wire planes
  - Cold electronics
  - Light-guide + SiPM photon detectors
  - Triggerless DAQ (continuous readout)
  - Reconstruction code
- Status
  - Filled with LAr (Feb 2<sup>nd</sup>, 2016)
  - Commissioning





#### **ProtoDUNEs @CERN**



- Early detection of potential issues with construction methods and detector performance according to current designs
- Calibration of detector response to particle interactions in test beam

17

Ciemat

# **ProtoDUNE Single-Phase**

- Engineering prototype of DUNE SP TPC using fullscale detector components
- Active volume: 6 m x 7 m x 7 m
- 6 Anode Plane Assemblies (6 m high x 2.3 m wide)
  - Photon detectors integrated into the APAs
  - 10 PD paddles per APA
- 6 Cathode Plane Assemblies (3 m high x 2.3 m wide)
- Cathode at -180 kV for 3.6 m drift (same drift length as in FD)
- Drift field: 500 V/cm
- 15360 total readout wires in TPC
- Wire spacing: 4.79 mm X plane, 4.67 mm U plane, 4.67 mm V plane, 4.5 mm
- Test-beam with charged particles at CERN





18

# **ProtoDUNE Dual-Phase**

- Engineering prototype of DUNE DP TPC
  - 1/20 number of channels of 10 kton DUNE (1/40 volume & data size)
- Active volume: 6 x 6 x 6 m
- 6 m x 6 m anode plane made of four 3m x 3m independent readout units
- 6 m vertical drift -> -300 kV cathode voltage
- Drift field: 500 V/cm (extraction field: 2 kV/cm)
- 7680 readout channels
- Validation of construction techniques and operational performance of fullscale DP TPC prototype modules
- Exposure to charged hadrons, muons and electrons beams at CERN (0.5-20 GeV)





19

#### Other LAr TPC detectors

# ArgoNEUT @NuMI (→ LArIAT)

- 90 cm long x 40 cm tall x 47 cm drift
  - Active volume: 175 litres
  - 3 wire planes: induction, collection and shield (4 mm wires spacing)
  - No light detection system
- Took data from 09/2009 to 02/2010 at the NuMI beam
  - 2 weeks in neutrino mode & 4 months in antineutrino mode
  - 0.1 20 GeV energy of neutrino beam
- Goals:
  - Measure v-Ar cross-sections
  - Calibration of LAr detectors
  - Study nuclear effects
  - Reconstruction techniques
- Main results:
  - Muon neutrino and antineutrino cross sections
  - Crossing muon analysis
  - Charge recombination
  - Back to back protons
  - Coherent pion production

Inés Gil Botella - Low Energy @DUNE

#### ArgoNeuT TPC



#### MicroBooNE @BNB

- 170 ton (80 ton active) LAr TPC neutrino experiment in the Fermilab Booster Neutrino Beam line (at 470 m from start of the BNB)
  - 10.3 m long x 2.3 m tall x 2.5 m drift, 3 mm wire pitch, -128 kV cathode voltage
  - 32 8" cryogenic PMTs
- Physics goals:
  - Address the low-energy electron-like excess observed by MiniBooNE
  - Make high statistics measurements of ~1 GeV neutrino interactions in Ar and study nuclear effects



### **MicroBooNE status**

- Assembly and installation complete
- Detector filled with ultra pure LAr
- First neutrino beam from the Fermilab Booster accelerator on October 15, 2015





Ciemo

# SBND & ICARUS at SBN program

- Another 2 LAr detectors being constructed and operated soon
- **SBND**: under design phase
  - 112 ton active volume  $(4 \times 4 \times 5 \text{ m}^3)$
  - To be located 110 m from the BNB neutrino source
  - To be operational in 2018
  - Large data sample for neutrino-argon interaction studies in the GeV energy range
- **ICARUS**: under refurbishment at CERN
  - Was the first large scale LAr TPC to run in a neutrino beam line (CNGS from 2010 to 2013)
  - Will be shipped to Fermilab in 2017



