Heavy Quark Spectroscopy: Surprises and Opportunities

Estia Eichten Fermilab

Outline

- HQET and NRQCD
 - heavy-light states
- Quarkonium and Threshold States
 - $(c\overline{c})$ and $(b\overline{b})$ states
 - Crossing the Threshold
 - New states, XYZ, ...
- Unexplored Territory
- Conclusions

QCD with Heavy Quarks

- QCD dynamics greatly simplifies for heavy quarks ($m_Q \gg \Lambda_{QCD}$)
- · For systems with heavy quarks and light quarks:
 - HQET: systematic expansion in powers of Λ_{QCD}/m_Q
 - Heavy-light systems: $(c\overline{q})$, $(b\overline{q})$, (cqq), (bqq), (ccq), (cbq), (bbq) for q=u,d or s
 - HQS relations between excitation spectrum in [(cq),(bq),(ccq),(bcq) and (bbq)] and between [(cqq) and (bqq)]
 - QED analog hydrogen atom (e⁻p)
- For nonrelativistic ($Q\overline{Q}$): bound states form with masses M near $2m_Q$:
 - NRQCD: systematic expansion in powers of v/c
 - Quarkonium systems: $(c\overline{c})$, $(b\overline{b})$, $(b\overline{c})$
 - heavy quark velocity: $p_Q/m_Q \approx v/c \ll 1$
 - binding energy: $2m_Q M \approx m_Q v^2/c^2$
 - QED analogs positronium (e^+e^-), (true) muonium ($\mu^-\mu^+$), muonium ($e^-\mu^+$)

- Full QCD Hamiltonian (Coulomb gauge)

$\mathcal{H}_{\text{QCD}} = \frac{1}{g^2} \int d^3x \left[\text{Tr}(\mathbf{E}^2) + \text{Tr}(\mathbf{B}^2) \right] + \sum_{Q=c,b,t} [\mathcal{H}_Q + \mathcal{H}_{Q_c}] + \sum_{f=u,d,s} \int d^3x \; \psi_f^\dagger \left[-i\alpha \cdot \mathbf{D} + \beta m_f \right] \psi_f$ $+ \frac{g^2}{4\pi} \int d^3x \int d^3y \left\{ J_a^0(x) \mathcal{G}(\mathbf{x}, \mathbf{y})_{ab} J_b^0(y) \right\} \quad \text{"QCD potential"}$

heavy quarks: $(1/m_Q)$ expansion HQET Leading behavior Static limit.

$$\mathcal{H}_{Q} = \int d^{3}x \; Q^{\dagger} \left((m_{Q} + \delta m_{Q}) - \frac{\mathbf{D}^{2}}{2m_{Q}} \right) Q \qquad \text{relativistic corrections}$$

$$- \int d^{3}x \; Q^{\dagger} \left[c_{4} \frac{1}{8m_{Q}^{3}} (\mathbf{D}^{2})^{2} + c_{d} \frac{1}{8m_{Q}^{2}} (\mathbf{D} \cdot \mathbf{E} - \mathbf{E} \cdot \mathbf{D}) \right] Q \qquad \text{spin independent}$$

$$- \int d^{3}x \; Q^{\dagger} \left[c_{f} \frac{1}{2m_{Q}} \sigma \cdot \mathbf{B} + c_{s} \frac{i}{8m_{Q}^{2}} \sigma \cdot (\mathbf{D} \times \mathbf{E} + \mathbf{E} \times \mathbf{D}) \right] Q + \dots \qquad \text{spin dependent}$$

$$- \int d^{3}x \; Q^{\dagger} \left[c_{f} \frac{1}{2m_{Q}} \sigma \cdot \mathbf{B} + c_{s} \frac{i}{8m_{Q}^{2}} \sigma \cdot (\mathbf{D} \times \mathbf{E} + \mathbf{E} \times \mathbf{D}) \right] Q + \dots \qquad \text{spin dependent}$$

$$- \int d^{3}x \; Q^{\dagger} \left[c_{f} \frac{1}{2m_{Q}} \sigma \cdot \mathbf{B} + c_{s} \frac{i}{8m_{Q}^{2}} \sigma \cdot (\mathbf{D} \times \mathbf{E} + \mathbf{E} \times \mathbf{D}) \right] Q + \dots \qquad \text{spin dependent}$$

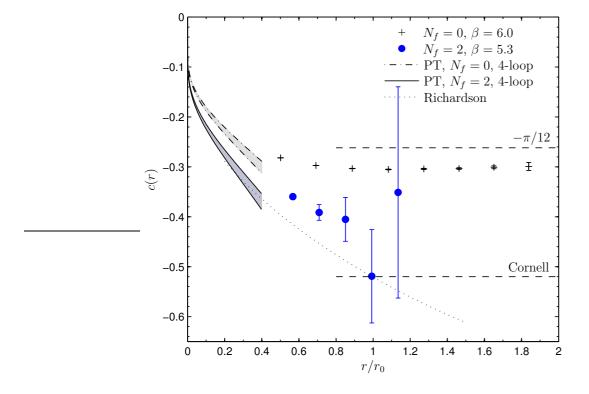
$$- \int d^{3}x \; Q^{\dagger} \left[c_{f} \frac{1}{2m_{Q}} \sigma \cdot \mathbf{B} + c_{s} \frac{i}{8m_{Q}^{2}} \sigma \cdot (\mathbf{D} \times \mathbf{E} + \mathbf{E} \times \mathbf{D}) \right] Q + \dots$$

non-local color current interaction

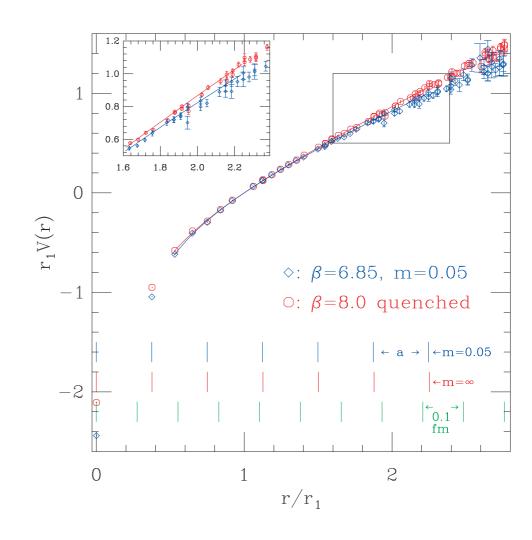
$$G_{ab}(\mathbf{x}, \mathbf{y}) = 4\pi < \mathbf{x}, a | \frac{1}{\nabla \cdot \mathbf{D}} \nabla^2 \frac{1}{\nabla \cdot \mathbf{D}} | \mathbf{y}, b > \rightarrow \frac{\delta_{ab}}{|\mathbf{x} - \mathbf{y}|} \text{ as } g \rightarrow 0$$

color charge density

$$J_a^0(\mathbf{x}) = \sum_{Q=c,b,t} [Q^\dagger(\mathbf{x}) t_a Q(\mathbf{x}) - Q_c^\dagger(\mathbf{x}) t_a^* Q_c(\mathbf{x})] + g f_{abc} \sum_i E_b^i(\mathbf{x}) A_c^i(\mathbf{x}) + \sum_{f=u,d,s} \psi_f^\dagger(\mathbf{x}) t_a \psi_f(\mathbf{x})$$

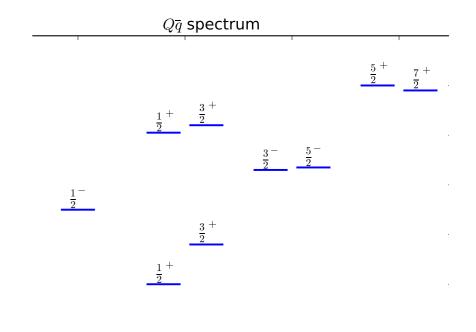

- Lattice QCD calculations include all these terms: light quark loops in 2+1 (+1) simulations

Static Limit

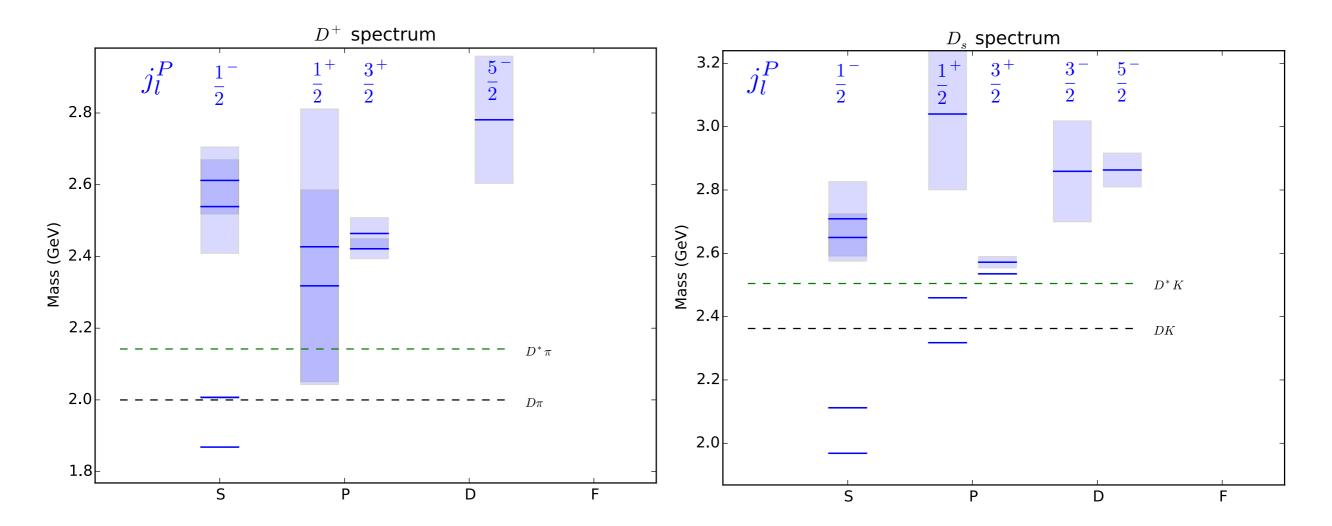

 LQCD calculations with and without 3 light quark loops

 More details of light quark effects on short distance piece of static energy.

