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�  Neutrino Heating 
�  Convection 
�  SASI 
____________ 
 
�  Nuclear Burning 
�  Rotation 
�  Magnetic Fields 

Fundamental Building Blocks 

Elements of Neutrino Shock Reheating 



Blondin, Mezzacappa, & DeMarino, Ap.J. 584, 971 (2003) 

SASI has axisymmetric and nonaxisymmetric modes  
that are both linearly unstable! 

– Blondin and Mezzacappa, Ap.J. 642, 401 (2006) 
– Blondin and Shaw, Ap.J. 656, 366 (2007) 

Shock wave unstable to non-radial perturbations.

shock
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Neutrino heating depends on  
neutrino luminosities, spectra,  
and angular distributions. 

➠ Must compute neutrino distribution functions. 

f (t, r,θ,φ,E,θ p,φp )

ER (t, r,θ,φ,E) = dθ p∫ dφp f

FR
i (t, r,θ,φ,E) = dθ p∫ dφp n

i f

Multifrequency 
Multiangle 

Multifrequency 
(solve for  

lowest-order  
multifrequency 

angular moments: 
energy and momentum  

density/frequency) 
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Requires a closure prescription: 
•  MGFLD 
•  MGVEF/MGVET 



€ 

e−(+) + p(n),A↔ν e (ν e ) + n(p),A'
e+ + e− ↔ν e,µ,τ + ν e,µ,τ

v + n, p,A→ v + n, p,A

v + e−,e+ → v + e−,e+

N + N↔ N + N + ν e,µ,τ + ν e,µ,τ

ν e + ν e ↔ν µ,τ + ν µ,τ

¬ 	  	  

Reddy, Prakash, and Lattimer, PRD, 58, 013009 (1998) 
Burrows and Sawyer, PRC, 59, 510 (1999) 

•  (Small) Energy is exchanged due to nucleon recoil. 
•  Many such scatterings. 

Hannestadt and Raffelt, Ap.J. 507, 339 (1998) 
Hanhart, Phillips, and Reddy, Phys. Lett. B, 499, 9 (2001)  

•  New source of neutrino-antineutrino pairs. 

“Standard” Emissivities/Opacities 

¬ 	  	  

Bruenn, Ap.J. Suppl. (1985)  
•  Nucleons in nucleus independent. 
•  No energy exchange in nucleonic scattering.	  

Langanke et al. PRL, 90, 241102 (2003) 
•  Include correlations between nucleons in nuclei. 

Janka et al. PRL, 76, 2621 (1996)
Buras et al. Ap.J., 587, 320 (2003)

¬ 	  	  
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Bruenn, DeNisco, and Mezzacappa, Ap.J. 560, 326 (2001) 
Liebendoerfer et al. Ap.J. 620, 840 (2005) 

25 M Model

15 M Model

€ 

ds2 = −α 2dt 2 +
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1.	  Geometric	  Effects	  
2.	  Special	  Rela5vis5c	  Effects	  
3.	  General	  Rela5vis5c	  Effects	  

1.  What	  equa;ons	  to	  use	  for	  the	  neutrino	  radia;on	  hydrodynamics	  is	  nontrivial.	  
2.  Discre;za;ons	  must	  be	  chosen	  to	  ensure	  number	  and	  energy	  conserva;on	  simultaneously.	  

Spa$al	  
Dimensions	  

Newtonian	  
or	  GR	  

1	   2	   3	   Par$al	  Weak	  
Interac$ons	  
(Thompson	  
et	  al.	  (2003))	  

Complete	  
Weak	  
Interac$ons	  

Label	  

Lentz	  et	  al.	  
(2012)	  

1	   GR	   X	   X	   X	   X	   GR-‐Full	  Op	  

OC	  et	  al.	  
(2008)	  

2	   Newtonian	   X	   X	  

Sumiyoshi	  and	  
Yamada	  
(2012)	  

