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�  Neutrino Heating 
�  Convection 
�  SASI 
____________ 
 
�  Nuclear Burning 
�  Rotation 
�  Magnetic Fields 

Fundamental Building Blocks 

Elements of Neutrino Shock Reheating 



Blondin, Mezzacappa, & DeMarino, Ap.J. 584, 971 (2003) 

SASI has axisymmetric and nonaxisymmetric modes  
that are both linearly unstable! 

– Blondin and Mezzacappa, Ap.J. 642, 401 (2006) 
– Blondin and Shaw, Ap.J. 656, 366 (2007) 

Shock wave unstable to non-radial perturbations.
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Neutrino heating depends on  
neutrino luminosities, spectra,  
and angular distributions. 

➠ Must compute neutrino distribution functions. 

f (t, r,θ,φ,E,θ p,φp )

ER (t, r,θ,φ,E) = dθ p∫ dφp f

FR
i (t, r,θ,φ,E) = dθ p∫ dφp n

i f

Multifrequency 
Multiangle 

Multifrequency 
(solve for  

lowest-order  
multifrequency 

angular moments: 
energy and momentum  

density/frequency) 
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Requires a closure prescription: 
•  MGFLD 
•  MGVEF/MGVET 



€ 

e−(+) + p(n),A↔ν e (ν e ) + n(p),A'
e+ + e− ↔ν e,µ,τ + ν e,µ,τ

v + n, p,A→ v + n, p,A

v + e−,e+ → v + e−,e+

N + N↔ N + N + ν e,µ,τ + ν e,µ,τ

ν e + ν e ↔ν µ,τ + ν µ,τ

¬ 	
  	
  

Reddy, Prakash, and Lattimer, PRD, 58, 013009 (1998) 
Burrows and Sawyer, PRC, 59, 510 (1999) 

•  (Small) Energy is exchanged due to nucleon recoil. 
•  Many such scatterings. 

Hannestadt and Raffelt, Ap.J. 507, 339 (1998) 
Hanhart, Phillips, and Reddy, Phys. Lett. B, 499, 9 (2001)  

•  New source of neutrino-antineutrino pairs. 

“Standard” Emissivities/Opacities 

¬ 	
  	
  

Bruenn, Ap.J. Suppl. (1985)  
•  Nucleons in nucleus independent. 
•  No energy exchange in nucleonic scattering.	
  

Langanke et al. PRL, 90, 241102 (2003) 
•  Include correlations between nucleons in nuclei. 

Janka et al. PRL, 76, 2621 (1996)
Buras et al. Ap.J., 587, 320 (2003)

¬ 	
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Bruenn, DeNisco, and Mezzacappa, Ap.J. 560, 326 (2001) 
Liebendoerfer et al. Ap.J. 620, 840 (2005) 

25 M Model

15 M Model

€ 

ds2 = −α 2dt 2 +
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da2 + r2 dθ 2 + sin2θdϕ 2( )



1.	
  Geometric	
  Effects	
  
2.	
  Special	
  Rela5vis5c	
  Effects	
  
3.	
  General	
  Rela5vis5c	
  Effects	
  

1.  What	
  equa;ons	
  to	
  use	
  for	
  the	
  neutrino	
  radia;on	
  hydrodynamics	
  is	
  nontrivial.	
  
2.  Discre;za;ons	
  must	
  be	
  chosen	
  to	
  ensure	
  number	
  and	
  energy	
  conserva;on	
  simultaneously.	
  

Spa$al	
  
Dimensions	
  

Newtonian	
  
or	
  GR	
  

1	
   2	
   3	
   Par$al	
  Weak	
  
Interac$ons	
  
(Thompson	
  
et	
  al.	
  (2003))	
  

Complete	
  
Weak	
  
Interac$ons	
  

Label	
  

Lentz	
  et	
  al.	
  
(2012)	
  

1	
   GR	
   X	
   X	
   X	
   X	
   GR-­‐Full	
  Op	
  

OC	
  et	
  al.	
  