First T300 in Cleanroom at CERN



# Low-energy reconstruction capabilities

#### Low-energy neutrino spectrum



Ciemat

#### Low-energy neutrino physics @DUNE

- SN neutrino burst detection (primary DUNE goal)
  - Burst of events with known background

| Channel                                                                            | Events            | Events       |  |
|------------------------------------------------------------------------------------|-------------------|--------------|--|
|                                                                                    | "Livermore" model | "GKVM" model |  |
| $\nu_e + {}^{40} \operatorname{Ar} \to e^- + {}^{40} \operatorname{K}^*$           | 2720              | 3350         |  |
| $\overline{\nu}_e + {}^{40}\operatorname{Ar} \to e^+ + {}^{40}\operatorname{Cl}^*$ | 230               | 160          |  |
| $\nu_x + e^- \to \nu_x + e^-$                                                      | 350               | 260          |  |
| Total                                                                              | 3300              | 3770         |  |

no oscillations



#### • Solar neutrinos

- High rate but background is an issue
- ~100 solar v's per day (limited to <sup>8</sup>B physics)
- DSNB
  - Low rate and high background (challenging)
  - ~4 DSNB neutrino interactions per year

LBNF and DUNE CDR Volume 2: The Physics Program for DUNE at LBNF (arXiv:1512.06148)





#### DUNE: 40 kton LAr (SN @10 kpc)





# Low-energy v detection channels

 $\nu_x + e^- \to \nu_x + e^ \nu_x + p \to \nu_x + p$ 

 $\bar{\nu}_e + p \to e^+ + n$ 

- Elastic scattering (ES)
  - Pointing information (e-)
  - Proton recoil (difficult)
- Inverse beta-decay (IBD)
  - High cross section
  - Neutron tagging
- Charged-currents (CC)
  - Different products

(de-excitation gammas, leptons, neutrons...)

- **Neutral-currents (NC)** 
  - De-excitation gammas or neutrons

$$\nu + A \to \nu + A^*$$

$$\nu_x + A \to \nu_x + A$$



29







#### **Neutrino interactions at < 100 MeV**



### Low-energy neutrino signal in LAr

- Elastic scattering (ES) on electrons  $\nu + e^{-} \rightarrow \nu + e^{-}$
- Charged-current (CC) interactions on Ar

 $\nu_e + {}^{40}\text{Ar} \rightarrow {}^{40}\text{K}^* + e^-$  E $\nu_e > 1.5 \text{ MeV}$ 

 $\overline{\nu}_e + {}^{40}\text{Ar} \rightarrow {}^{40}\text{Cl}^* + e^+ \quad \text{E}\overline{\nu}_e > 7.48 \text{ MeV}$ 

• Neutral current (NC) interactions on Ar

$$\nu + {}^{40}\text{Ar} \rightarrow \nu + {}^{40}\text{Ar}^*$$
 Ev > 1.46 MeV



Possibility to separate the different channels by a classification of the associated photons from the K, Cl or Ar de-excitation (specific spectral lines for CC and NC) or by the absence of photons (ES)

Inés Gil Botella - Low Energy @DUNE



31

### veCC final states: de-excitation ys

- Lack of precision models of low energy neutrino argon reactions
  - No measurements are available
  - Some efforts to study this problem with indirect beam sources and small-scale experiments
- Fermi transition to 4.38 MeV IAS <sup>40</sup>K
  - $\sigma$  precisely known < 1%
  - Raghavan, PRD 34 (1986) 2088
- **GT transitions of various** <sup>40</sup>K:

Experimental data of  $\beta$ -decay of the mirror nucleus <sup>40</sup>Ti

- Ormand et al., Rhys. Lett. B 345 (1995) 343-350
- Trinder et al., Phys. Lett. B 415 (1997) 211-216
- Bhattacharya et al., Phys. Rev. C 58 3677 (1998)





# Low energy neutrino interactions



MARLEY MC event generator is being integrated in the DUNE software

- Relative feeding of nuclear states is not precisely known
- Subsequent de-excitation γs are uncertain
  - Critical for energy reconstruction
- Highly excited <sup>40</sup>K can de-excite via n or p emission
  - Further complication of energy reconstruction



#### **Challenges for low-E neutrino detection**

Determination of low-energy v-Ar cross-sections

Knowledge of neutrino interactions (γ's deexcitation)

Lack of knowledge



# Low energy neutrino interactions

- Simulation of 20 MeV  $v_e$  (14.1 MeV e-), MicroBooNE geometry
- De-excitation gammas produce diffuse compton-scatters
- Energetic electron has significant probability of bremsstrahlung (gammas are present even in absence of nuclear de-excitations)

How to reconstruct these small number of hits?