3	   Newtonian	   X	   X	  
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Collision	  Term	  Conserva;ve	  treatment	  presents	  a	  significant	  challenge.	  
•  Liebendoerfer	  et	  al.	  2004.	  ApJ	  Suppl.	  150	  263	  
•  Cardall	  &	  Mezzacappa	  2003	  PRD	  68	  023006	  	  
•  Cardall,	  Endeve,	  &	  Mezzacappa	  2013	  PRD	  87	  103004	  
•  Cardall,	  Endeve,	  &	  Mezzacappa	  2013	  PRD	  88	  023011	  



0 20 40 60 80 100 120 140
post-bounce time [ms]

0

50

100

150

200

Sh
oc

k 
ra

di
us

 [k
m

]

GR-FullOp
N-FullOp
N-ReducOp
N-ReducOp-NOC

Lentz	  et	  al.	  Ap.J.	  747,	  73	  (2012)	  

ReducOp	  =	  Bruenn	  (1985)	  –	  NES	  +	  Bremsstrahlung	  (no	  neutrino	  energy	  scaWering,	  IPM	  for	  nuclei)	  
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See also B. Mueller et al. 2012. Ap.J. 756, 84 and O’Connor and Couch (2015)  
for a comparison in the context of 2D models, with similar conclusions. 
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2D	  Mul5-‐
Frequency	  (3D)	  

Models	  

Newtonian	  

Ray-‐by-‐Ray	  
Transport	  

Single	  Flavor	  

Par5al	  Weak	  
Physics	  

Suwa	  et	  al.	  (2016)	  

Three	  Flavor	  

Par5al	  Weak	  
Physics	  

Takiwaki	  et	  al.	  
(2014),	  Nakamura	  

et	  al.	  (2014)	  

2D	  Transport	  

Single	  Flavor	  

Par5al	  Weak	  
Physics	  

Pan	  et	  al.	  (2016)	  

Three	  Flavor	  

Par5al	  Weak	  
Physics	  

Dolence	  et	  al.	  
(2014)	  

General	  
Rela5vis5c	  

Ray	  by	  Ray	  
Transport	  

Three	  Flavor	  

Full	  Weak	  Physics	  

Mueller	  et	  al.	  
(2012,	  2013,	  

2014)	  

Bruenn	  et	  al.	  
(2013,	  2016)	  

2D	  Transport	  
without	  

Rela5vis5c	  Terms	  

Three	  Flavor	  

Par5al	  Weak	  
Physics	  

O’Connor	  and	  
Couch	  (2015)	  
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3D	  Mul5-‐Frequency	  
(4D)	  Models	  

Newtonian	  

Ray-‐by-‐Ray	  Transport	  

Single	  Flavor	  

Par5al	  Weak	  Physics	  

Takiwaki	  et	  al.	  (2012,	  
2014)	  

General	  Rela5vis5c	  

Ray	  by	  Ray	  Transport	  

Three	  Flavor	  

Full	  Weak	  Physics	  

Hanke	  et	  al.	  (2013),	  
Tamborra	  et	  al.	  
(2013,	  2014),	  

Melson	  et	  al.	  (2015)	  

Lentz	  et	  al.	  (2015)	  

Progenitor	  Masses	  Used	  
	  
•  Takiwaki	  et	  al.	  11.2	  M	  	  
•  Lentz	  et	  al.	  15	  M	  
•  Hanke,	  Tamborra,	  Melson	  	  
	  	  	  	  	  et	  al.	  9.6,	  11.2,	  20,	  27	  M	  
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Solve a number of spherically 
symmetric problems. 
 
In spherical symmetry, RbR 
is exact. 

Do	  accre;on	  hot	  spots	  persist?	  
	  
