

Gadolinium in Water Cherenkov Detectors Improves Detection of Supernova ν_e

Ranjan Laha

Kavli Institute of Particle Astrophysics and Cosmology (KIPAC) Stanford University SLAC National Accelerator Laboratory

Thanks to my collaborator: J. F. Beacom

1311.6407 PRD 89 (2014)6, 063007

Theoretical expectations

Neutrinos can be detected from Galactic supernova in large numbers

Ranjan Laha

Simplifying assumptions about supernova Total binding energy released in the explosion $\sim 3 \times 10^{53}$ erg

Total energy carried by each u (or $\bar{
u}$) flavor $\sim 5 imes 10^{52} {
m erg}$

Quasi-thermal neutrino spectrum $f(E_{\nu}) = \frac{128}{3} \frac{E_{\nu}^3}{\langle E_{\nu} \rangle^4} \exp\left(-\frac{4E_{\nu}}{\langle E_{\nu} \rangle}\right)$ $\langle E_{\nu_e} \rangle \approx 11 - 12 \,\text{MeV}$ $\langle E_{\bar{\nu}_e} \rangle \approx 14 - 15 \,\text{MeV}$

$$\langle E_{\nu_x} \rangle \approx 15 - 18 \,\mathrm{MeV}$$

At supernova energies, $\nu_{\mu} = \nu_{\tau}$ (and their antiparticles); denoted by ν_{x}

Neutrino mixing can change the average energies of the detected neutrinos (see talk by Friedland)

Supernova located at a distance of 10 kpc

Supernova neutrino detection: $\overline{\nu}_{e}$

 $\bar{\nu}_e + p \to e^+ + n$

water Cherenkov / liquid scintillator detector

- e^+ Detected by Cherenkov radiation/ scintillation
- $n\,$ Difficult to detect at present; future addition of Gadolinium will vastly improve the detection prospects

$$\sigma(E_{\nu}) \approx 0.0952 \times 10^{-42} \left(E_{\nu} - 1.3 \,\mathrm{MeV}\right)^2 \left(1 - \frac{7E_{\nu}}{m_p}\right) \,\mathrm{cm}^2$$

Vogel & Beacom 1999; Strumia & Vissani 2003

Threshold of interaction $E_{
u} > 1.8 \,\mathrm{MeV}$

 $T_e pprox E_
u \, - \, 1.8 \, {
m MeV}$ See talks by Benhar and Scholberg

 T_e : kinetic energy of the positron

$\bar{\nu}_e$ detection

- Neutron capture on free protons produces 2.2 MeV gamma-ray photon --- delay time ~ 200 $\mu {\rm sec}$ $n+p \rightarrow d+\gamma$
- Neutron capture on gadolinium produces ~ 8 MeV gamma-ray photons --- delay time ~ 20 µsec --- can be more reliably detected
 Beacom and Vagins PRL 2004
- Typical number of events in a SuperKamiokande detector (inner volume 32 kton) ~ 10⁴
- Detecting both the final products uniquely identifies this reaction
- Determine $\bar{\nu}_e$ properties to ~ 1%

Supernova neutrino detection: ν_e $\nu_e + e^- \rightarrow \nu_e + e^-$ Sensitive to all neutrino president ν_e detection: ν_e

Sensitive to all neutrino species; ν_e gives the largest number of events

Maximum number of events in water Cherenkov detectors

The electrons are forward scattered

Neutrino energy $E_{\nu} \rightarrow$ recoil electron energy ϵ

$$0, \ \frac{2E_{\nu}^2}{m_e + 2E_{\nu}} \bigg]$$

$$\sigma(E_{\nu}) \propto G_F^2 \, m_e E_{\nu}$$

Total number of events is approximately independent of the average energy of the incoming neutrino spectrum

$\nu_e + e^- \rightarrow \nu_e + e^-$

- Typical number of events in a Super-Kamiokande detector (inner volume 32 kton) ~ 200
- Even with angular cut, difficult to distinguish above backgrounds in the present configuration of Super-Kamiokande due to overwhelming large number of inverse beta backgrounds (128 signal events v/s 827 background events)
- Elastic scattering is also induced by other flavors but they are smaller

$\nu_e + {}^{16}\mathrm{O} \rightarrow e^- + {}^{16}\mathrm{F}^*$

- Very sensitive to the incoming neutrino energy
- Extremely sensitive probe of ν_e if it has a higher average energy due to mixing
- Presently undetectable in Super-Kamiokande detector (for decay of ¹⁶F* see Tuli "Nuclear Wallet Cards")
- Angular dependence of electrons is backward tilted
- At present, difficult to detect above background

Neutrino mixing

- In general extremely complicated in supernova environment
- Depends on both matter density and neutrino density
- Simplifying assumptions:
 (A) ⟨E_{νe}⟩ ≈ 12 MeV and ⟨E_{νx}⟩ ≈ 15 18 MeV
 (B) ⟨E_{νe}⟩ ≈ 15 18 MeV one flavor of ν_x has ⟨E_{νx}⟩ ≈ 12 MeV the other flavors of ν_x have ⟨E_{νx}⟩ ≈ 15 18 MeV

See talk by Friedland

Number of events in Super-Kamiokande (threshold = 3 MeV & fiducial volume = 32 kton) for a Galactic supernova for various different values of the average energies. Total energy of the supernova = 3×10^{53} erg & assuming equipartition between various neutrino flavors