(simulated low-energy electron and gamma data from C. Adams)



# Main low-energy backgrounds

- The main issue to understand
- They will constrain our capabilities for signal
- Neutron capture processes in detector materials
- **Radioactive backgrounds** in Ar and detector materials
- **Cosmogenics** by cosmic rays interaction with Ar
- Electronic noise

$$\nu_e+{}^{40}Ar \rightarrow {}^{40}K^* + e^{\scriptscriptstyle -}$$



veCC MC event

Neutron background sources:

- External source: natural radioactivity of the rock
- Internal source: radioactive contamination of the detector materials
- High energy muons

| Stable<br>isotope | Abundance<br>(%) | Process                                                                            | σ<br>(barns) | Q-value<br>(MeV) |
|-------------------|------------------|------------------------------------------------------------------------------------|--------------|------------------|
| <sup>40</sup> Ar  | 99.6             | $n + {}^{40}Ar \rightarrow {}^{41}Ar^* \rightarrow {}^{41}Ar + \gamma s$           | 0.66         | 6.099            |
| <sup>36</sup> Ar  | 0.337            | $n + {}^{36}Ar \rightarrow {}^{37}Ar^* \rightarrow {}^{37}Ar + \gamma$ 's          | 5.2          | 8.788            |
| <sup>38</sup> Ar  | 0.063            | $n + {}^{38}Ar \rightarrow {}^{39}Ar^* \rightarrow {}^{39}Ar + \gamma$ 's          | 0.8          | 6.598            |
| <sup>27</sup> Al  | 100              | $n + {}^{27}Al \rightarrow {}^{28}Al^* \rightarrow {}^{28}Al + \gamma$ 's          | 0.23         | 7.725            |
| <sup>56</sup> Fe  | 91.72            | $n + {}^{56}Fe \rightarrow {}^{57}Fe^* \rightarrow {}^{57}Fe + \gamma {}^{\circ}s$ | 2.59         | 7.646            |
| <sup>54</sup> Fe  | 5.8              | $n + {}^{54}Fe \rightarrow {}^{55}Fe^* \rightarrow {}^{55}Fe + \gamma^{c}s$        | 2.25         | 9.298            |
| <sup>57</sup> Fe  | 2.2              | $n + {}^{57}Fe \rightarrow {}^{58}Fe^* \rightarrow {}^{58}Fe + \gamma^{\epsilon}s$ | 2.48         | 10.045           |
| <sup>58</sup> Fe  | 0.28             | $n + {}^{58}Fe \rightarrow {}^{59}Fe^* \rightarrow {}^{59}Fe + \gamma^{\epsilon}s$ | 1.28         | 6.581            |

#### Hit reconstruction ( $E_{detect_th} = 200 \text{ keV}$ )



#### **Challenges for low-E neutrino detection**

Determination of low-energy v-Ar cross-sections

Knowledge of neutrino interactions (γ's deexcitation)

Lack of knowledge

Detector performance

 $v_e + {}^{40}\text{Ar} \rightarrow {}^{40}\text{K}^* + e^{-}$ 

Triggering / DAQ

Low-energy event reconstruction and identification

Extraction from background

- Good time resolution
- Large data acquisition in a few seconds
- Ability to **tag** electrons and deexcitation gammas from nuclear transitions
- Measurement of **energy**, **time** and **direction** of events
- Good vertex resolution
- Low cosmic background
- Low radioactive background