As	  the	  angular	  resolu;on	  is	  increased,	  
RbR	  will	  approach	  non-‐RbR	  for	  a	  central	  
source.	  
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Measured neutron star masses with 1-σ errors. References in parentheses following source names are identified in Table 1.
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Table 1
Model Setup

Model Progenitor Neutrino Treatment of Simulated Angular Explosion Time of EOS
Opacities Relativity Post-bounce Time Resolution Obtained Explosiona

G8.1 u8.1 Full set GR hydro + xCFC 325 ms 1.◦4 Yes 175 ms LS180
G9.6 z9.6 Full set GR hydro + xCFC 735 ms 1.◦4 Yes 125 ms LS220
G11.2 s11.2 Full set GR hydro + xCFC 950 ms 2.◦8 Yes 213 ms LS180
G15 s15s7b2 Full set GR hydro + xCFC 775 ms 2.◦8 Yes 569 ms LS180
S15 s15s7b2 Reduced set GR hydro + xCFC 474 ms 2.◦8 No . . . LS180
M15 s15s7b2 Full set Newtonian + modified potential 517 ms 2.◦8 No . . . LS180
N15 s15s7b2 Full set Newtonian (purely) 525 ms 1.◦4 No . . . LS180
G25 s25.0 Full set GR hydro + xCFC 440 ms 1.◦4 No . . . LS220
G27 s27.0 Full set GR hydro + xCFC 765 ms 1.◦4 Yes 209 ms LS220

Note. a Defined as the point in time when the average shock radius ⟨rsh⟩ reaches 400 km.

explode rather early and exhibit convective activity only on a
moderate level after the onset of the explosion. The 11.2 M⊙
model G11.2 shows a much slower expansion of the shock and
several violent shock oscillations before the explosion takes
off. Model G15 develops a very asymmetric explosion as late as
∼450 ms. The more massive 25 M⊙ and 27 M⊙ models G25 and
G27 differ from the other models by more clearly discernible
SASI activity, visible as strong periodic sloshing motions of
the shock in Figure 1, which lead to an explosion in the case
of G27. We note that no explosion develops in the simulations
without general relativity and/or the full neutrino rates (M15,
N15, S15).

A summary of all nine models considered in this paper is
given in Table 1. For a detailed discussion of models G11.2 and
G15, see Müller et al. (2012b), and for details on G8.1 and G27,
see Müller et al. (2012a).

3. GRAVITATIONAL WAVE EXTRACTION

The xCFC approximation used in Vertex-CoCoNuT does
not allow for a direct calculation of GWs as the correspond-
ing degrees of freedom in the metric are missing. We therefore
need to extract GWs in a post-processing step with the help
of some variant of the Einstein quadrupole formula (Einstein
1918). Modified versions of the Newtonian quadrupole for-
mula (exploiting ambiguities concerning the identification of
Newtonian and relativistic hydrodynamical variables) have been
found to be reasonably accurate even in the strong-field regime
(Shibata & Sekiguchi 2003; Nagar et al. 2007; Cordero-Carrión
et al. 2012). For the gauge used in Vertex-CoCoNuT and the
typical conditions in a supernova core, it is possible to derive a
modified version of the time-integrated Newtonian quadrupole
formula (Finn 1989; Finn & Evans 1990; Blanchet et al. 1990)
directly from the field equations (see Appendix A). Assuming
axisymmetry, we obtain the quadrupole amplitude AE2

20 in non-
geometrized units for spherical polar coordinates as

AE2
20 = 32π3/2G√

15c4

∫
dθ drφ6r3 sin θ

×
{

∂

∂t
[Sr (3 cos2 θ − 1) + 3r−1Sθ sin θ cos θ ]

− [Ṡr,ν, (3 cos2 θ − 1) + 3r−1Ṡθ,ν sin θ cos θ ]
}
. (1)

Here φ is the (dimensionless) conformal factor for the three-
metric in the CFC spacetime, and Si denotes the covariant

components of the relativistic three-momentum density (in non-
geometrical units, i.e., Sr is given in g cm−2 s−1 and Sθ in
g cm−1 s−1) in the 3 + 1 formalism, which is given in terms
of the rest-mass density ρ, the specific internal energy ϵ, the
pressure P, the Lorentz factor W, and the covariant three-velocity
components vi as

Si = ρ(1 + ϵ/c2 + P/ρc2)W 2vi. (2)

Ṡi,ν denotes the momentum source term for Si due to neu-
trino interactions (which must be subtracted from ∂Si/∂t as
explained in Appendix A). In practice, these neutrino source
terms do not yield a significant contribution to the integral in
Equation (1).