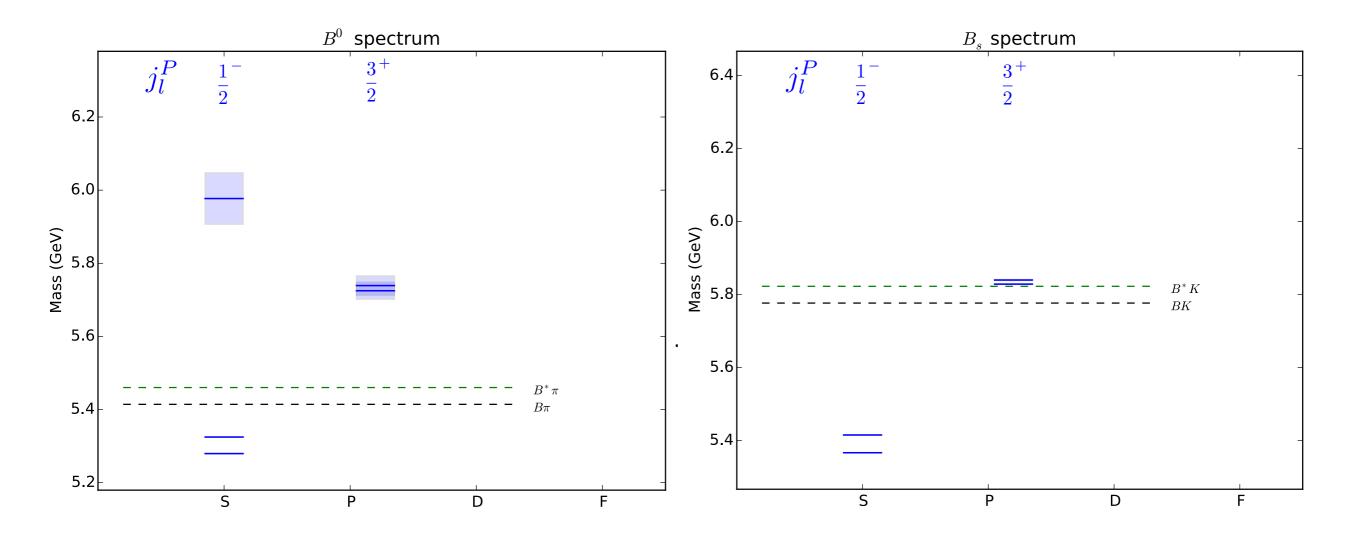
$$c(r) = \frac{1}{2}r^3 \frac{dV(r)}{dr} \xrightarrow{r \to 0} \frac{4}{3}\alpha(r)$$



M. Donnellan, F. Knechtli, B. Leder, R. Sommer NP B 849 (2011) 45 [arXiv:hep-lat/1012.3037]


C. W. Bernard *et al.*, Phys. Rev. D **62**, 034503 (2000) [arXiv:hep-lat/0002028]

- Heavy-light states: $(c\overline{u})$, $(c\overline{d})$, $(c\overline{s})$, $(b\overline{u})$, $(b\overline{d})$, $(b\overline{s})$, ...
 - The excitation spectrum is independent of $m_{\mathbb{Q}}$ in leading order.
 - States are classified by the total angular momentum of the light quark system (j_1) and the parity (P).
 - $J = j_1 \pm \frac{1}{2}$ doublets
 - The (Λ_{QCD}/m_Q) corrections include the kinetic energy of the heavy quark and spin dependent terms.
- Potential models for light quarks are not reliable:
 - Relativistic Quark Model (S. Godfrey and N. Isgur).
 Decay widths in recent work (S. Godfrey and K. Moats [arXiv:1510.08305])
 - Dirac Potential for light quarks (M. Di Pierro+EE)
 - Potential models failed to predict the $\frac{1}{2}$ P-wave states of the D_s system. D_s*(2317) and D_s(2460) narrow states.


- Observed states in D meson systems:

- HQS determines the ratios of hadronic transitions very useful in distinguishing excited states
- Various proposals for the shifts of the $D_s^*(2317)$ and $D_s(2460)$:
 - Influence of the nearby decay channels.
 - Chiral multiplets (0⁻,0⁺).
 - Threshold bound states of DK and D*K respectively.

HQL 2016 — 24 May 2016

- Observed states in the B meson systems:

- HQ5 relates the excitation spectrum in the D system to the B system.
- Various models will be disentangled when the narrow B_s ($j^P = \frac{1}{2}$) states are observed.

Important to observe the B_s ($j^P = \frac{1}{2}$) states

Lattice expectations:

Table 5: Comparison of masses from this work to results from various model based calculations; all masses in MeV.

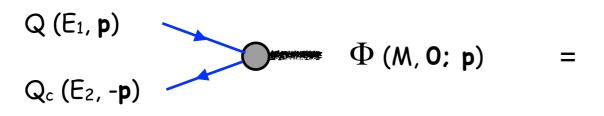
1P	0+	1+
	0+	1.
Covariant (U)ChPT [24]	5726(28)	5778(26)
NLO UHMChPT [19]	5696(20)(30)	5742(20)(30)
LO UChPT [17, 18]	5725(39)	5778(7)
LO_{χ} -SU(3) [16]	5643	5690
HQET + ChPT [20]	5706.6(1.2)	5765.6(1.2)
Bardeen, Eichten, Hill [15]	5718(35)	5765(35)
rel. quark model [5]	5804	5842
rel. quark model [22]	5833	5865
rel. quark model [23]	5830	5858
HPQCD [30]	5752(16)(5)(25)	5806(15)(5)(25)
this work	5713(11)(19)	5750(17)(19)

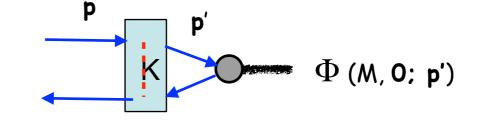
C. B. Lang, Daniel Mohler, Sasa Prelovsek, R. M. Woloshyn [arXiv:1501.01646]

LQCD calculation includes the mixing of the two meson thresholds.

Branching fractions:

system	transition	Q(keV)	overlap	dependence	$\Gamma (\text{keV})$
$\overline{(b\overline{s})}$	$0^+ \to 1^- + \gamma$	293	2.536	$r_{\overline{b}s}$	58.3
	$0^+ \to 0^- + \pi^0$	297		$G_A \delta_{\eta \pi 0}$	21.5
	total				79.8
$\overline{(b\overline{s})}$	$1^+ \to 0^+ + \gamma$	47	0.998	$r'_{\overline{b}s}$	0.061
	$1^+ \to 1^- + \gamma$	335	2.483	$r_{\overline{b}s}$	56.9
	$1^+ \to 0^- + \gamma$	381	2.423	$r_{\overline{b}s}$	39.1
	$1^+ \to 1^- + \pi^0$	298		$G_A \delta_{\eta \pi 0}$	21.5
	$1^+ \to 0^- + 2\pi$	125		$g_A \delta_{\sigma_1 \sigma_3}$	0.12
	total				117.7


W.Bardeen, E.E., C. Hill PR D68 054024 (2003) [hep-ph/0305049]


Quarkonium States

- Threshold bound states
 - let O_A be a local operator coupling to QQ_c with bare vertex Γ the full vertex function satisfies the equation:

- where K is the two body irreducible kernel
- if a bound state exists in this channel then for E_1 + E_2 near the mass M of the bound state the pole should dominate.
- So the bound state equation becomes

Estia Eichten

- In QED to leading order in (1/m)
 - the kernel K is just the Coulomb exchange

$$\Phi(M, \mathbf{0}, \mathbf{p}) = -\frac{\alpha_{\text{EM}}}{2\pi^2} \int d^3p' \frac{1}{(\mathbf{p} - \mathbf{p}')^2} \left[\frac{1}{\sqrt{m_1^2 + \mathbf{p}'^2} + \sqrt{m_2^2 + \mathbf{p}'^2} - M} \right] \Phi(M, \mathbf{0}, \mathbf{p}')$$

• But $a_{EM} \ll 1$ -> no solutions unless:

$$\sqrt{m_1^2 + {\bf p'}^2} + \sqrt{m_2^2 + {\bf p'}^2} - M = (m_1 + m_2 - M) + \frac{{\bf p^2}}{\mu_R} + \dots << m_1 + m_2$$

$$E(\text{binding}) \sim \frac{v_{\text{rel}}^2}{2\mu_R}$$

$${\bf p}, {\bf p'} \sim v_{\text{rel}}\mu_R$$

- Non relativistic states with natural expansion in v/c ≈α_{EM}
- Schrödinger Equation:

$$\Psi(M, \mathbf{0}, \mathbf{p}) \equiv \sqrt{m_1^2 + \mathbf{p}^2} + \sqrt{m_2^2 + \mathbf{p}^2} - M \Big] \Phi(M, \mathbf{0}, \mathbf{p})$$

$$\Big[-\frac{\vec{\nabla}^2}{2\mu_R}-\frac{\alpha_{\rm EM}}{r}\Big]\Psi(M,\mathbf{x})=M\Psi(M,\mathbf{x}) \qquad \text{with} \qquad \begin{array}{rcl} \mu_R&=&\frac{m_1m_2}{m_1+m_2}\\ r&=&|\mathbf{x}| \end{array}$$

Estia Eichten

- In NRQCD - the same behavior but the kernel is given by the static energy (potential)

$$\mathcal{H}_{\text{QCD}}^{\text{eff}} = \frac{1}{g^2} \int d^3x \left[\text{Tr}(\mathbf{E}^2) + \text{Tr}(\mathbf{B}^2) \right] + \sum_{Q=c,b,t} [\mathcal{H}_Q + \mathcal{H}_{Qc}]$$

$$+ \frac{g^2}{4\pi} \int d^3x \int d^3y \left\{ J_a^0(x) \mathcal{G}(\mathbf{x}, \mathbf{y})_{ab} J_b^0(y) \right\}$$

Potential

$$\mathcal{H}_Q = \int d^3x \; Q^\dagger \left((m_Q + \delta m_Q) - \frac{\mathbf{D}^2}{2m_Q} \right) Q \qquad \text{Darwin} \qquad \text{Kinetic}$$
 Relativistic corrections
$$- \int d^3x \; Q^\dagger \left[c_4 \frac{1}{8m_Q^3} (\mathbf{D}^2)^2 + c_d \frac{1}{8m_Q^2} (\mathbf{D} \cdot \mathbf{E} - \mathbf{E} \cdot \mathbf{D}) \right] Q \qquad \text{Spin Independent}$$

$$- \int d^3x \; Q^\dagger \left[c_f \frac{1}{2m_Q} \boldsymbol{\sigma} \cdot \mathbf{B} + c_s \frac{i}{8m_Q^2} \boldsymbol{\sigma} \cdot (\mathbf{D} \times \mathbf{E} + \mathbf{E} \times \mathbf{D}) \right] Q + \dots \text{Spin Dependent}$$
 Magnetic Spin- Orbit

HQL 2016 24 May 2016

Practical realities

- · The scales that enter NR calculations are:
 - for heavy quarks: $m_Q^2 p^2 \sim m_Q v^2 \sim \text{(binding energy)}, p \sim m_Q v$
 - for gauge fields: $k \sim m_Q v$ ("soft" or "potential" gluons); $k \sim m_Q v^2$ ("ultrasoft")
- In QED $v\sim a_{em} << 1$ so bound states are always nonrelativistic: $mv^2 << mv << 1$. Corrections to the NR limit Coulomb interaction can be calculated in perturbation theory.
- In QCD there is a strong interaction scale Λ_{QCD} .
 - $\Lambda_{QCD} << m_Q v^2 << m^Q v << 1$ only for the (tT) system, but the top quark decays before toponium states form.
 - For the $(c\overline{c})$, $(b\overline{b})$ and (bc) systems: $\Lambda_{QCD} \sim m_Q v^2 < m_Q v < m_Q$ at best.
 - Integrate out perturbative scales: m_Q (NRQCD) and m_Q v (pNRQCD). Still left with non perturbative theory that must be modeled or computed in LQCD.