Inés Gil Botella - Low Energy @DUNE

compton

#### **Detector requirements for low-E v's**

| Detector requirement/goal                                                                         | Value                        | Main detector<br>systems involved | Purpose                                                                 |
|---------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------|-------------------------------------------------------------------------|
| <b>Trigger efficiency</b><br>for interactions between 5-100 MeV                                   | >90%                         | Trigger/DAQ & PD<br>System        | SN burst                                                                |
| <b>Data acceptance</b> without loss and buffer for at least 2 minutes                             | Non-zero<br>suppression      | DAQ                               | SN burst                                                                |
| <b>Vertex resolution</b> able to distinguish<br>between SN v from entering or<br>cosmogenic backg | ~cm                          | Photon Detection<br>System & TPC  | Background rejection                                                    |
| <b>Reconstruction of cosmic muons</b> and associated radiation                                    |                              | TPC & PD System                   | Background rejection                                                    |
| <b>Reconstruction efficiency</b> for 5 MeV events                                                 | ~80%                         | Photon Detection<br>System        | Flavor-energy features of the SN spectrum                               |
| Particle Identification                                                                           |                              | TPC & PD System                   | Identification of gamma cascades from low-E $\nu$ int. / Flavor tagging |
| <b>Energy resolution</b> for events of energy 5-100 MeV                                           | < 10%                        | TPC & PD System                   | Features on the SN neutrino spectrum                                    |
| Absolute time resolution                                                                          | < 1 ms                       | DAQ & PD system                   | SN burst / Energy resolution                                            |
| Angular resolution                                                                                | $< 20^{\circ} (T_e > 5$ MeV) | TPC                               | Event direction                                                         |



# Photons reaching optical detectors

- Average yield vs. position in the detector
  - Central region only to avoid over-emphasizing loss at walls
- Average  $\boldsymbol{\epsilon}_{geo} = 4.7\%$
- Plot also includes 30% wire shadowing
- Total light: 24,600 x  $\varepsilon_{geo} = 1,200 \text{ }\gamma/\text{MeV}$





**Jiemo** 

#### **Reconstruction efficiency**



- **Proton decay** reconstruction efficiency:
  - Assuming 200 MeV visible energy (conservative estimate)
  - With late light (the late light gives 4x increase in photons, but need electronics capable of 1 PE signals, which increases cost) >99% efficiency
- Supernova reconstruction efficiency
  - Only early light and requiring 2 coincident PEs -> For 5 MeV events, only 33% efficiency
  - Early + late light and requiring 2 coincident PEs (optimistic!) -> For 5 MeV events, 74% efficiency



# Low-energy backgrounds: <sup>39</sup>Ar

- <sup>39</sup>Ar  $\beta$ -decays, ~500 keV endpoint (~12,000 photons)
- Energy is low but visible if close to the photodetectors
  - 3.5  $\gamma$ 's if decay is close to the PDs
- Expected background rate: ~1.01 Bq/kg
- Photocoverage improvement increases sensitivity to background
- Algorithms to suppress <sup>39</sup>Ar in PDs are needed





| <sup>39</sup> Ar photon background (in 2.7% of far detector) |      |         |  |
|--------------------------------------------------------------|------|---------|--|
| Thresh.                                                      | SN ε | Bkgd    |  |
| 2 PE                                                         | 98%  | 81 kHz  |  |
| 5 PE                                                         | 76%  | 1.3 kHz |  |
| 10 PE                                                        | 50%  | 20 Hz   |  |



# **Background reduction**

- It does not look impossible to separate <sup>39</sup>Ar from signal events (good spatial resolution)
- <sup>39</sup>Ar is a serious background issue for photodetectors
  - Rate depends on flash threshold
- <sup>39</sup>Ar can mimic low energy events so we need to use the photon detection information for trigger





# **Energy resolution**

- Energy resolution depends on drift distance and electron lifetime
- The t<sub>0</sub> correction improves the energy resolution





### **Energy resolution**

• If electron lifetime is worse (1.5 ms), the energy resolution is significantly degraded (~20%)



• With drift correction (from  $t_0$  from photons), we get ~13% resolution



# Information from prototypes

- Low-energy data information from LAr prototypes
  - Response from Michel electrons
  - Radioactive backgrounds / <sup>39</sup>Ar
  - Cosmogenics
  - Calibration with sources
  - Trigger/DAQ
  - Photons
  - Directionality
- Comparison between single- and dual-phase technologies



45

#### Conclusions

- Detection of SN neutrino events is one of the main goals of future large underground detectors (primary scientific goal for DUNE)
  - Other low energy events can be detected with DUNE (solar vs, DSNB, ...)
- Important to understand the different low-energy v detection channels (cross-sections, signatures, directionality, reconstruction, timing, etc.) and the detector response
- Dedicated studies are needed to understand the low energy background sources and intensity (<sup>39</sup>Ar and radiological backgs) and their separation from the low energy signals
- Many studies to be done to improve the low-energy event detection performance of future large underground detectors