(2008)	
  

2	
   Newtonian	
   X	
   X	
  

Sumiyoshi	
  and	
  
Yamada	
  
(2012)	
  

3	
   Newtonian	
   X	
   X	
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Collision	
  Term	
  Conserva;ve	
  treatment	
  presents	
  a	
  significant	
  challenge.	
  
•  Liebendoerfer	
  et	
  al.	
  2004.	
  ApJ	
  Suppl.	
  150	
  263	
  
•  Cardall	
  &	
  Mezzacappa	
  2003	
  PRD	
  68	
  023006	
  	
  
•  Cardall,	
  Endeve,	
  &	
  Mezzacappa	
  2013	
  PRD	
  87	
  103004	
  
•  Cardall,	
  Endeve,	
  &	
  Mezzacappa	
  2013	
  PRD	
  88	
  023011	
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  747,	
  73	
  (2012)	
  

ReducOp	
  =	
  Bruenn	
  (1985)	
  –	
  NES	
  +	
  Bremsstrahlung	
  (no	
  neutrino	
  energy	
  scaWering,	
  IPM	
  for	
  nuclei)	
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See also B. Mueller et al. 2012. Ap.J. 756, 84 and O’Connor and Couch (2015)  
for a comparison in the context of 2D models, with similar conclusions. 
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2D	
  Mul5-­‐
Frequency	
  (3D)	
  

Models	
  

Newtonian	
  

Ray-­‐by-­‐Ray	
  
Transport	
  

Single	
  Flavor	
  

Par5al	
  Weak	
  
Physics	
  

Suwa	
  et	
  al.	
  (2016)	
  

Three	
  Flavor	
  

Par5al	
  Weak	
  
Physics	
  

Takiwaki	
  et	
  al.	
  
(2014),	
  Nakamura	
  

et	
  al.	
  (2014)	
  

2D	
  Transport	
  

Single	
  Flavor	
  

Par5al	
  Weak	
  
Physics	
  

Pan	
  et	
  al.	
  (2016)	
  

Three	
  Flavor	
  

Par5al	
  Weak	
  
Physics	
  

Dolence	
  et	
  al.	
  
(2014)	
  

General	
  
Rela5vis5c	
  

Ray	
  by	
  Ray	
  
Transport	
  

Three	
  Flavor	
  

Full	
  Weak	
  Physics	
  

Mueller	
  et	
  al.	
  
(2012,	
  2013,	
  

2014)	
  

Bruenn	
  et	
  al.	
  
(2013,	
  2016)	
  

2D	
  Transport	
  
without	
  

Rela5vis5c	
  Terms	
  

Three	
  Flavor	
  

Par5al	
  Weak	
  
Physics	
  

O’Connor	
  and	
  
Couch	
  (2015)	
  



3/8/16 10

3D	
  Mul5-­‐Frequency	
  
(4D)	
  Models	
  

Newtonian	
  

Ray-­‐by-­‐Ray	
  Transport	
  

Single	
  Flavor	
  

Par5al	
  Weak	
  Physics	
  

Takiwaki	
  et	
  al.	
  (2012,	
  
2014)	
  

General	
  Rela5vis5c	
  

Ray	
  by	
  Ray	
  Transport	
  

Three	
  Flavor	
  

Full	
  Weak	
  Physics	
  

Hanke	
  et	
  al.	
  (2013),	
  
Tamborra	
  et	
  al.	
  
(2013,	
  2014),	
  

Melson	
  et	
  al.	
  (2015)	
  

Lentz	
  et	
  al.	
  (2015)	
  

Progenitor	
  Masses	
  Used	
  
	
  
•  Takiwaki	
  et	
  al.	
  11.2	
  M	
  	
  
•  Lentz	
  et	
  al.	
  15	
  M	
  
•  Hanke,	
  Tamborra,	
  Melson	
  	
  
	
  	
  	
  	
  	
  et	
  al.	
  9.6,	
  11.2,	
  20,	
  27	
  M	
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Solve a number of spherically 
symmetric problems. 
 
In spherical symmetry, RbR 
is exact. 