AE2
20 determines the dimensionless strain measured by an

observer at a distance R and at an inclination angle Θ with
respect to the z-axis (see, e.g., Müller 1998),

h = 1
8

√
15
π

sin2 Θ
AE2

20

R
. (3)

In the following, we will always assume the most optimistic case
of an observer located in the equatorial plane, i.e., sin2 Θ = 1. In
addition to the GW signal from the matter, we compute the GW
signal due to anisotropic neutrino emission using the Epstein
formula (Epstein 1978; Müller & Janka 1997) for the GW
strain hν ,

hν = 2G

c4R

∫ t

0
Lν(t ′)αν(t ′) dt ′. (4)

Here Lν is the total angle-integrated neutrino energy flux, and
the anisotropy parameter αν can be obtained as

αν = 1
Lν

∫
π sin θ (2| cos θ | − 1)

dLν

dΩ
dΩ (5)

in axisymmetry (Kotake et al. 2007). hν can be converted into
an amplitude AE2

20,ν by inverting Equation (3).
The energy EGW radiated in GWs can be computed from

AE2
20,ν as follows (see, e.g., Müller 1998):

EGW = c3

32πG

∫ (
dAE2

20,ν

dt

)2

dt. (6)
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Table 1

Reference Gravity EOS Grid ⌫ Treatment s12 s15 s20 s25
Exp? texp [s] Exp? texp [s] Exp? texp [s] Exp? texp [s]

Bruenn et al. (2013) GREP LS220 Spherical MGFLD RxR+ Yes 0.236 Yes 0.233 Yes 0.208 Yes 0.212
Hanke (2014) GREP LS220 Spherical VEF RxR+ Yes 0.79 Yes 0.62 Yes 0.32 Yes 0.40
this work GREP LS220 Cylindrical MG M1 No – Yes 0.737 Yes 0.396 Yes 0.350
Dolence et al. (2015) NW H. Shen Cylindrical MGFLD No – No – No – No –
Suwa et al. (2014) NW LS220 Spherical IDSA RxR Yes 0.425 No – No – N/A N/A
this work NW LS220 Cylindrical MG M1 No – No – No – No –

Note. — GREP gravity is used to denote Newtonian hydrodynamic simulations with an effective, spherically symmetric, GR potential instead of the Newtonian
monopole term. NW gravity is pure Newtonian gravity. The LS220 EOS is the Lattimer & Swesty (1991) K0 = 220MeV EOS while H. Shen is the EOS from
Shen et al. (2011). The neutrino treatment in Bruenn et al. (2013) is multigroup flux-limited diffusion (MGFLD) and in Hanke (2014) is a two moment scheme
with the closure solved by a model Boltzmann equation. Both of these transport schemes use the the ray-by-ray+ (RxR+) approximation for the multidimensional
transport treatment where the transport is solved only in the radial direction (along rays). The ‘+’ refers to the addition of advection of neutrinos in the lateral
direction in optically thick regions. Dolence et al. (2015) use MGFLD as well, but solve the multidimensional transport directly. Suwa et al. (2014) employ
the isotropic diffusion source approximation, akin to MGFLD, and use the ray-by-ray approximation. Bruenn et al. (2013) defines the explosion time as the
postbounce time when the shock reaches 500 km. We use this definition for extracting the explosion time from Suwa et al. (2014). Hanke (2014) only shows
shock radius data to 400 km, therefore we use the postbounce time when the shock reaches this radius. However, this makes no qualitative difference since the
shock expansion is quite rapid at this time. We also show the results of this work. We use the abbreviation MG M1 to denote multigroup M1 neutrino transport.

moment evolution equations (i.e. ↵ = 1;@i� = 0). Finally,
⌘, a, and s are the neutrino emissivity, absorption opacity,
and scattering opacity, respectively, which depend on the lo-
cal density, temperature, and electron fraction as well as the
neutrino species and energy. For the remainder of this sec-
tion we describe the numerical techniques used to solve these
equations and the microphysics used to compute the neutrino
interaction coefficients.

