Importance of detector effects in the δ_{CP} measurement

Artur M. Ankowski

based on A. M. A., O. Benhar, P. Coloma, P. Huber, C. Mariani, and E. Vagnoni Phys. Rev. D 72, 091301(R) (2015)

Supernova Physics at DUNE, Blacksburg, VA, March 11–12, 2015

Outline

Why is an accurate reconstruction of the neutrino energy important?

2 Our treatment of the detector effects

B Effect of the missing energy on a CP violation measurement

4 Summary

v_e and v_e appearance in DUNE

"The difference in probability amplitude for different values of δ_{CP} is larger at higher oscillation nodes, which correspond to energies less than 1.5 GeV. Therefore, a broadband experiment, capable of measuring not only the rate of v_e appearance but of **mapping out the spectrum of observed oscillations down to energies of at least 500 MeV, is desirable**."

R. Acciarri et al. (DUNE Collab.), arXiv:1512.06148

v_e and v_e appearance in DUNE

R. Acciarri et al. (DUNE Collab.), arXiv:1512.06148

Calorimetric *E*, **reconstruction**

Add the deposited energy

$$E_{\nu}^{\text{cal}} = E_{\ell} + \sum_{i} T_{i}^{N} + \epsilon_{n} + \sum_{j} E_{j},$$

- Applicable to any final state
- Accurate hadron reconstruction required
- Used by MINOS(*), NOvA, planned in DUNE

Missing energy

Calorimetric *E*, **reconstruction**

protons

kinetic energy + separation energy

below the threshold: E_{miss} up to ~70 MeV

pions

total energy

below the threshold: E_{miss} up to ~160 MeV(*)

Idea of our analysis

We want to quantify how accurately the missing energy needs to be estimated to avoid a sizable bias in the extracted δ_{CP} value.

Owing to the importance for DUNE (background removal), we consider a calorimetric detector capable of fine-grained tracking.

Event generating

GENIE + vT: Jen et al., PRD 90, 093004 (2014)

Considered setup

 40 kton far detector located 1300 km from the neutrino source

the 80-MeV primary proton beam of 1.08 MW,
3 + 3 years of running

 systematic uncertainties: shape (2%), normalization (2%), background norm. (5%), no explicit use of the near detector

Detector effects

We take into account

- energy smearing,
- efficiencies,
- thresholds,

treating separately μ , e, p, n, π^0 , and other mesons

Smearing

To simulate the energy smearing in the detector, we use Gaussian distributions:

$$f(x_{\text{meas}}) = \frac{1}{\sqrt{2\pi}\sigma(x_{\text{true}})} \exp\left[-\frac{1}{2}\left(\frac{x_{\text{meas}} - x_{\text{true}}}{\sigma(x_{\text{true}})}\right)^2\right].$$

Energy resolutions in our analysis

Treatment of efficiencies

- We treat them as energy independent, taking
- 80% for electrons,
- 80% for charged pions, all kaons, and gammas,
- 60% for neutral pions,
- 50% for protons.

Treatment of efficiencies

We treat them as energy independent, taking

80% for electrons,

80% for charged pions, all kaons, and gammas,

60% for neutral pions,

50% for protons.

set to optimistic values compared to existing detectors

Thresholds in our analysis

- 0 MeV for muons and electrons,
- 20 MeV for pions and kaons,
- 40 MeV for protons.

Neutrons

travel some distance before scattering in the detector, hard to associate with the event

deposit only a fraction of energy

Assumed to escape detection

Neutrons

 travel some distance before scattering in the detector, hard to associate with the event

deposit only a fraction of energy

Assumed to escape detection

For comparison, DUNE prelim. studies assume the neutron efficiency of 90% for |p| < 1 GeV/c.

Role of the missing energy

We manually tune the amount of the missing energy accounted for in the migration matrices, keeping constant the width of the reconstructed energy distributions

$$N_{i}^{fit} = \sum_{X} \sum_{j} \{ \alpha M_{ij}^{X, real} + (1 - \alpha) M_{ij}^{X, Gauss} \} N_{i}^{X}$$

The missing energy

CP violation for a DUNE-like setup

CP violation for a DUNE-like setup

The missing energy needs to be estimated with a ~20% accuracy or better

Final-state energy contributions

Summary

1 An accurate energy reconstruction down to 500 MeV requires sensitivity to low energy nucleons and pions (muons).

2 Below the detection threshold, protons (pions) may carry out up to 70 MeV (160 MeV). Sensitivity to low energy muons may be helpful.

An accurate determination of CP violation in a DUNE-like experiment requires the missing energy to be known in the analysis with an accuracy exceeding 20%.

Backup slides