Do	
  accre;on	
  hot	
  spots	
  persist?	
  
	
  
As	
  the	
  angular	
  resolu;on	
  is	
  increased,	
  
RbR	
  will	
  approach	
  non-­‐RbR	
  for	
  a	
  central	
  
source.	
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Measured neutron star masses with 1-σ errors. References in parentheses following source names are identified in Table 1.
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Table 1
Model Setup

Model Progenitor Neutrino Treatment of Simulated Angular Explosion Time of EOS
Opacities Relativity Post-bounce Time Resolution Obtained Explosiona

G8.1 u8.1 Full set GR hydro + xCFC 325 ms 1.◦4 Yes 175 ms LS180
G9.6 z9.6 Full set GR hydro + xCFC 735 ms 1.◦4 Yes 125 ms LS220
G11.2 s11.2 Full set GR hydro + xCFC 950 ms 2.◦8 Yes 213 ms LS180
G15 s15s7b2 Full set GR hydro + xCFC 775 ms 2.◦8 Yes 569 ms LS180
S15 s15s7b2 Reduced set GR hydro + xCFC 474 ms 2.◦8 No . . . LS180
M15 s15s7b2 Full set Newtonian + modified potential 517 ms 2.◦8 No . . . LS180
N15 s15s7b2 Full set Newtonian (purely) 525 ms 1.◦4 No . . . LS180
G25 s25.0 Full set GR hydro + xCFC 440 ms 1.◦4 No . . . LS220
G27 s27.0 Full set GR hydro + xCFC 765 ms 1.◦4 Yes 209 ms LS220

Note. a Defined as the point in time when the average shock radius ⟨rsh⟩ reaches 400 km.

explode rather early and exhibit convective activity only on a
moderate level after the onset of the explosion. The 11.2 M⊙
model G11.2 shows a much slower expansion of the shock and
several violent shock oscillations before the explosion takes
off. Model G15 develops a very asymmetric explosion as late as
∼450 ms. The more massive 25 M⊙ and 27 M⊙ models G25 and
G27 differ from the other models by more clearly discernible
SASI activity, visible as strong periodic sloshing motions of
the shock in Figure 1, which lead to an explosion in the case
of G27. We note that no explosion develops in the simulations
without general relativity and/or the full neutrino rates (M15,
N15, S15).

A summary of all nine models considered in this paper is
given in Table 1. For a detailed discussion of models G11.2 and
G15, see Müller et al. (2012b), and for details on G8.1 and G27,
see Müller et al. (2012a).

3. GRAVITATIONAL WAVE EXTRACTION

The xCFC approximation used in Vertex-CoCoNuT does
not allow for a direct calculation of GWs as the correspond-
ing degrees of freedom in the metric are missing. We therefore
need to extract GWs in a post-processing step with the help
of some variant of the Einstein quadrupole formula (Einstein
1918). Modified versions of the Newtonian quadrupole for-
mula (exploiting ambiguities concerning the identification of
Newtonian and relativistic hydrodynamical variables) have been
found to be reasonably accurate even in the strong-field regime
(Shibata & Sekiguchi 2003; Nagar et al. 2007; Cordero-Carrión
et al. 2012). For the gauge used in Vertex-CoCoNuT and the
typical conditions in a supernova core, it is possible to derive a
modified version of the time-integrated Newtonian quadrupole
formula (Finn 1989; Finn & Evans 1990; Blanchet et al. 1990)
directly from the field equations (see Appendix A). Assuming
axisymmetry, we obtain the quadrupole amplitude AE2

20 in non-
geometrized units for spherical polar coordinates as

AE2
20 = 32π3/2G√

15c4

∫
dθ drφ6r3 sin θ

×
{

∂

∂t
[Sr (3 cos2 θ − 1) + 3r−1Sθ sin θ cos θ ]

− [Ṡr,ν, (3 cos2 θ − 1) + 3r−1Ṡθ,ν sin θ cos θ ]
}
. (1)