Closure: To close the hierarchy of moment evolution equa-
tions after the first two moments, we must specify a closure
relation for the Eddington tensor Pi j in terms of the two lower
moments E and Fi. We choose the common M1 closure. In
regions where the radiation is isotropic, Pi j ⌘ Pi j

thick = �i jE/3
and in regions far from the source, Pi j ⌘ Pi j

thin = E(FiF j/F2).
Therefore, for our Eddington tensor, we choose a common
interpolation between these two limiting regimes,

Pi j =
3(1 -�)

2
Pi j

thick + 3�- 1
2

Pi j
thin , (12)

or, using the expressions mentioned above,

Pi j =


3(1 -�)
2

�i j

3
+ 3�- 1

2
FiF j

F2

�
E . (13)

In these equations � is taken to be

� =
1
3

+ 2
15

(3 f 2 - f 3 + 3 f 4) , (14)

where f ⌘ (FiFi/E2)1/2 is the flux factor. f is equal to 0 if the
radiation is isotropic, which gives a � = 1/3 and Pi j = Pi j

thick. f
is 1 if the radiation is fully forward peaked in some direction.
For this case, � = 1 and Pi j = Pi j

thin.
Explicit Fluxes: For computing the spatial flux terms on the

left hand side of Eq. 7-Eq. 11, we use finite differencing,

@x[↵rmFx] =
(↵rm)(k+1/2)F(k+1/2) - (↵rm)(k-1/2)F(k-1/2)

�x
, (15)

and

@x[↵rmPxi] =
(↵rm)(k+1/2)P i

(k+1/2) - (↵rm)(k-1/2)P i
(k-1/2)

�x
, (16)

where m is either 0,1,2. To obtain the interface fluxes F(k+1/2)
and P i

(k+1/2), we use the standard HLLE Riemann solver for

hyperbolic equations. For the flux evaluation at an interface
(k +1/2), we reconstruct E and Fi/E to both sides of the zone
interfaces using 2nd-order TVD (total variation diminishing)
interpolation. On both sides of the interface we recompute
the closure via Eq. (13) to obtain the cell interface values of
Pi j. The characteristic speeds for the Riemann solver are cal-
culated in a similar way as the closure in that we interpolate
between the optically thick and optically thin limits. First,
for each interface (characterized here by the direction k), we
determine the minimum and maximum speeds on each side
of the interface in both the optically thin and optically thick
limits. For the optically thick limit the choice is clear,

�(k)
thick,min = - 1p

3
;�(k)

thick,max = + 1p
3
. (17)

For the thin limit, and our choice of closure, the maximum
and minimum characteristic speeds are (Shibata et al. 2011)

�(k)
thin,min/max = min/max

✓
±Fk

p
FiFi

,E
Fk

FiFi

◆
. (18)

Next, to determine the maximum and minimum speed on each
side of the interface we interpolate between the optically thick
(�(k)

thick) and free streaming (�(k)
thin) regimes via,

�(k)
min/max =

3(1 -�)
2

�(k)
thick,min/max + 3�- 1

2
�(k)

thin,min/max . (19)

The final step to determine the minimum and maxi-
mum speeds for the Riemann solver is to take �(k),+ =
max(�(k),(R)

max ,�(k),(L)
max ) and �(k),- = min(�(k),(R)

min ,�(k),(L)
min ). Where

(R) and (L) denote the right and left side of the interface, re-
spectively.