- Effects of light quarks
 - Color current includes light quarks

$$J_a^0(\mathbf{x}) \to [J_a^0(\mathbf{x})]_{\text{gauge}} + \sum_{Q=c,b,t} [J_a^0(\mathbf{x})]_Q + \sum_{f=u,d,s} [J_a^0(\mathbf{x})]_f \qquad \text{with} \qquad [J_a^0(\mathbf{x})]_f = \psi_f^\dagger(\mathbf{x}) t_a \psi_f(\mathbf{x})$$

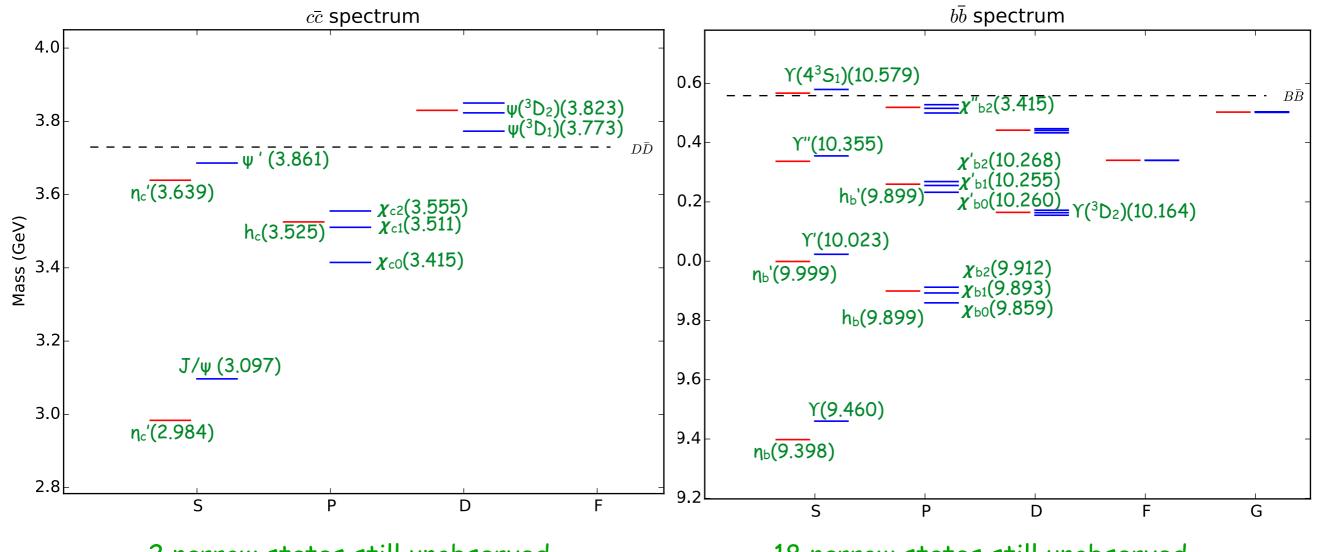
· Relativistic form for H_f appropriate for (u,d,s) quarks

$$\mathcal{H}_{ ext{QCD}} = \mathcal{H}_{ ext{QCD}}^{ ext{eff}} + \sum_{f=u,d,s} \mathcal{H}_f$$
 where $\mathcal{H}_f = \int d^3x \; \psi_f^\dagger \left[-i \alpha \cdot \mathbf{D} + \beta m_f
ight] \psi_f$

- Light quarks have both important effects on quarkonium physics
- modify properties of narrow states
- above threshold allow strong decays to heavy-light meson pairs
- more details later
- QCD with sufficiently heavy quarks: $\langle v^2/c^2 \rangle$ will be small
 - charmonium $\sim \langle v^2/c^2 \rangle \approx 0.24$ bottomonium $\sim \langle v^2/c^2 \rangle \approx 0.08$

Narrow States Below Threshold

- · Basic to this NR picture is the adiabatic assumption
 - Heavy quarks react slowly relative to the interactions of the gauge degrees of freedom
 - $\boldsymbol{\cdot}$ This allows the velocity expansion in NRQCD and the $1/m_Q$ expansion in HQET
 - So for the $(Q Q_c)$ system at rest:

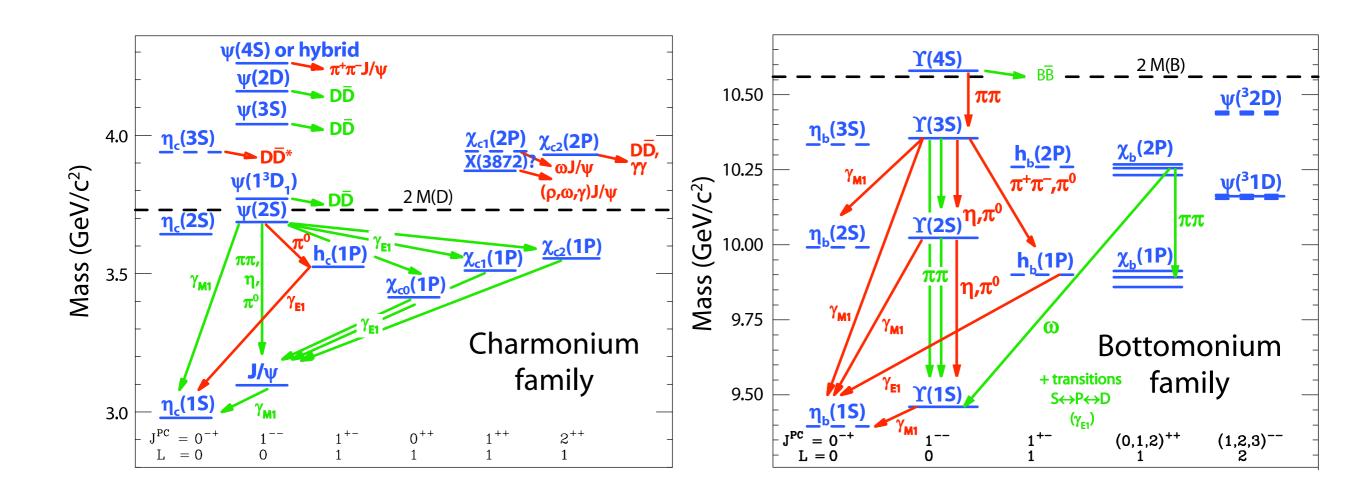

$$\Psi(\mathbf{R}) = \frac{u_{nl}(r)}{r} Y_{lm}(\theta, \phi) \qquad \mu = \frac{m_1 m_2}{m_1 + m_2}$$
$$-\frac{1}{2\mu} \frac{d^2 u_{nl}(r)}{dr^2} + \left\{ \frac{\mathbf{L}^2}{2\mu r^2} + V_{Q\bar{Q}}(r) \right\} u_{nl}(r) = E_{nl} u_{nl}(r) \qquad M = E_o + E_{nl}$$

- Phenomenological potential models:
 - V(r) [Cornell, Richardson, Buchmueller-Tye, Godfrey-Isgur, ...]
 - Many successful predictions

- expected spectrum below threshold:

S=0 —— S=1 ——

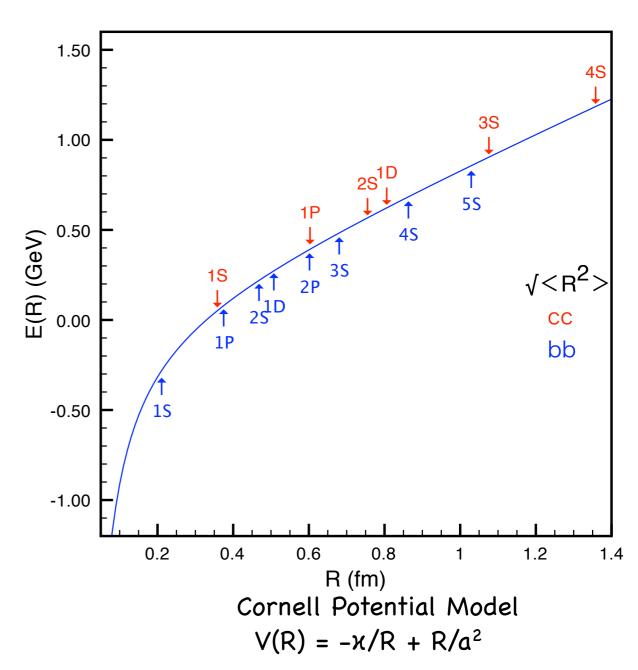
Observed states (labeled)



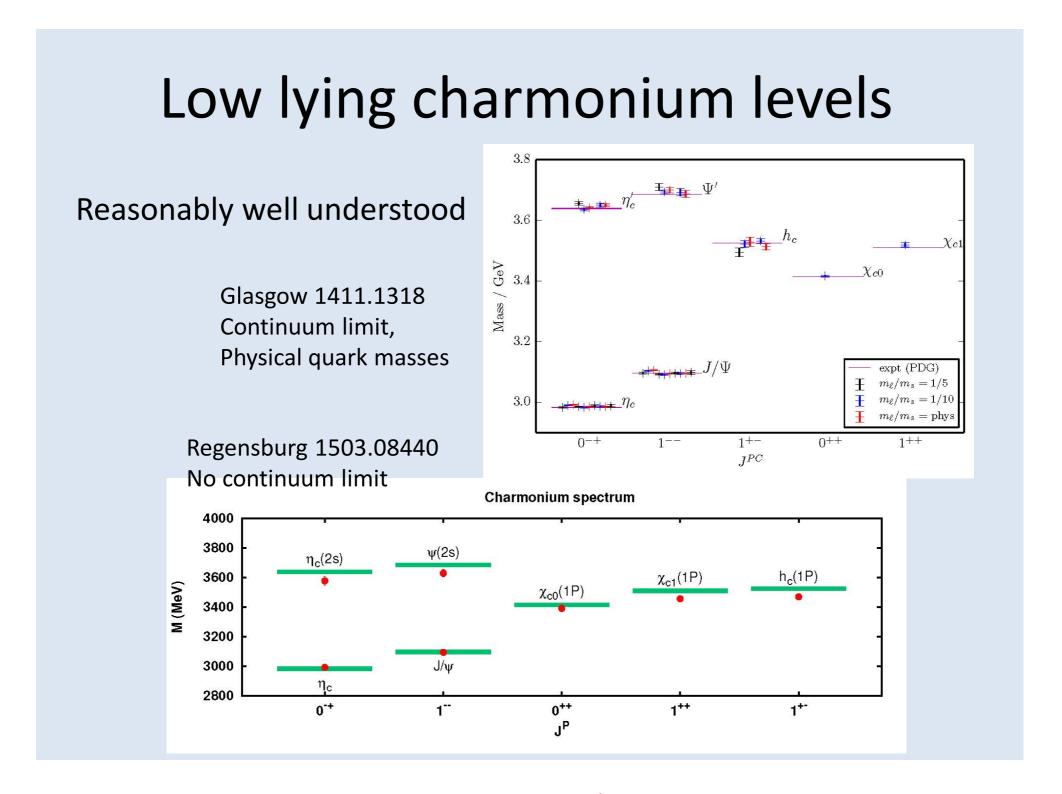
· 2 narrow states still unobserved

18 narrow states still unobserved

- Hadronic and EM transitions


- · EM transitions Standard multipole expansion for photon emission
- Hadronic transitions QCDME multipole expansion in gluons followed by hadronization.
 into light hadrons.
- Some hadronic and EM transitions