Here φ is the (dimensionless) conformal factor for the three-
metric in the CFC spacetime, and Si denotes the covariant

components of the relativistic three-momentum density (in non-
geometrical units, i.e., Sr is given in g cm−2 s−1 and Sθ in
g cm−1 s−1) in the 3 + 1 formalism, which is given in terms
of the rest-mass density ρ, the specific internal energy ϵ, the
pressure P, the Lorentz factor W, and the covariant three-velocity
components vi as

Si = ρ(1 + ϵ/c2 + P/ρc2)W 2vi. (2)

Ṡi,ν denotes the momentum source term for Si due to neu-
trino interactions (which must be subtracted from ∂Si/∂t as
explained in Appendix A). In practice, these neutrino source
terms do not yield a significant contribution to the integral in
Equation (1).

AE2
20 determines the dimensionless strain measured by an

observer at a distance R and at an inclination angle Θ with
respect to the z-axis (see, e.g., Müller 1998),

h = 1
8

√
15
π

sin2 Θ
AE2

20

R
. (3)

In the following, we will always assume the most optimistic case
of an observer located in the equatorial plane, i.e., sin2 Θ = 1. In
addition to the GW signal from the matter, we compute the GW
signal due to anisotropic neutrino emission using the Epstein
formula (Epstein 1978; Müller & Janka 1997) for the GW
strain hν ,

hν = 2G

c4R

∫ t

0
Lν(t ′)αν(t ′) dt ′. (4)

Here Lν is the total angle-integrated neutrino energy flux, and
the anisotropy parameter αν can be obtained as

αν = 1
Lν

∫
π sin θ (2| cos θ | − 1)

dLν

dΩ
dΩ (5)

in axisymmetry (Kotake et al. 2007). hν can be converted into
an amplitude AE2

20,ν by inverting Equation (3).
The energy EGW radiated in GWs can be computed from

AE2
20,ν as follows (see, e.g., Müller 1998):

EGW = c3

32πG

∫ (
dAE2

20,ν

dt

)2

dt. (6)
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Table 1

Reference Gravity EOS Grid ⌫ Treatment s12 s15 s20 s25
Exp? texp [s] Exp? texp [s] Exp? texp [s] Exp? texp [s]

Bruenn et al. (2013) GREP LS220 Spherical MGFLD RxR+ Yes 0.236 Yes 0.233 Yes 0.208 Yes 0.212
Hanke (2014) GREP LS220 Spherical VEF RxR+ Yes 0.79 Yes 0.62 Yes 0.32 Yes 0.40
this work GREP LS220 Cylindrical MG M1 No – Yes 0.737 Yes 0.396 Yes 0.350
Dolence et al. (2015) NW H. Shen Cylindrical MGFLD No – No – No – No –
Suwa et al. (2014) NW LS220 Spherical IDSA RxR Yes 0.425 No – No – N/A N/A
this work NW LS220 Cylindrical MG M1 No – No – No – No –

Note. — GREP gravity is used to denote Newtonian hydrodynamic simulations with an effective, spherically symmetric, GR potential instead of the Newtonian
monopole term. NW gravity is pure Newtonian gravity. The LS220 EOS is the Lattimer & Swesty (1991) K0 = 220MeV EOS while H. Shen is the EOS from
Shen et al. (2011). The neutrino treatment in Bruenn et al. (2013) is multigroup flux-limited diffusion (MGFLD) and in Hanke (2014) is a two moment scheme
with the closure solved by a model Boltzmann equation. Both of these transport schemes use the the ray-by-ray+ (RxR+) approximation for the multidimensional
transport treatment where the transport is solved only in the radial direction (along rays). The ‘+’ refers to the addition of advection of neutrinos in the lateral
direction in optically thick regions. Dolence et al. (2015) use MGFLD as well, but solve the multidimensional transport directly. Suwa et al. (2014) employ
the isotropic diffusion source approximation, akin to MGFLD, and use the ray-by-ray approximation. Bruenn et al. (2013) defines the explosion time as the
postbounce time when the shock reaches 500 km. We use this definition for extracting the explosion time from Suwa et al. (2014). Hanke (2014) only shows
shock radius data to 400 km, therefore we use the postbounce time when the shock reaches this radius. However, this makes no qualitative difference since the
shock expansion is quite rapid at this time. We also show the results of this work. We use the abbreviation MG M1 to denote multigroup M1 neutrino transport.