With the reconstructed moments and minimum and maxi-
mum characteristic speeds in hand, the HLLE Riemann solu-
tion for the fluxes at the interface is then,

F(k+1/2),HLLE =
�(k),+Fk,(L) -�(k),-Fk,(R) +�(k),+�(k),-(E (R) - E (L))

�(k),+ -�(k),-
(20)

and

P j
(k+1/2),HLLE =

�(k),+P(L)
k j -�(k),-P(R)

k j +�(k),+�(k),-(F (R)
j - F (L)

j )
�(k),+ -�(k),-

(21)
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15	  M	  
LS	  (220)	  

Simula5on	  Stats	  
	  
•  64,800	  cores	  
•  35	  weeks/postbounce	  second	  
•  100	  M	  processor-‐hours/postbounce	  second	  

Lentz	  et	  al.	  2015.	  Ap.J.	  LeW.	  807,	  L31.	  
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Fig. 1. Comparison of the mean supernova shock radius after bounce for 3D models
(solid lines) from leading neutrino transport codes using 15 M� [27] and 20 M�
[28] solar metallicity progenitor stars. Results of 2D (dashed lines) and 1D (dotted
lines) models are also shown.

the neutrino luminosity. A simplier approach is the lightbulb approximation
[10], where the neutrino transport calculation within the proto-neutron star
is replaced by a prescribed neutrino luminosity at the PNS surface.

The question of how well axisymmetric 2D models reflect the 3D reality
of CCSNe has been examined in a series of simulations using variations on
these simplified schemes. Nordhaus et al. [29] found 3D simulations to be
more favorable than 2D, producing explosions at lower neutrino luminosi-
ties, a view supported, though tempered, by Burrows et al. [30] and Dolence
et al. [31]. In contrast, Hanke et al. [32], Couch [33] and Couch & Ott [7]
find 3D to be, at best, neutral compared to 2D, and likely pessimistic. How-
ever, “light-bulb” and leakage schemes do not include the complete feedback
provided by self-consistent transport methods.

Takiwaki et al. [34, 35] have shown that 3D models using the isotropic
di↵usion source approximation (IDSA) scheme for spectral neutrino trans-

20	  M	  

15	  M	  

Similari;es	  in	  the	  qualita;ve	  behavior	  of	  2D	  models,	  and	  3D	  models,	  obtained	  by	  the	  MPA	  and	  	  
Oak	  Ridge	  groups	  is	  evident	  in	  the	  above	  graph.	  
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Replace 1D RbR Transport with 3D (Lowest Angular Moments) Transport  

Will require ~3 days @ 1 
PF sustained. 
 
Strong scaling essential. 

Replace GR Monopole Correction with “Full” GR 

Replace 3D Moments Transport with 3D Boltzmann 
Transport 

Will require ~12 days @ 
1 EF sustained.  
 
~4000X more 
computationally 
intensive. 
 
Will there be enough 
memory? 

Replace 3D Boltzmann 
Transport with 3D 
Quantum Kinetics 

? 

What’s	  Next?	  



Cooling	  

Accre5on	  

CC	  

NC	  

≈“Shock	  
Revival”	  

3D CORE-COLLAPSE SUPERNOVA SIMULATION 3
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Figure 3. a) Net neutrino heating in the gain region. b) νe (solid), ν̄e (dashed), and νµτ (dash-dotted) total luminosities at 1000 km. c) Neutrino heating
efficiencies. d) (inward) Accretion rates at gain radius (solid) and shock (dash-dotted). e) Advection–heating time scale ratio, τadv/τheat. f) Turbulent kinetic
energy. Data for C15-2D is averaged with a 25-point boxcar (∼8 ms). Plotted using colors of Figure 1.

indicating earlier shock revival and explosion. The shock
for C15-1D, which lacks multi-dimensional flows, reaches a
maximum radius of ≈180 km at ≈80 ms and recedes there-
after, typical of 1D CCSN simulations.

The shock in C15-2D expands rapidly from ≈230 ms on-
ward (Figure 1), with the diagnostic energy10 E+ (Figure 2a)
simultaneously becoming positive. E+ surpasses 0.01 B by
250 ms and grows rapidly thereafter. For C15-3D, the first ev-
idence of potential explosion begins with an increased growth

10 following B2014, E+ is defined as the integral of the total energy (ther-
mal, kinetic, and gravitational) in all zones of the cavity where locally posi-
tive.

of Rshock at ≈280 ms, accelerating after ≈350 ms, as the
largest buoyant plume expands, leading to a small, but grow-
ing E+.