Stephen Godfrey, Hanna Mahlke, Jonathan L. Rosner and E.E. [Rev. Mod. Phys. 80, 1161 (2008)]

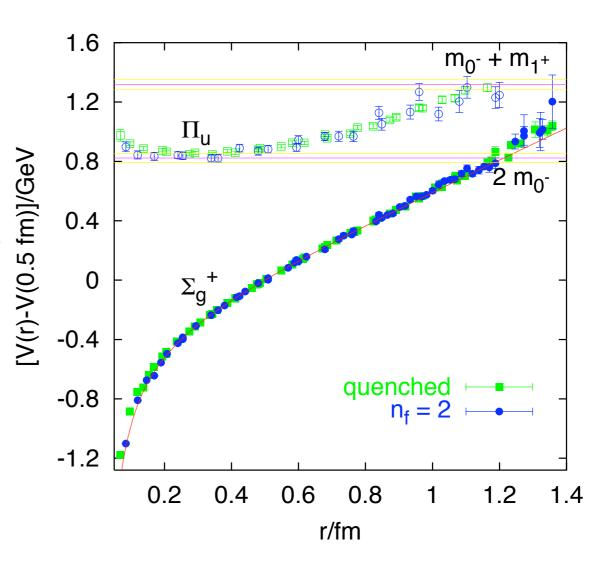

HQL 2016 — 24 May 2016

- Narrow states allow precise experimental probes of the subtle nature of QCD.
- Consistency between $(c\overline{c})$ and $(b\overline{b})$ systems validates the NRQCD approach:
 - masses (models, pNRQCD, LQCD)
 - spin splittings (models, pNRQCD, LQCD)
 - EM transitions (ME, LQCD)
 - hadronic transitions(QCDME, LQCD)
 - · direct decays (pQCD)
- Simple potential models reproduced the spectrum and EM transitions well

HQL 2016

Now superseded by lattice calculations for the low-lying spectrum

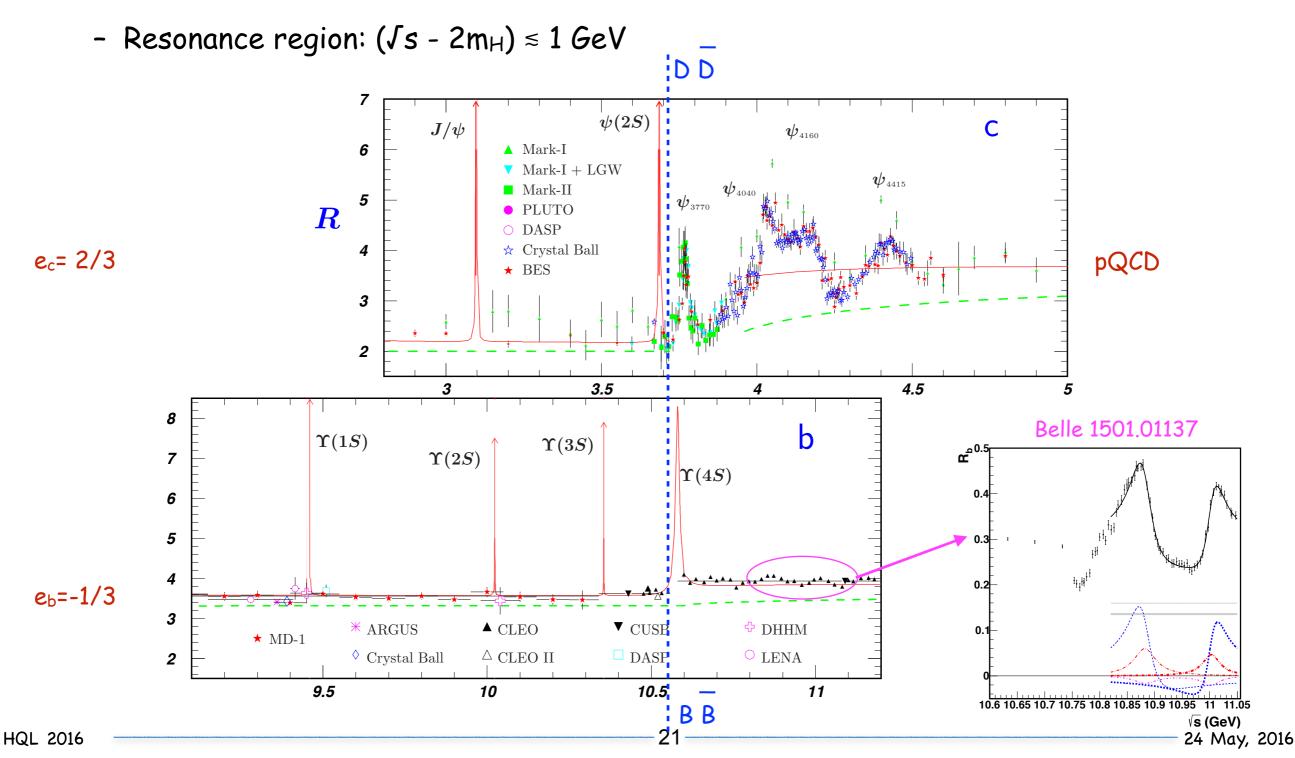
C. DeTar, Lepton-Photon 2015

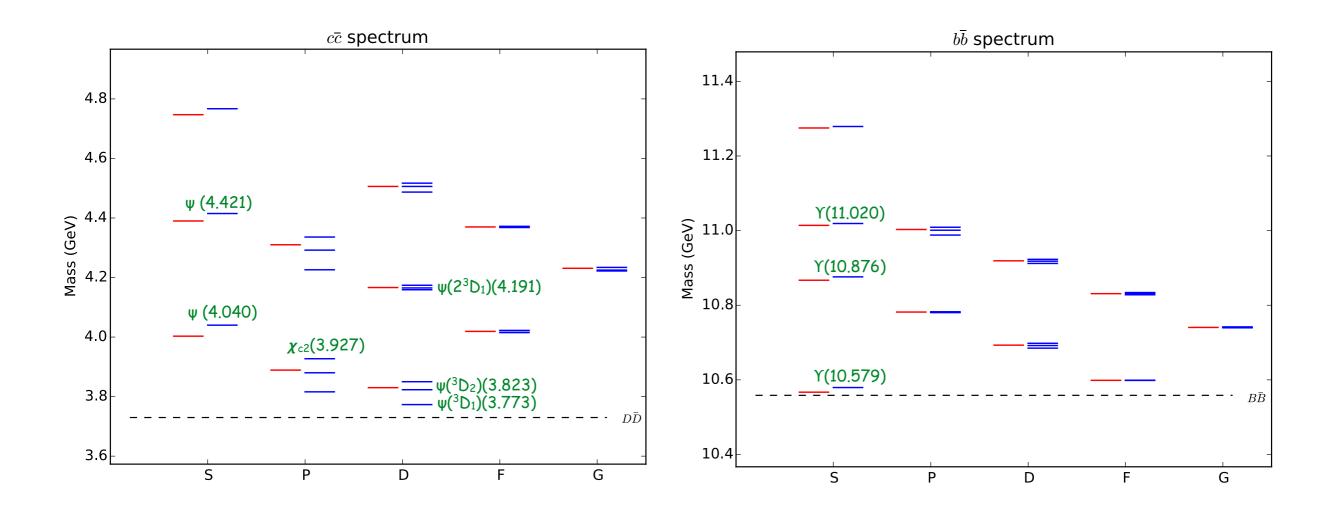

Why it works so well

· Lattice calculation V(r), then SE

$$-\frac{1}{2\mu}\frac{d^2u(r)}{dr^2} + \left\{\frac{\langle \boldsymbol{L}_{Q\bar{Q}}^2 \rangle}{2\mu r^2} + V_{Q\bar{Q}}(r)\right\}u(r) = E\ u(r)$$

- What about the gluon and light quark degrees of freedom of QCD?
- Two thresholds:
 - Usual $(Q\bar{q}) + (q\bar{Q})$ decay threshold
 - Excite the string hybrids
- Hybrid states will appear in the spectrum associated with the potential Π_u , ...
- In the static limit this occurs at separation: $r \approx 1.2$ fm.
- Between 3S-4S in $(c\bar{c})$; near the 5S in $(b\bar{b})$.


LQCD calculation of static energy

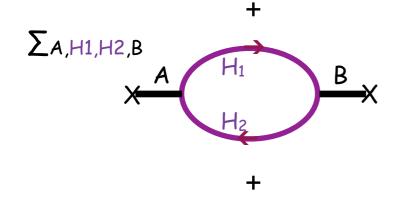

Crossing the Threshold

1. Strong decays - resonances become wide and eventually hard to extract.

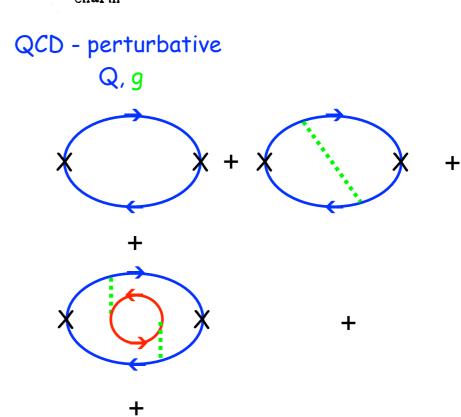
• R = $\sigma(e+e--) \%$ -> hadrons)/ $\sigma(e+e--) \%$ -> $\mu+\mu-$) $J^{PC} = 1^{--}$

· Observed quarkonium states above threshold

 \equiv


Two pictures of R: Quark-Hadron Duality

$$- \Delta R(W) = \frac{6\pi}{W^2} \rho_c(W) : -(g_{\mu\nu} q^2 - q_{\mu} q_{\nu}) \rho_c(W)$$


$$= \int d^4x \, e^{iqx} \langle 0 | j_{\mu}(x) j_{\nu}(0) | 0 \rangle \Big|_{charm}$$

QCD - hadronic A,B (QQ) , C (QQg) H₁,H₂(Qq)

$$\sum A,C \times \xrightarrow{A} \times + \times \xrightarrow{C} \times$$

Simple expansion near threshold.

Simple expansion far above threshold.