moment evolution equations (i.e. ↵ = 1;@i� = 0). Finally,
⌘, a, and s are the neutrino emissivity, absorption opacity,
and scattering opacity, respectively, which depend on the lo-
cal density, temperature, and electron fraction as well as the
neutrino species and energy. For the remainder of this sec-
tion we describe the numerical techniques used to solve these
equations and the microphysics used to compute the neutrino
interaction coefficients.

Closure: To close the hierarchy of moment evolution equa-
tions after the first two moments, we must specify a closure
relation for the Eddington tensor Pi j in terms of the two lower
moments E and Fi. We choose the common M1 closure. In
regions where the radiation is isotropic, Pi j ⌘ Pi j

thick = �i jE/3
and in regions far from the source, Pi j ⌘ Pi j

thin = E(FiF j/F2).
Therefore, for our Eddington tensor, we choose a common
interpolation between these two limiting regimes,

Pi j =
3(1 -�)

2
Pi j

thick + 3�- 1
2

Pi j
thin , (12)

or, using the expressions mentioned above,

Pi j =


3(1 -�)
2

�i j

3
+ 3�- 1

2
FiF j

F2

�
E . (13)

In these equations � is taken to be

� =
1
3

+ 2
15

(3 f 2 - f 3 + 3 f 4) , (14)

where f ⌘ (FiFi/E2)1/2 is the flux factor. f is equal to 0 if the
radiation is isotropic, which gives a � = 1/3 and Pi j = Pi j

thick. f
is 1 if the radiation is fully forward peaked in some direction.
For this case, � = 1 and Pi j = Pi j

thin.
Explicit Fluxes: For computing the spatial flux terms on the

left hand side of Eq. 7-Eq. 11, we use finite differencing,

@x[↵rmFx] =
(↵rm)(k+1/2)F(k+1/2) - (↵rm)(k-1/2)F(k-1/2)

�x
, (15)

and

@x[↵rmPxi] =
(↵rm)(k+1/2)P i

(k+1/2) - (↵rm)(k-1/2)P i
(k-1/2)

�x
, (16)

where m is either 0,1,2. To obtain the interface fluxes F(k+1/2)
and P i

(k+1/2), we use the standard HLLE Riemann solver for

hyperbolic equations. For the flux evaluation at an interface
(k +1/2), we reconstruct E and Fi/E to both sides of the zone
interfaces using 2nd-order TVD (total variation diminishing)
interpolation. On both sides of the interface we recompute
the closure via Eq. (13) to obtain the cell interface values of
Pi j. The characteristic speeds for the Riemann solver are cal-
culated in a similar way as the closure in that we interpolate
between the optically thick and optically thin limits. First,
for each interface (characterized here by the direction k), we
determine the minimum and maximum speeds on each side
of the interface in both the optically thin and optically thick
limits. For the optically thick limit the choice is clear,

�(k)
thick,min = - 1p

3
;�(k)

thick,max = + 1p
3
. (17)

For the thin limit, and our choice of closure, the maximum
and minimum characteristic speeds are (Shibata et al. 2011)

�(k)
thin,min/max = min/max

✓
±Fk

p
FiFi

,E
Fk

FiFi

◆
. (18)

Next, to determine the maximum and minimum speed on each
side of the interface we interpolate between the optically thick
(�(k)

thick) and free streaming (�(k)
thin) regimes via,

�(k)
min/max =

3(1 -�)
2

�(k)
thick,min/max + 3�- 1

2
�(k)

thin,min/max . (19)

The final step to determine the minimum and maxi-
mum speeds for the Riemann solver is to take �(k),+ =
max(�(k),(R)

max ,�(k),(L)
max ) and �(k),- = min(�(k),(R)

min ,�(k),(L)
min ). Where

(R) and (L) denote the right and left side of the interface, re-
spectively.