Detection channel	$12 { m MeV}$	$15 \mathrm{MeV}$	$18 \mathrm{MeV}$
$\nu_e + e^- \rightarrow \nu_e + e^-$	188	203	212
$\bar{\nu}_e + e^- \rightarrow \bar{\nu}_e + e^-$	56	64	70
$\nu_x + e^- \rightarrow \nu_x + e^-$	60	64	68
$\bar{\nu}_x + e^- \rightarrow \bar{\nu}_x + e^-$	48	54	56
$\nu_e + {}^{16}\text{O} \to e^- + {}^{16}\text{F}^*$	16	70	202
$\bar{\nu}_e + p \to e^+ + n$	5662	7071	8345

Present difficulty in detecting ν_e

At present detecting $\bar{\nu}_e$ in water Cherenkov detectors is easy

Adding Gadolinium will make it easier (future)

Detecting ν_x is easiest in liquid scintillator detectors

The remaining is ν_e : how do we detect it?

Let us concentrate on the largest neutrino detector (at these energies) at present: Super-Kamiokande

ν_e has the largest electron elastic scattering cross section

Optimistic as $\nu_e + e^- \rightarrow \nu_e + e^$ gives the largest number of events ---- other events can only be subtracted statistically

Strategy to detect ν_e

Galactic Supernova happens

Assume (i) SuperKamiokande (water Cherenkov) with Gd loading, (ii) liquid scintillator detectors are present

- Forward cone contains most of the electron elastic scattering events
- Gd can individually detect and remove the inverse beta reactions in the forward cone
- Remaining inverse beta backgrounds can be statistically subtracted
- Use the information about ν_x and $\bar{\nu}_e$ to statistically subtract the electron scattering events due to these flavors
- Addition of Gd also helps in identifying $\nu_e^{16}O$ events

 $\langle E_{\nu_e} \rangle = 12 \,\mathrm{MeV}$ $\langle E_{\bar{\nu}_e} \rangle = 15 \,\mathrm{MeV}$

Addition of Gadolinium reduces the inverse beta background from ~827 to ~83

Signal and background both due to Galactic supernova

Effect of Gd on oxygen scattering events

Improvements for lower values of $\langle E_{\nu_e} \rangle$

Conclusions

- We show how to detect supernova ν_e in Gd loaded water Cherenkov detectors
- We use the directionality of $\nu_e e^-$ elastic scattering events and the individual detection and removal of inverse beta events using Gd to detect ν_e
- We can constrain the ν_e parameters to about 20%

Comments/ questions to rlaha@stanford.edu

Ranjan Laha

Variation of detected spectrum with different average energies

Supernova neutrino astrophysics

Stars must die --- we just do not know how

snap.lbl.gov

For massive stars (> $8 M_{\odot}$), most of the energy (~ 99%) is dissipated in neutrinos --- detecting them might solve the puzzle

Production of neutrinos and their average energies $\bar{\nu}_e + p \leftrightarrow n + e^+$ $\nu_e + n \leftrightarrow p + e^ N + N \leftrightarrow N + N + \nu + \bar{\nu} \quad \nu_e + \bar{\nu}_e \leftrightarrow \nu + \bar{\nu}$ $e^+ + e^- \leftrightarrow \nu + \bar{\nu}$

Lowest cross section of $\nu_x \twoheadrightarrow$ decouples from matter earliest \twoheadrightarrow highest average energy

Larger number of neutrons than protons $\not \rightarrow \nu_e$ decouples last $\not \rightarrow$ lowest average energy

 $ar{
u}_e$ has an average energy in between these two extremes

Flux and event rate

Time integrated flux for single flavor

$$\frac{dF}{dE_{\nu}} = \frac{1}{4\pi d^2} \frac{E_{\nu}^{\text{tot}}}{\langle E_{\nu} \rangle} f(E_{\nu})$$

Observed interaction rate

In broad agreement with the theoretical expectations

Too few events to properly utilize the information

Ranjan Laha

 Show slide from simulation showing average energy – etc. (from Shunsaku)

Supernova neutrino detection: u_x

 $u_x \,+\, p
ightarrow
u_x \,+\, p$ Detectable part of the

Liquid scintillator detector

interaction mainly provided by u_x

Recoil protons detected by scintillation light

Neutral current interaction \rightarrow sensitive to all flavors

1.5

Neutrino of energy E \rightarrow proton recoil energy $\epsilon \left[0, \frac{2E^2}{m_{\infty}}\right]$

Dasgupta & Beacom PRD

0.5

~66 events

Quenched Kinetic Energy T ' [MeV]

above T' = 0.2 MeV

2011

300

200

100

0

0

Events dN/dT ' [MeV⁻¹]

 $\frac{d\sigma}{dT} = \frac{4.83 \times 10^{-42} \,\mathrm{cm}^2}{\mathrm{MeV}} \left(1 + 466 \frac{T}{E^2}\right)$

T Recoil proton energy E Incoming neutrino energy

Detectable recoil proton spectrum in KamLAND

Smaller number of events in Borexino

Ranjan Laha

Variation of detected spectrum with different average energies

 $\nu_x + p \rightarrow \nu_x + p$

- Number of events above threshold ~ 100/ kton
- Lowering the threshold can give more events
- Sensitive to the incoming neutrino spectrum
- There are other ways to detect $\,\nu_x,\,{\rm but}$ they have smaller yields and not sensitive to the spectrum