HQL 2016 23 24 May, 2016

Coupled channel problem

$$\begin{array}{ll} \mathcal{H}_0. & Q\bar{Q} \\ & \text{NRQCD (without light quarks)} \\ \mathcal{H}_I & Q\bar{Q} \rightarrow Q\bar{q} + q\bar{Q} \\ & \text{light quark pair creation} \end{array} \qquad \left(\begin{array}{c} \mathcal{H}_0 & \mathcal{H}_I^\dagger \\ \mathcal{H}_I & \mathcal{H}_2 \end{array} \right) \left(\begin{array}{c} \psi_1 \\ \psi_2 \end{array} \right) = z \left(\begin{array}{c} \psi_1 \\ \psi_2 \end{array} \right)$$

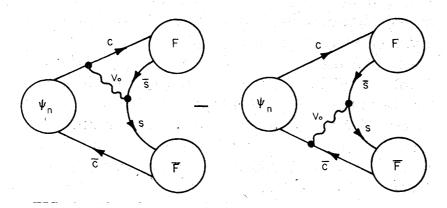
$${\cal H}_2$$
 $Q ar q + q ar Q$ heavy-light meson pair interactions

Formally eliminate Ψ₂

defines
$$\Omega(z)$$

$$\frac{1}{2} \frac{1}{2} \frac{1}$$

$$\left(\mathcal{H}_0 + \mathcal{H}_I^{\dagger} \frac{1}{z - \mathcal{H}_2} \mathcal{H}_I\right) \psi_1 = z \psi_1$$


- Decay amplitude $\langle DD|H_I|\psi \rangle$
- Simplifying assumptions
 - H2 free meson pairs no final state interactions
 - H_0 charmonium states are a complete basis no hybrids

$$< n|\mathcal{G}(z)|m> = < n|\frac{1}{z - \mathcal{H}_0 - \Omega(z)}|m>$$

· Assuming vector meson dominance. Can compute Rc

$$R_Q \sim \frac{1}{s} \sum_{nm} \lim_{r \to 0} \psi_n^*(r) \operatorname{Im} \mathcal{G}_{nm}(W + i\epsilon) \psi_m(r)$$

- Coupled Channel Models
 - ψ_n potential model wavefunction
 - Final mesons simple harmonic oscillator wave functions

E. Eichten, K. Gottfried, T. Kinoshita, K. Lane and T.M. Yan PR D17, 3090 (1978)

- $dV(x)/dx = 1/a^2 + \kappa/x^2$ => no free parameters setting $\kappa = 0$ => same form as the vacuum pair creation model (3P_0)

$$\Omega_{nL, mL'}(W) = \sum_{i} \int_{0}^{\infty} P^{2} dP \frac{H_{nL, mL'}^{i}(P)}{W - E_{1}(P) - E_{2}(P) + i0}$$

where

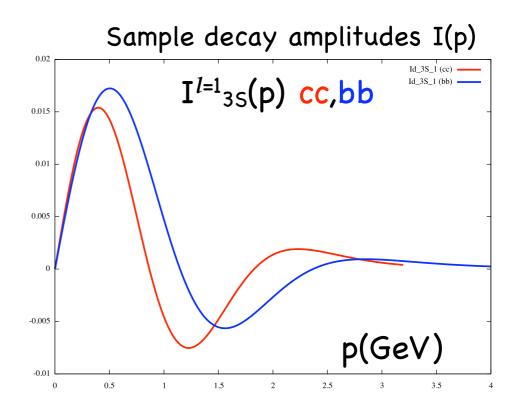
$$H_{nL, mL'}^{i}(P) = f^{2} \sum_{l} C(JLL'; l) I_{nL}^{l}(P) I_{mL'}^{l}(P)$$

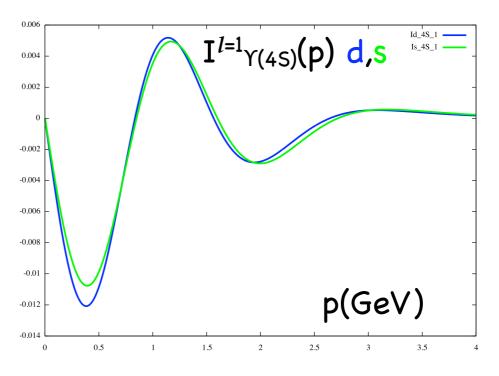
Statistical factor

Reduced decay amplitudes I(p)

Reduced decay amplitudes I(p)

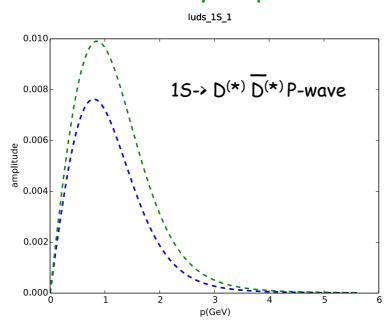
$$I_{nL}^{l}(P) = \int_{0}^{\infty} dt \, \Phi(t) R_{nL}(t\beta^{-1/2}) j_{l}(\mu_{c}\beta^{-1/2}Pt)$$

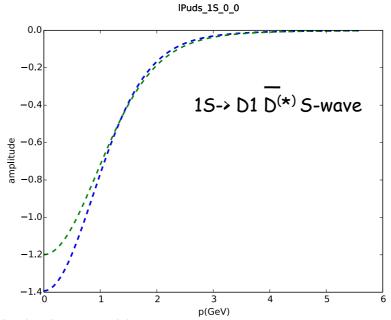

Key point: The only part of I(p) that depends on the pair production model is the function $\Phi(t)$:

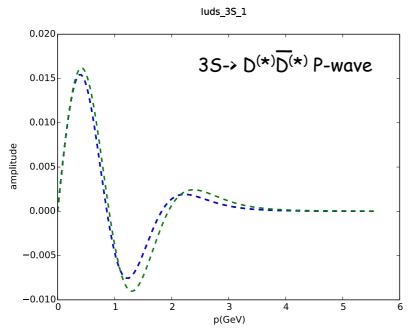

For the CCCM (K=0):
$$(t = y\sqrt{\beta_S})$$

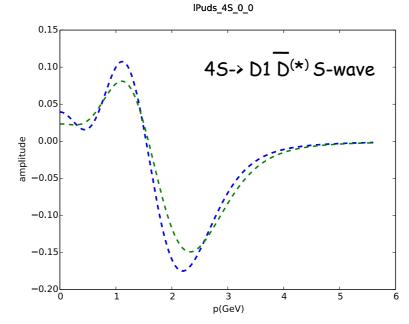
 $\Phi(t) = te^{-t^2} + (\pi/2)^{1/2}(t^2 - 1)e^{-t^2/2}\operatorname{erf}(t/\sqrt{2})$

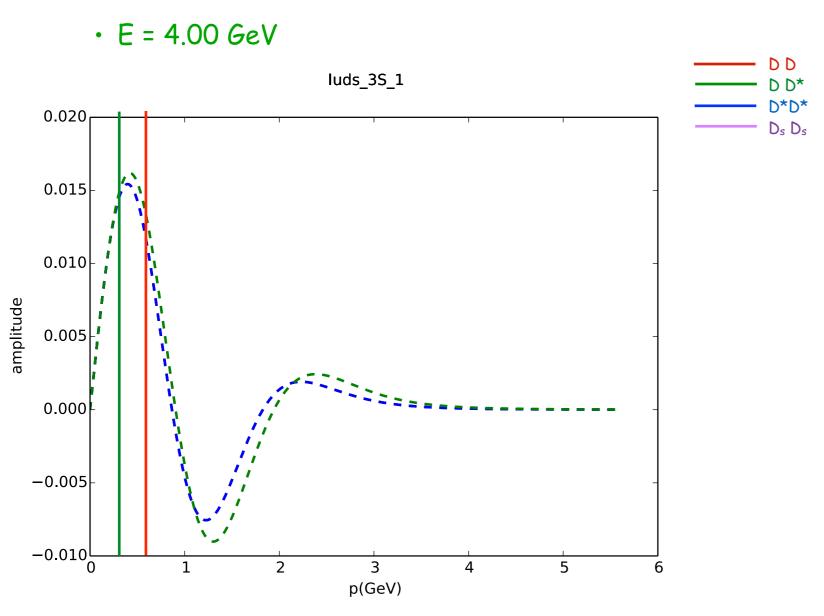
Using HQET this function $\Phi(t)$ is the same for all final states in a j_l^P multiplet.

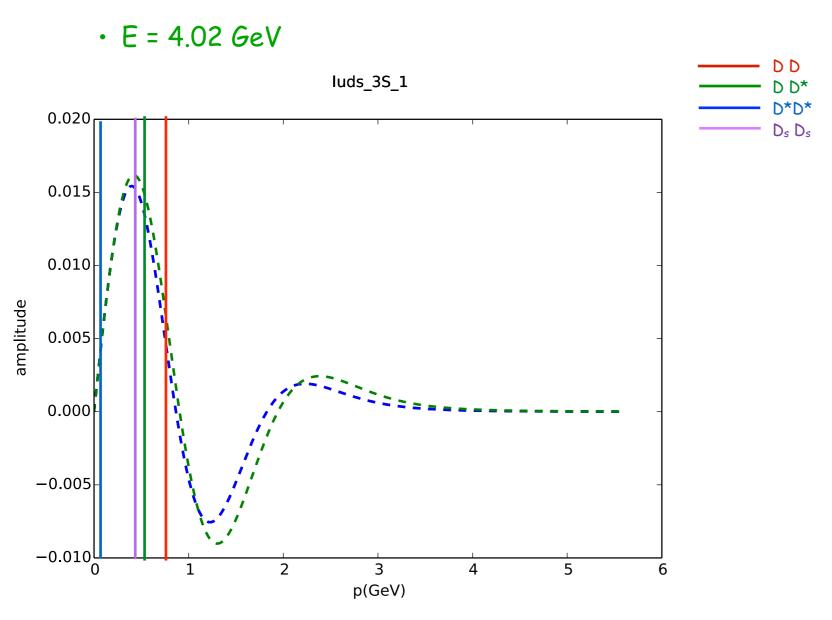

Apart from overall light quark mass factors $\Phi(t)$ is approximately SU(3) invariant. So independent of light quark flavor (u,d,s).


One universal function, $\Phi(t)$, determines R_Q in the threshold region.

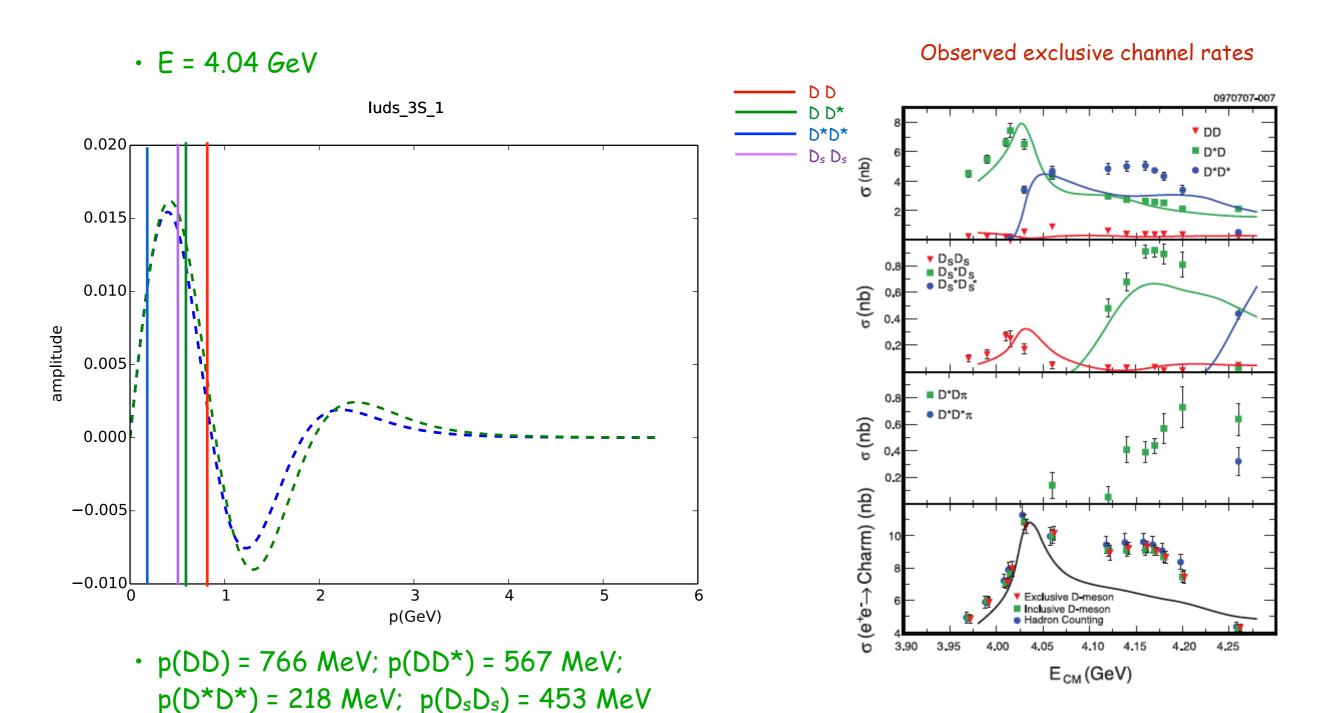



- General features of decays to low-lying heavy-light mesons:
 - Unlike light meson systems, these decays are from highly excited QQ states:
 - · Ground state decay amplitudes:


• Second (third) radial excited state: $\psi(4040)$ ($\psi(4415)$) decay


- Have complicated energy dependence.