With the reconstructed moments and minimum and maxi-
mum characteristic speeds in hand, the HLLE Riemann solu-
tion for the fluxes at the interface is then,

F(k+1/2),HLLE =
�(k),+Fk,(L) -�(k),-Fk,(R) +�(k),+�(k),-(E (R) - E (L))

�(k),+ -�(k),-
(20)

and

P j
(k+1/2),HLLE =

�(k),+P(L)
k j -�(k),-P(R)

k j +�(k),+�(k),-(F (R)
j - F (L)

j )
�(k),+ -�(k),-

(21)
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  weeks/postbounce	
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Fig. 1. Comparison of the mean supernova shock radius after bounce for 3D models
(solid lines) from leading neutrino transport codes using 15 M� [27] and 20 M�
[28] solar metallicity progenitor stars. Results of 2D (dashed lines) and 1D (dotted
lines) models are also shown.

the neutrino luminosity. A simplier approach is the lightbulb approximation
[10], where the neutrino transport calculation within the proto-neutron star
is replaced by a prescribed neutrino luminosity at the PNS surface.

The question of how well axisymmetric 2D models reflect the 3D reality
of CCSNe has been examined in a series of simulations using variations on
these simplified schemes. Nordhaus et al. [29] found 3D simulations to be
more favorable than 2D, producing explosions at lower neutrino luminosi-
ties, a view supported, though tempered, by Burrows et al. [30] and Dolence
et al. [31]. In contrast, Hanke et al. [32], Couch [33] and Couch & Ott [7]
find 3D to be, at best, neutral compared to 2D, and likely pessimistic. How-
ever, “light-bulb” and leakage schemes do not include the complete feedback
provided by self-consistent transport methods.

Takiwaki et al. [34, 35] have shown that 3D models using the isotropic
di↵usion source approximation (IDSA) scheme for spectral neutrino trans-

20	
  M	
  

15	
  M	
  

Similari;es	
  in	
  the	
  qualita;ve	
  behavior	
  of	
  2D	
  models,	
  and	
  3D	
  models,	
  obtained	
  by	
  the	
  MPA	
  and	
  	
  
Oak	
  Ridge	
  groups	
  is	
  evident	
  in	
  the	
  above	
  graph.	
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Transport 
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≈“Shock	
  
Revival”	
  

3D CORE-COLLAPSE SUPERNOVA SIMULATION 3
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Figure 3. a) Net neutrino heating in the gain region. b) νe (solid), ν̄e (dashed), and νµτ (dash-dotted) total luminosities at 1000 km. c) Neutrino heating
efficiencies. d) (inward) Accretion rates at gain radius (solid) and shock (dash-dotted). e) Advection–heating time scale ratio, τadv/τheat. f) Turbulent kinetic
energy. Data for C15-2D is averaged with a 25-point boxcar (∼8 ms). Plotted using colors of Figure 1.

indicating earlier shock revival and explosion. The shock
for C15-1D, which lacks multi-dimensional flows, reaches a
maximum radius of ≈180 km at ≈80 ms and recedes there-
after, typical of 1D CCSN simulations.

The shock in C15-2D expands rapidly from ≈230 ms on-
ward (Figure 1), with the diagnostic energy10 E+ (Figure 2a)
simultaneously becoming positive. E+ surpasses 0.01 B by
250 ms and grows rapidly thereafter. For C15-3D, the first ev-
idence of potential explosion begins with an increased growth

10 following B2014, E+ is defined as the integral of the total energy (ther-
mal, kinetic, and gravitational) in all zones of the cavity where locally posi-
tive.

of Rshock at ≈280 ms, accelerating after ≈350 ms, as the
largest buoyant plume expands, leading to a small, but grow-
ing E+.