The explosion is clearly more energetic in C15-2D at all
times (Figure 2a). We evaluate the growth of E+ over a com-
mon period beginning when Rshock exceeds 500 km and end-
ing 45 ms later. For C15-3D, Rshock passes 500 km at 393 ms
when E+ is 0.034 B, which grows to 0.067 B at 438 ms when
Rshock is 735 km. For C15-2D, Rshock exceeds 500 km at
278 ms when E+ is 0.041 B, which grows to 0.147 B at
323 ms when Rshock reaches 900 km. Over this 45 ms com-
parison period, the E+ growth rate is 0.73 B s−1 for C15-3D

What	  are	  the	  amplitudes,	  varia;ons,	  
and	  ;me	  scales	  of	  the	  accre;on	  
signatures?	  

What	  are	  the	  explosion	  ;me	  scales	  	  
-‐	  i.e.,	  when	  does	  the	  cooling	  phase	  begin	  
	  	  for	  each	  progenitor?	  

What	  are	  the	  late-‐;me	  neutrino	  signatures	  	  
-‐	  i.e.,	  the	  signature	  at	  O(10)	  s?	  

What	  is	  the	  impact	  of	  neutrino	  mixing	  on	  
all	  of	  the	  above?	  



o  The	  absolute	  flux	  from	  the	  neutroniza;on	  burst.	  
	  

•  Will	  allow	  us	  to	  discriminate	  between	  different	  EOS.	  

o  The	  ms-‐scale	  structure	  of	  the	  emission	  from	  the	  accre;on	  phase	  (convec;on	  vs.	  SASI).	  
	  

•  We	  need	  at	  least	  1	  ms	  ;ming	  resolu;on	  to	  discern	  the	  feature	  that	  precedes	  the	  
	  	  	  	  	  	  neutroniza;on	  burst,	  which	  depends	  on	  the	  symmetry	  energy,	  as	  well	  as	  the	  	  
	  	  	  	  	  	  neutroniza;on	  peak.	  
	  
•  We	  need	  1	  ms	  ;ming	  to	  resolve	  well	  the	  O(10	  ms)	  SASI	  cycle	  ;me.	  

o  10%	  energy	  resolu;on	  is	  sufficient.	  
	  
o  Need	  SnowGlobes	  to	  handle	  neutrino	  energies	  above	  100	  MeV.	  



We	  can	  provide	  	  

o  raw	  luminosity	  spectra	  as	  a	  func;on	  of	  ;me,	  

o  our	  output	  from	  SnowGlobes,	  

o  our	  alpha	  fit	  (2-‐alpha	  fit	  as	  a	  func;on	  of	  ;me).	  
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Figure 3.12: Total Count vs. Time (Argon & Lead Interactions in 2D - NH)
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Figure 3.13: Total Count vs. Time (Argon & Lead Interactions in 3D - NH)
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Mixing	  washes	  out	  details	  of	  shock	  revival	  	  
and	  dynamics.	  
	  
Reconstruc;on	  of	  raw	  signature	  will	  be	  	  
necessary.	  

Messer,	  Devo5e,	  et	  al.	  In	  prepara5on.	  

Oak	  Ridge	  group	  evolves	  both	  the	  neutrino	  and	  the	  an;neutrino	  distribu;ons	  for	  all	  3	  flavors.	  



Messer,	  Devo5e,	  et	  al.	  In	  prepara5on.	  



Messer,	  Devo5e,	  et	  al.	  In	  prepara5on.	  



inside the PNS. The low-frequency component arises from
the modulations in the shock radius as the SASI develops
and evolves. The high-frequency component is generated
when the SASI-induced accretion flows strike the PNS
surface (Fig. 3). It is clear from the analysis of the
contributions to the strain from r < 50 km and r >
50 km that the PNS convection, deceleration of the
accreting matter at the PNS surface, and neutrino-driven
convection in the gain region contribute significantly.
The shock modulations affect the kinetic energy of the

accretion flows and, consequently, the amplitude of the
GWs generated when these flows hit the PNS surface.
The signal structure during the strong signal phase in both
B12-WH07 and B15-WH07 is similar to that in the
corresponding A-series models. However, this is not the
case for B25-WH07 and A25-WH07. The beginning of
the strong signal phase in A25-WH07 is ∼50 ms behind
that in B25-WH07, which indicates an earlier development
of neutrino-driven convection and SASI activity in the latter
model. The peak amplitude in B25-WH07 is twice as large
as it is in A25-WH07.