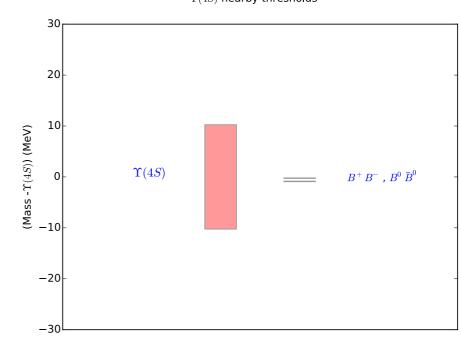
- The mass differences of heavy-light mesons produces large effects in the decay amplitudes to exclusive channels.


p(DD) = 590 MeV; p(DD*) = 288 MeV

- The mass differences of heavy-light mesons produces large effects in the decay amplitudes to exclusive channels

• p(DD) = 740 MeV; $p(DD^*) = 530 \text{ MeV}$; $p(D^*D^*) = 085 \text{ MeV}$; $p(D_sD_s) = 406 \text{ MeV}$

- The mass differences of heavy-light mesons produces large effects in the decay amplitudes to exclusive channels.



Hadronic Transitions Above Threshold

- · There were two surprises in the decays of quarkonium states above threshold
 - 1. Hadronic transitions violate naive expectations. Spin flip transitions not suppressed (HQSS) and large SU(3) violation. $_{\Upsilon(4S) \text{ nearby thresholds}}$
 - · Y(45)
 - $M = 10,579.4 \pm 1.2 \text{ MeV } \Gamma = 20.5 \pm 2.5 \text{ MeV};$
 - Open decay channels:
 - $M(B^+B^-) = 10,578.52 \text{ MeV}, M(B^0B^0) = 10,579.16 \text{ MeV}$
 - · Essentially no isospin breaking in the masses.

Table 1: Selected $\Upsilon(4S)$ decays.

Decay Mode	Branching Rate
B^+B^-	$(51.4 \pm 0.6)\%$
$B^0ar{B}^0$	$(48.6 \pm 0.6)\%$
total $B\bar{B}$	> 96%
$\Upsilon(1S) \pi^+\pi^-$	$(8.1 \pm 0.6) \times 10^{-5}$
$\Upsilon(2S) \pi^+\pi^-$	$(8.6 \pm 1.3) \times 10^{-5}$
$h_b(1P) \pi^+\pi^-$	(not seen)
$\Upsilon(1S)$ η	$(1.96 \pm 0.28) \times 10^{-4}$
$h_b(1P)$ η	$(1.83 \pm 0.23) \times 10^{-3}$

- → partial rate = 1.66 ± 0.23 keV
- → partial rate = 4.02 ± 0.89 keV
- \rightarrow partial rate = 3.75 ± 0.73 keV

expected rates

SU(3) violating HQS violating

Heavy Quark Spin Symmetry

- Large heavy quark spin symmetry (HQSS) breaking is induced by the B*- B mass splitting. [Same for D*-D and D_s *- D_s]
 - Coupled channel calculations show a large virtual B B component to the $\Upsilon(4S)$. This accounts for the observed violation of the spin-flip rules in hadronic transitions
 - $J^{PC} = 1^{--}$ in terms of B(*), B(*) mass eigenstates:

Voloshin [arXiv:1201.1222]

•
$$J_{SLB} = j_{SLB} + L$$

$$B\bar{B} : \frac{1}{2\sqrt{3}}\psi_{10} + \frac{1}{2}\psi_{11} + \frac{\sqrt{5}}{2\sqrt{3}}\psi_{12} + \frac{1}{2}\psi_{01};$$

$$\frac{B^*\bar{B} - \bar{B}^*B}{\sqrt{2}} : \frac{1}{\sqrt{3}}\psi_{10} + \frac{1}{2}\psi_{11} - \frac{\sqrt{5}}{2\sqrt{3}}\psi_{12};$$

$$(B^*\bar{B}^*)_{S=0} : -\frac{1}{6}\psi_{10} - \frac{1}{2\sqrt{3}}\psi_{11} - \frac{\sqrt{5}}{6}\psi_{12} + \frac{\sqrt{3}}{2}\psi_{01};$$

$$(B^*\bar{B}^*)_{S=2} : \frac{\sqrt{5}}{3}\psi_{10} - \frac{\sqrt{5}}{2\sqrt{3}}\psi_{11} + \frac{1}{6}\psi_{12}.$$

$$\psi_{10} = 1_H^{--} \otimes 0_{SLB}^{++}, \quad \psi_{11} = 1_H^{--} \otimes 1_{SLB}^{++}, \quad \psi_{12} = 1_H^{--} \otimes 2_{SLB}^{++}, \text{ and } \psi_{01} = 0_H^{-+} \otimes 1_{SLB}^{+-}.$$

-
$$I^{G}(J^{P}) = 1^{-}(1^{+})$$

• S-wave (L=0)
$$(B^*\bar{B} - \bar{B}^*B) \sim \frac{1}{\sqrt{2}} \left(0_H^- \otimes 1_{SLB}^- + 1_H^- \otimes 0_{SLB}^- \right)$$

$$B^*\bar{B}^* \sim \frac{1}{\sqrt{2}} \left(0_H^- \otimes 1_{SLB}^- - 1_H^- \otimes 0_{SLB}^- \right) \; ,$$

- What about SU(3)?
 - If there was no SU(3) breaking: only SU(3) singlet light hadron states could be produced. So single light hadron production (except the η') would be forbidden.

$$U = \exp\left(i\gamma_5 \frac{\varphi_a \lambda_a}{f_\pi}\right)$$

$$\varphi_a \lambda_a = \sqrt{2} \begin{pmatrix} \frac{\eta}{\sqrt{6}} + \frac{\pi^0}{\sqrt{2}}, & \pi^+, & K^+\\ \pi^-, & \frac{\eta}{\sqrt{6}} - \frac{\pi^0}{\sqrt{2}}, & K^0\\ K^-, & \bar{K}^0, & -\frac{2\eta}{\sqrt{6}} \end{pmatrix}$$

- BUT: SU(3) breaking is induced by the mass splitting of the (Q \overline{q}) mesons with q=u,d (degenerate if no isospin breaking) and q = s.
- These splittings are large (~100 MeV) so there is large SU(3) breaking in the threshold dynamics.
- This leads to large effects in the threshold region.
- This greatly enhances the final states with η + (QQ). Yu.A. Simonov and A.I. Veselov [arXiv:0810.0366]
- Similarly important in w and ϕ production.

The observed HQSS and SU(3) violation in hadronic decays of quarkonium states near threshold is induced by the symmetry breaking in the heavy-light meson masses

- 2. Second surprise is the large size of the hadronic transitions for some states above threshold.
- $-\Upsilon(10860)$

Table 2: Selected $\Upsilon(5S)$ decays.

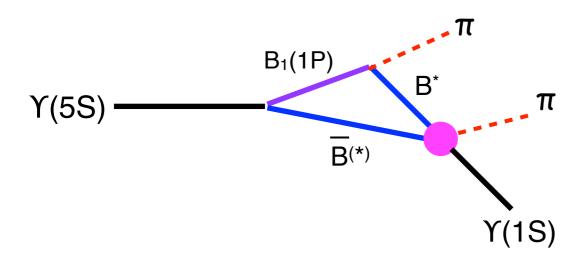
Decay Mode	Branching Rate	Decay Mode	Branching Rate
$B\bar{B}$	$(5.5 \pm 1.0)\%$	$\Upsilon(1S) \pi^+\pi^-$	$(5.3 \pm 0.6) \times 10^{-3}$
$B\bar{B}^* + c.c.$	$(13.7 \pm 1.6)\%$	$\Upsilon(2S) \pi^+\pi^-$	$(7.8 \pm 1.3) \times 10^{-3}$
$B^*\bar{B}^*$	$(38.1 \pm 3.4)\%$	$\Upsilon(3S) \pi^+\pi^-$	$(4.8^{+1.9}_{-1.7}) \times 10^{-3}$
		$\Upsilon(1S)K\bar{K}$	$(6.1 \pm 1.8) \times 10^{-4}$
$B_sar{B}_s$	$(5\pm5)\times10^{-3}$	$h_b(1P)\pi^+\pi^-$	$(3.5^{+1.0}_{-1.3}) \times 10^{-3}$
$B_s\bar{B}_s^* + c.c.$	$(1.35 \pm 0.32)\%$	$h_b(2P)\pi^{+}\pi^{-}$	$(6.0^{+2.1}_{-1.8}) \times 10^{-3}$
$B_s^*\bar{B}_s^*$	$(17.6 \pm 2.7)\%$	$\chi_{b1} \pi^+\pi^-\pi^0 \text{ (total)}$	$(1.85 \pm 0.33) \times 10^{-3}$
$Bar{B}\pi$	$(0.0 \pm 1.2)\%$	$\chi_{b2} \pi^+\pi^-\pi^0 \text{ (total)}$	$(1.17 \pm 0.30) \times 10^{-3}$
$B^*\bar{B}\pi + B\bar{B}^*\pi$	$(7.3 \pm 2.3)\%$	χ_{b1} ω	$(1.57 \pm 0.32) \times 10^{-3}$
$B^*\bar{B}^*\pi$	$(1.0 \pm 1.4)\%$	χ_{b2} ω	$(0.60 \pm 0.27) \times 10^{-3}$
$Bar{B}\pi\pi$	< 8.9%	$\Upsilon(1S)\eta$	$(0.73 \pm 0.18) \times 10^{-3}$
		$\Upsilon(2S)\eta$	$(2.1 \pm 0.8) \times 10^{-3}$
		$\Upsilon(1D)\eta$	$(2.8 \pm 0.8) \times 10^{-3}$
total $B\bar{B}X$	$(76.2^{+2.7}_{-4.0})\%$		

→ partial rate = 0.29 ± 0.13 MeV

→ partial rate = 86 ± 41 keV

-> partial rate = 0.15 ± 0.08 MeV

- Very large 2π hadronic transitions [> 100 times $\Upsilon(4S)$ rates]
- · Very large n (single light hadron) transitions. Related to nearby Bs*Bs* threshold?