The explosion is clearly more energetic in C15-2D at all
times (Figure 2a). We evaluate the growth of E+ over a com-
mon period beginning when Rshock exceeds 500 km and end-
ing 45 ms later. For C15-3D, Rshock passes 500 km at 393 ms
when E+ is 0.034 B, which grows to 0.067 B at 438 ms when
Rshock is 735 km. For C15-2D, Rshock exceeds 500 km at
278 ms when E+ is 0.041 B, which grows to 0.147 B at
323 ms when Rshock reaches 900 km. Over this 45 ms com-
parison period, the E+ growth rate is 0.73 B s−1 for C15-3D

What	
  are	
  the	
  amplitudes,	
  varia;ons,	
  
and	
  ;me	
  scales	
  of	
  the	
  accre;on	
  
signatures?	
  

What	
  are	
  the	
  explosion	
  ;me	
  scales	
  	
  
-­‐	
  i.e.,	
  when	
  does	
  the	
  cooling	
  phase	
  begin	
  
	
  	
  for	
  each	
  progenitor?	
  

What	
  are	
  the	
  late-­‐;me	
  neutrino	
  signatures	
  	
  
-­‐	
  i.e.,	
  the	
  signature	
  at	
  O(10)	
  s?	
  

What	
  is	
  the	
  impact	
  of	
  neutrino	
  mixing	
  on	
  
all	
  of	
  the	
  above?	
  



o  The	
  absolute	
  flux	
  from	
  the	
  neutroniza;on	
  burst.	
  
	
  

•  Will	
  allow	
  us	
  to	
  discriminate	
  between	
  different	
  EOS.	
  

o  The	
  ms-­‐scale	
  structure	
  of	
  the	
  emission	
  from	
  the	
  accre;on	
  phase	
  (convec;on	
  vs.	
  SASI).	
  
	
  

•  We	
  need	
  at	
  least	
  1	
  ms	
  ;ming	
  resolu;on	
  to	
  discern	
  the	
  feature	
  that	
  precedes	
  the	
  
	
  	
  	
  	
  	
  	
  neutroniza;on	
  burst,	
  which	
  depends	
  on	
  the	
  symmetry	
  energy,	
  as	
  well	
  as	
  the	
  	
  
	
  	
  	
  	
  	
  	
  neutroniza;on	
  peak.	
  
	
  
•  We	
  need	
  1	
  ms	
  ;ming	
  to	
  resolve	
  well	
  the	
  O(10	
  ms)	
  SASI	
  cycle	
  ;me.	
  

o  10%	
  energy	
  resolu;on	
  is	
  sufficient.	
  
	
  
o  Need	
  SnowGlobes	
  to	
  handle	
  neutrino	
  energies	
  above	
  100	
  MeV.	
  



We	
  can	
  provide	
  	
  

o  raw	
  luminosity	
  spectra	
  as	
  a	
  func;on	
  of	
  ;me,	
  

o  our	
  output	
  from	
  SnowGlobes,	
  

o  our	
  alpha	
  fit	
  (2-­‐alpha	
  fit	
  as	
  a	
  func;on	
  of	
  ;me).	
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Mixing	
  washes	
  out	
  details	
  of	
  shock	
  revival	
  	
  
and	
  dynamics.	
  
	
  
Reconstruc;on	
  of	
  raw	
  signature	
  will	
  be	
  	
  
necessary.	
  

Messer,	
  Devo5e,	
  et	
  al.	
  In	
  prepara5on.	
  

Oak	
  Ridge	
  group	
  evolves	
  both	
  the	
  neutrino	
  and	
  the	
  an;neutrino	
  distribu;ons	
  for	
  all	
  3	
  flavors.	
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  et	
  al.	
  In	
  prepara5on.	
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inside the PNS. The low-frequency component arises from
the modulations in the shock radius as the SASI develops
and evolves. The high-frequency component is generated
when the SASI-induced accretion flows strike the PNS
surface (Fig. 3). It is clear from the analysis of the
contributions to the strain from r < 50 km and r >
50 km that the PNS convection, deceleration of the
accreting matter at the PNS surface, and neutrino-driven
convection in the gain region contribute significantly.
The shock modulations affect the kinetic energy of the

accretion flows and, consequently, the amplitude of the
GWs generated when these flows hit the PNS surface.
The signal structure during the strong signal phase in both
B12-WH07 and B15-WH07 is similar to that in the
corresponding A-series models. However, this is not the
case for B25-WH07 and A25-WH07. The beginning of
the strong signal phase in A25-WH07 is ∼50 ms behind
that in B25-WH07, which indicates an earlier development
of neutrino-driven convection and SASI activity in the latter
model. The peak amplitude in B25-WH07 is twice as large
as it is in A25-WH07.