The peak frequency of the signal grows almost linearly
from 100 Hz up to 1000 Hz during the strong signal phase
(right panels of Fig. 1). We see the same trend in frequency
evolution, with a similar slope, in the M15 model from
Müller et al. [8], which is the closest to our B15-
WH07 model.

D. Explosion phase

All of our GW signals end with a slowly increasing tail,
which reflects the (linear) gravitational memory associated
with accelerations at the prolate outgoing shock. The
noticeable decrease of the high-frequency component of
the amplitude during the explosion phase (most pro-
nounced for model B12-WH07 at 520 ms) is due to the
cessation of active accretion onto the PNS surface (Fig. 4).
The time of the cessation coincides, within a width of the
STFTwindow, with the time when the frequency reaches its
maximum value, for all of our models except B20-WH07
(Fig. 1). B20-WH07 has a different explosion morphology.
A single downstream is formed in all of our models except
B20-WH07 in the early SASI phase. This downstream
produces the local large amplitude spikes in the GW strain
by its deceleration at the PNS surface. The downflow also
induces the l=2 mode of the mass distribution deep in the
PNS, which enables high-frequency PNS convection to
contribute to the GW signal. Thus, PNS convection is
responsible for the high-frequency component of the GW
waveform. Termination of the single accretion stream leads
to a significant decrease in both the frequency and the
amplitude of the GW signal. In B20-WH07, multiple
downstreams are formed during the SASI phase. This
prevents the establishment of a more precise correlation
between the changes of the accretion flow and the asso-
ciated changes of the waveform amplitude and peak
frequency. The typical frequency in B20-WH07 starts to
decrease when the first accretion downflow detaches from
the surface of the PNS (∼500 ms) while other downstreams
continue to perturb the PNS and thus support the high-
frequency and the amplitude of the B20-WH07 signal
(Fig. 5), until the moment when the last accretion downflow
becomes detached from the PNS surface (∼630 ms). After
the cessation of accretion, the GW signal in all of our
models is essentially generated by the shock only. The tails
continue to rise until they reach their saturation values at
700–1000 ms, depending on the model and its prolateness.
The total emitted GW energy is shown in Fig. 6. The

values of the GW energy emitted in the B-series models
presented here are very close to what we predicted in the A-
series models presented in Ref. [45]. Due to the “anoma-
lous” evolution of model B20-WH07, we do not observe a
simple correlation between the progenitor mass and the
total energy emitted in gravitational waves. The GWenergy
emitted is a function of the complex explosion dynamics—
in particular, the number and characteristics of the accretion
streams that form during the preexplosion and explosion

FIG. 3 (color online). Top: The entropy distribution for the
B15-WH07 model inside the PNS at 228 ms after bounce.
Downflows onto and convective activity inside the high-density
region produce the strongest GW signal. Bottom: The GW
waveforms, Dhþ vs time, showing the contributions of three
regions: r < 50 km, r > 50 km and r > 500 km. The latter
region shows the contribution due to shock expansion.

GRAVITATIONAL WAVE SIGNATURES OF PHYSICAL REVIEW D 92, 084040 (2015)

084040-7

Gravita5onal	  wave	  signal	  is	  dominated	  by	  
the	  SASI	  and	  the	  SASI-‐induced	  accre5on	  flows	  	  
impinging	  on	  the	  PNS	  surface.	  

	  
•  Evidence	  of	  the	  SASI.	  

Explosion	  is	  imprinted	  in	  the	  signal	  as	  well.	  
	  
•  Explosion	  5me	  scale.	  
•  Progenitor.	  

Yakunin	  et	  al.	  2015.	  Phys.	  Rev.	  D	  92,	  084040	  
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