- Requires new mechanism for hadronic transitions
 - Dominant two body decays of the Y(5S)
 - Decays involving P-state heavy-light mesons:

•
$$n^3S_1(Q\overline{Q}) \rightarrow 1^{\frac{1}{2}}P_J(Q\overline{q}) + 1^{\frac{1}{2}}S_{J'}(q\overline{Q})$$
 then

•
$$1^{\frac{1}{2}} P_{J}(Qq) \rightarrow 1^{\frac{1}{2}} S_{J'}(Qq') + {}^{1}S_{0}(qq')$$
 for S-wave $J=J'$

S-wave decays

C(J,J')	J'=0	J'=1
J=0	0	2/3
J=1	2/3	4/3

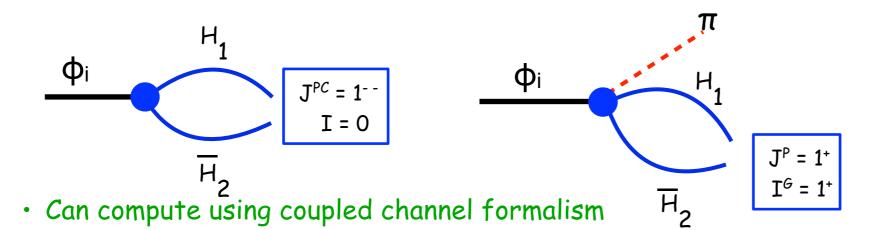
Remarks:

- (1) $\Upsilon(5S)$ strong decay is S-wave
- (2) The large width of the $B_1(1P)$ implies that the first π is likely emitted while the $B_1(1P)$ and $B^{(*)}$ are still nearby.
- (3) The $B_1(1P)$ decay is S-wave
- (4) Therefore the $B^{(*)}$ B^* system is in a relative S-wave and near threshold.
- (5) No similar BB system is possible.

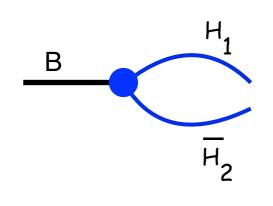
- A new factorization for hadronic transitions above threshold.
 - Production of a pair of heavy-light mesons ($H'_1 H_2$) near threshold. Where $H'_1 = H_1$ or H'_1 decays rapidly to $H_1 + light$ hadrons (h_b), yielding $H_1 H_2 < h_b > light$
 - Followed by recombination of this $(H_1 H_2)$ state into a narrow quarkonium state (Φ_f) and light hadrons (h_a) .

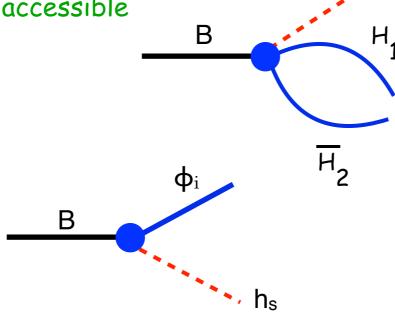
$$\mathcal{M}(\Phi_i \to \Phi_f + h >= \sum_{H_1H_2} \sum_{p_1,p_2} \langle \Phi_f h_a | \mathcal{H}_I' | H_1(p_1) \bar{H}_2(p_2) \rangle \frac{1}{(E_f + E_a) - (E_1 + E_2)} \langle H_1 \bar{H}_2[h_b] | \mathcal{H}_I | | \phi_i \rangle \\ \Phi_i \qquad \qquad \Phi_i \qquad \qquad \Phi_i$$
 The time scale of the production process has to be short relative to the time scale over which H_1 H_2 rescattering can occur. H_2 The relative velocity in the H_1 H_2 system must be low. This is only possible near threshold.

 Here we need not speculate on whether the observed rescattering is caused by a threshold bound state, cusp, or other dynamical effect.

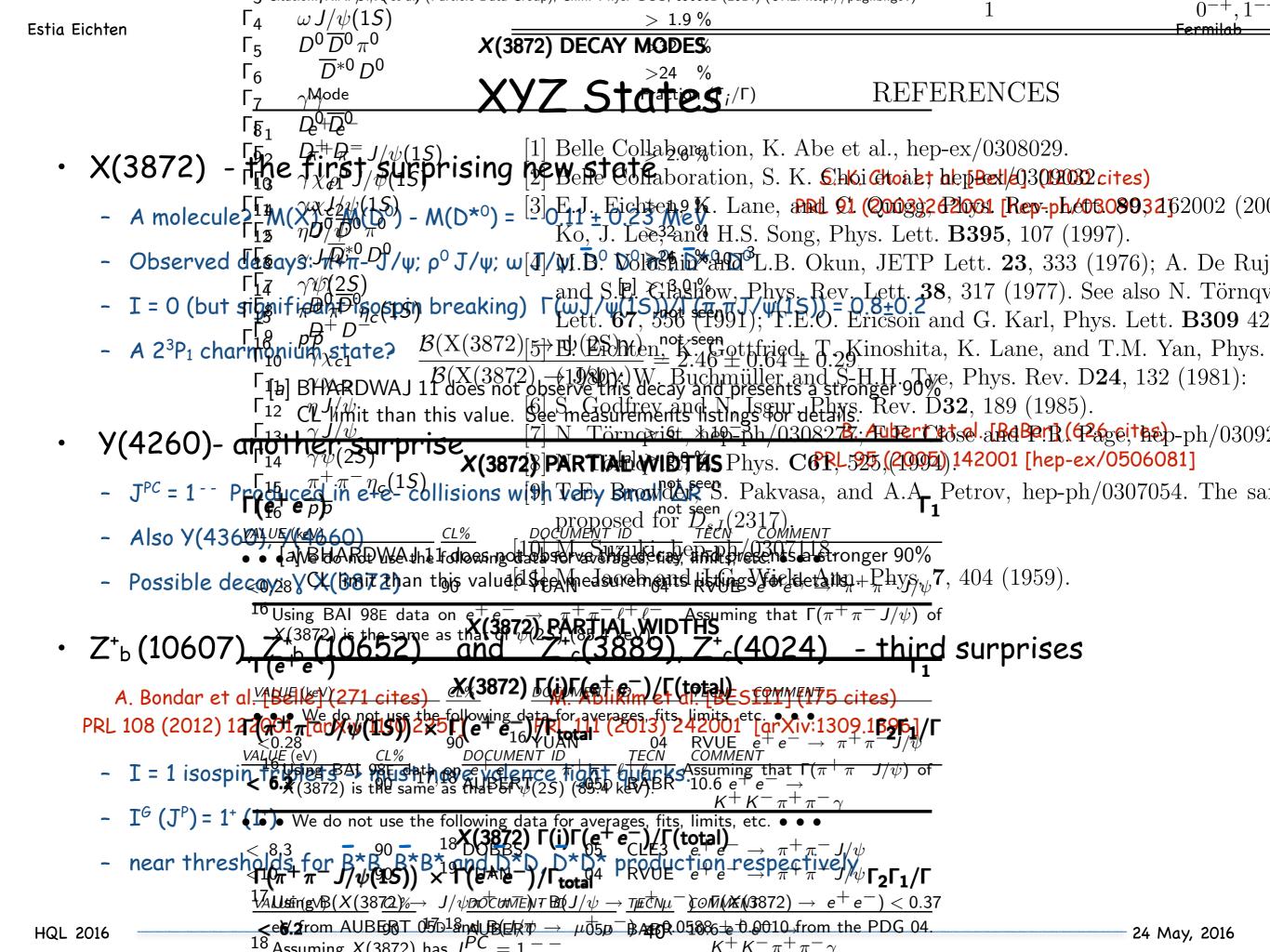

F.K. Gao, C. Hanhart, Q. Wang, Q. Zhao [arXiv:1411.5584]

Estia Eichten Fermilab


Four Quark States May Be Easily Produced at Two Heavy-Light Mesons S-wave Thresholds


- Production modes: (Where to look for new surprises)
 - e+e- processes
 - direct

sequential (dominant terms)


- B weak decays
 - · More quantum numbers accessible

Estia Eichten Fermilab

Biggest Surprise: Resonances are seen at these thresholds

Notation

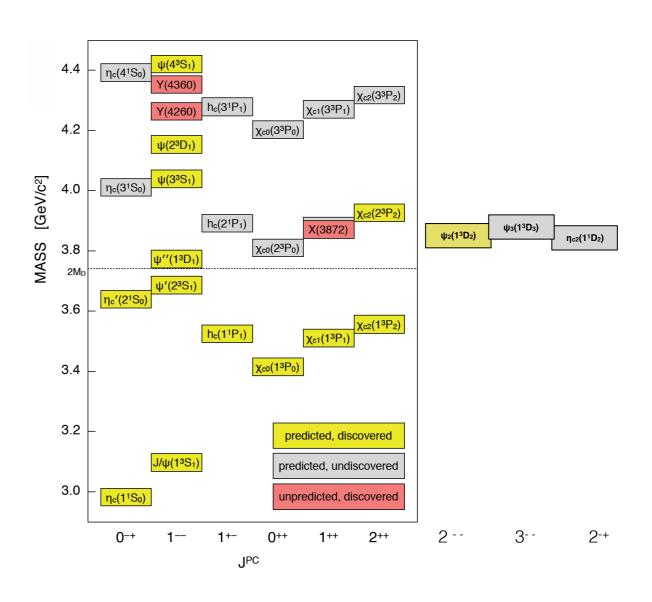
- Y denotes states observed directly in the charm contribution to e⁺e⁻ -> hadrons:

$$\Rightarrow$$
 J^{PC} = 1⁻⁻ and I = 0

- Z denotes states with I = 1

•
$$Z^+_c(3885), Z^+_c(4025)$$

Z⁺_c(3885), Z⁺_c(4025)
 Z⁺_b(10610), Z⁺_b(10650)