The peak frequency of the signal grows almost linearly
from 100 Hz up to 1000 Hz during the strong signal phase
(right panels of Fig. 1). We see the same trend in frequency
evolution, with a similar slope, in the M15 model from
Müller et al. [8], which is the closest to our B15-
WH07 model.

D. Explosion phase

All of our GW signals end with a slowly increasing tail,
which reflects the (linear) gravitational memory associated
with accelerations at the prolate outgoing shock. The
noticeable decrease of the high-frequency component of
the amplitude during the explosion phase (most pro-
nounced for model B12-WH07 at 520 ms) is due to the
cessation of active accretion onto the PNS surface (Fig. 4).
The time of the cessation coincides, within a width of the
STFTwindow, with the time when the frequency reaches its
maximum value, for all of our models except B20-WH07
(Fig. 1). B20-WH07 has a different explosion morphology.
A single downstream is formed in all of our models except
B20-WH07 in the early SASI phase. This downstream
produces the local large amplitude spikes in the GW strain
by its deceleration at the PNS surface. The downflow also
induces the l=2 mode of the mass distribution deep in the
PNS, which enables high-frequency PNS convection to
contribute to the GW signal. Thus, PNS convection is
responsible for the high-frequency component of the GW
waveform. Termination of the single accretion stream leads
to a significant decrease in both the frequency and the
amplitude of the GW signal. In B20-WH07, multiple
downstreams are formed during the SASI phase. This
prevents the establishment of a more precise correlation
between the changes of the accretion flow and the asso-
ciated changes of the waveform amplitude and peak
frequency. The typical frequency in B20-WH07 starts to
decrease when the first accretion downflow detaches from
the surface of the PNS (∼500 ms) while other downstreams
continue to perturb the PNS and thus support the high-
frequency and the amplitude of the B20-WH07 signal
(Fig. 5), until the moment when the last accretion downflow
becomes detached from the PNS surface (∼630 ms). After
the cessation of accretion, the GW signal in all of our
models is essentially generated by the shock only. The tails
continue to rise until they reach their saturation values at
700–1000 ms, depending on the model and its prolateness.
The total emitted GW energy is shown in Fig. 6. The

values of the GW energy emitted in the B-series models
presented here are very close to what we predicted in the A-
series models presented in Ref. [45]. Due to the “anoma-
lous” evolution of model B20-WH07, we do not observe a
simple correlation between the progenitor mass and the
total energy emitted in gravitational waves. The GWenergy
emitted is a function of the complex explosion dynamics—
in particular, the number and characteristics of the accretion
streams that form during the preexplosion and explosion

FIG. 3 (color online). Top: The entropy distribution for the
B15-WH07 model inside the PNS at 228 ms after bounce.
Downflows onto and convective activity inside the high-density
region produce the strongest GW signal. Bottom: The GW
waveforms, Dhþ vs time, showing the contributions of three
regions: r < 50 km, r > 50 km and r > 500 km. The latter
region shows the contribution due to shock expansion.
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Gravita5onal	
  wave	
  signal	
  is	
  dominated	
  by	
  
the	
  SASI	
  and	
  the	
  SASI-­‐induced	
  accre5on	
  flows	
  	
  
impinging	
  on	
  the	
  PNS	
  surface.	
  

	
  
•  Evidence	
  of	
  the	
  SASI.	
  

Explosion	
  is	
  imprinted	
  in	
  the	
  signal	
  as	
  well.	
  
	
  
•  Explosion	
  5me	
  scale.	
  
•  Progenitor.	
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