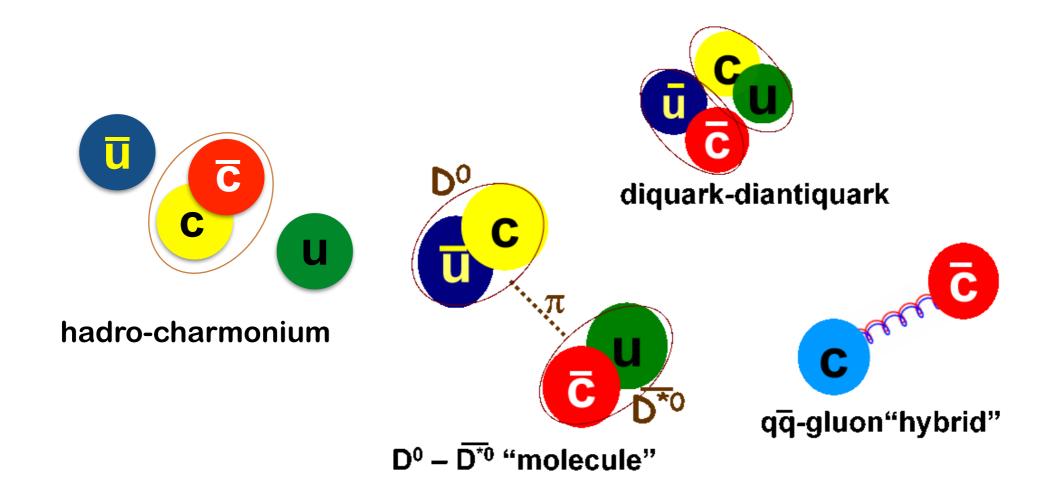

HQS

• $Z_c^+(4430)$

- X denotes anything else

⇒ see PDG table

• Pentaguarks: $X(4450) (J^{P} = 5/2^{+}), ...$


Updated from PDG - other X states need more information

State	m (MeV)	Γ (MeV)	J^{PC}	Process (mode)	Experiment $(\#\sigma)$	Year
$\chi_{c0}(3915)$	3917.4 ± 2.7	28^{+10}_{-9}	0 ⁺⁺	\ 1 \ /	Belle (8.1), BABAR (19) e quantum numbers correct?	2004
X(3940)	3942^{+9}_{-8}	37^{+27}_{-17}	??+	$e^+e^- \rightarrow J/\psi(D\bar{D}^*)$ $e^+e^- \rightarrow J/\psi()$ Candidate for $\eta_c(3S)$,	· /	2007
Y(4008)	4008^{+121}_{-49}	226 ± 97	1	$e^+e^- \to \gamma(\pi^+\pi^-J/\psi)$ Two BW peak fit bette	Belle (7.4) er than only the $Y(4260)$.	2007
$Z_1(4050)^+$	4051_{-43}^{+24}	82^{+51}_{-55}	?	$B \to K(\pi^+ \chi_{c1}(1P))$	Belle(5.0), BABAR (1.1)	2008
Y(4140)	4145.8 ± 2.6	18 ± 8	??+	$B \to K(\phi J/\psi)$	CDF (3.1), Belle (1.9) LHCb (1.4), CMS (> 5) D0 (3.1)	2008
X(4160)	4156_{-25}^{+29}	139^{+113}_{-65}	??+	$e^+e^- \to J/\psi(D\bar{D}^*)$	Belle(5.5)	2007
$Z_2(4250)^+$	4248 ± 20	35 ± 16	?	$B \to K(\pi^+ \chi_{c1}(1P))$	Belle(5.0), BABAR (2.0)	2008
Y(4274)	4293^{+121}_{-49}	226 ± 97	??+	$B^+ \to K^+(\phi J/\psi)$	CDF (3.1) , LHCb (1.0) CMS (> 3) , D0 (np)	2007
X(4350)	$4350.6_{-5.1}^{+4.6}$	$13.3^{+18.4}_{-10.0}$	0/2++	$e^+e^- \rightarrow e^+e^-(\phi J/\psi)$ Observable in LF	Belle(3.2) HCb, CMS, Atlas?	2009
X(4630)	$4634^{+\ 9}_{-11}$	92^{+41}_{-32}	1	$e^+e^- \to \gamma (\Lambda_c^+\Lambda_c^-)$	Belle (8.2)	2007

HQL 2016 24 May 2016 Estia Eichten Fermilab

What is the QCD dynamics of these new states?

Threshold Effects, Hybrids, Tetraquark States:

S. Godfrey+S. Olsen arXiv:0801.3867

$Z_{b^{\pm}}(10,610)$ and $Z_{b^{\pm}}(10,650)$

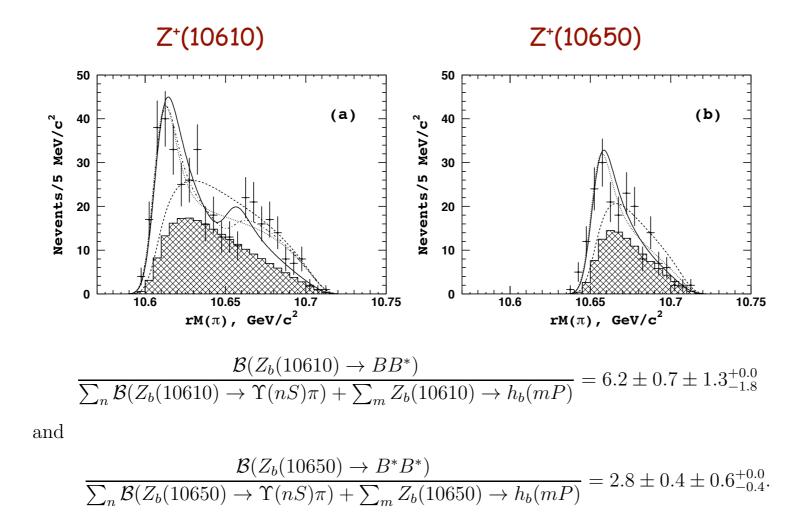
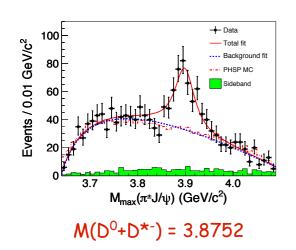
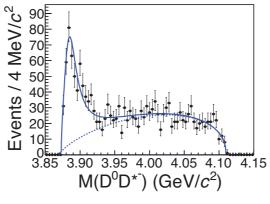

• BELLE observed two new charged states in the Y(5S) -> Y(nS) + $\pi^+\pi^-$ (n=1,2,3) and the Y(5S) -> $h_b(nP)$ + $\pi^+\pi^-$ (n=1,2)

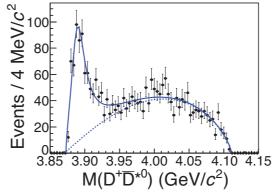
TABLE 1.	Masses, w	vidths.	and relative	phases of	peaks of	bserved	in $h_b\pi$	and Yπ	channels.	from fit	ts describe	d in text.
	ATAMODUCO, TT	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	CLICAL LOCALITY C	DIMESCO OI	occurs o		*** * *********************************	CLEANER TAR	CHICKLE CO.		is acserior	THE REAL PROPERTY.

	$h_b(1P)\pi^{\pm}\pi^{\mp}$	$h_b(2P)\pi^{\pm}\pi^{\mp}$	$\Upsilon(1S)\pi^{\pm}\pi^{\mp}$	$\Upsilon(2S)\pi^{\pm}\pi^{\mp}$	$\Upsilon(3S)\pi^{\pm}\pi^{\mp}$	Average
$M_1 (\text{MeV}/c^2)$	$10605.1 \pm 2.2^{+3.0}_{-1.0}$	$10596 \pm 7^{+5}_{-2}$	10609±3±2	$10616 \pm 2^{+3}_{-4}$	$10608 \pm 2^{+5}_{-2}$	10608 ± 2.0
Γ_1 (MeV)	$11.4^{+4.5}_{-3.9}^{+2.1}_{-1.2}$	$16^{+16}_{-10}^{+13}_{-14}^{2}$	22.9±7.3±2	$21.1 \pm 4^{+2}_{-3}$	$12.2 \pm 1.7 \pm 4$	15.6 ± 2.5
M_2 (MeV/ c^2)	$10654.5 \pm 2.5^{+1.0}_{-1.0}$	$10651 \pm 4 \pm 2$	$10660 \pm 6 \pm 2$		$1-652\pm2\pm2$	10653 ± 1.5
Γ_2 (MeV)	20.9+5.4+2.1	12^{+11+8}_{-9}	$12 \pm 10 \pm 3$	$16.4 \pm 3.6^{+4}_{-6}$	$10.9 \pm 2.6^{+4}_{-2}$	14.4 ± 3.2
φ (°)	20.9 ^{+5.4} +2.1 188 ⁺⁴⁴ +4 188 ⁻⁵⁸ -9	12^{+11+8}_{-9} $255^{+56+12}_{-72-183}$	$53 \pm 61^{+5}_{-50}$	$-20\pm18^{+14}_{-9}$	$6 \pm 24^{+23}_{-59}$	_
						'

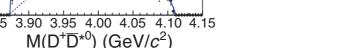
- $Y(5S) \rightarrow Z_b^+ + \pi$ and $Z_b \rightarrow h_b(nP) + \pi^+$.
- Explicitly violates the factorization assumption of the QCDME but consistent with the new mechanism for hadronic transitions above threshold
- The Z_b^{\pm} (10610) is a narrow state (Γ = 15.6 \pm 2.5 MeV) at the BB* threshold (10605).
- The Z_b^{\pm} (10650) is a narrow state (Γ = 14.4 \pm 3.2 MeV) at the B*B* threshold (10650).

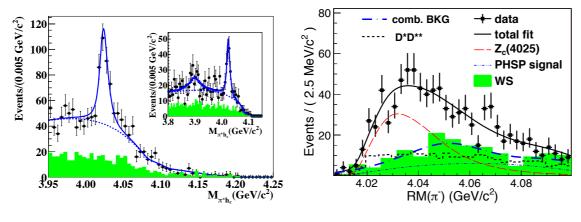

- Strong threshold dynamics
 - Strong peaking at threshold BB* and B*B*
 - Z+(10610) and Z+(10650) states



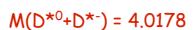

- HQS implies that the same mechanism applies for charmonium-like states

$Z_c^{+}(3885)$ and $Z_c^{+}(4020)$


- Charmonium-like states: $e^+e^- \rightarrow \pi^+ \pi^- J/\psi$ at $\sqrt{s} = 4.26$ GeV [Y(4260)]
- $Z_c(3885)$, $Z_c(4020)$ both have $I^G(J^P) = 1^-(1^+)$.
- As expected by HQS between the bottomonium and charmonium systems


$$M_{\rm pole} = 3883.9 \pm 1.5 \pm 4.2 \text{ MeV}$$

 $\Gamma_{\rm pole} = 24.8 \pm 3.3 \pm 11.0 \text{ MeV}$


BESIII Z. Lin

[arXiv:1504.06102]

 $\frac{\Gamma[Z_c(3900) \to DD^*]}{\Gamma[Z_c(3900) \to \pi J/\psi]} = 6.2 \pm 1.1_{\text{stat}} \pm 2.7_{\text{sys}}.$

$$M = 4022.9 \pm 0.8 \pm 2.7 \text{ MeV}$$

 $\Gamma = 7.9 \pm 2.7 \pm 2.6 \text{ MeV}$

$$\frac{\Gamma[Z_c(4025) \to D^* D^*]}{\Gamma[Z_c(4020) \to \pi h_c]} \sim 9.$$

్చ్ 50

Y(4260)

• Y(4260) - not standard charmonium state. $JPC = 1 - M = 4259 \pm 9 \Gamma = 120 \pm 100$

12 MeV

Decays observed:

Many models:

$$J/\psi \pi^{+} \pi^{-}$$

 $J/\psi f_{0}(980), f_{0}(980) \rightarrow \pi^{+} \pi^{-}$
 $X(3900)^{\pm} \pi^{\mp}, X^{\pm} \rightarrow J/\psi \pi^{\pm}$

$$J/\psi \pi^{0} \pi^{0}$$

 $J/\psi K^{+} K^{-}$
 $X(3872) \gamma$

1. Charmonium hybrid

2. D₁ D molecule

3. Hadrocharmonium

4. Tetraquark (ccss)

5. Cusp/nonresonance

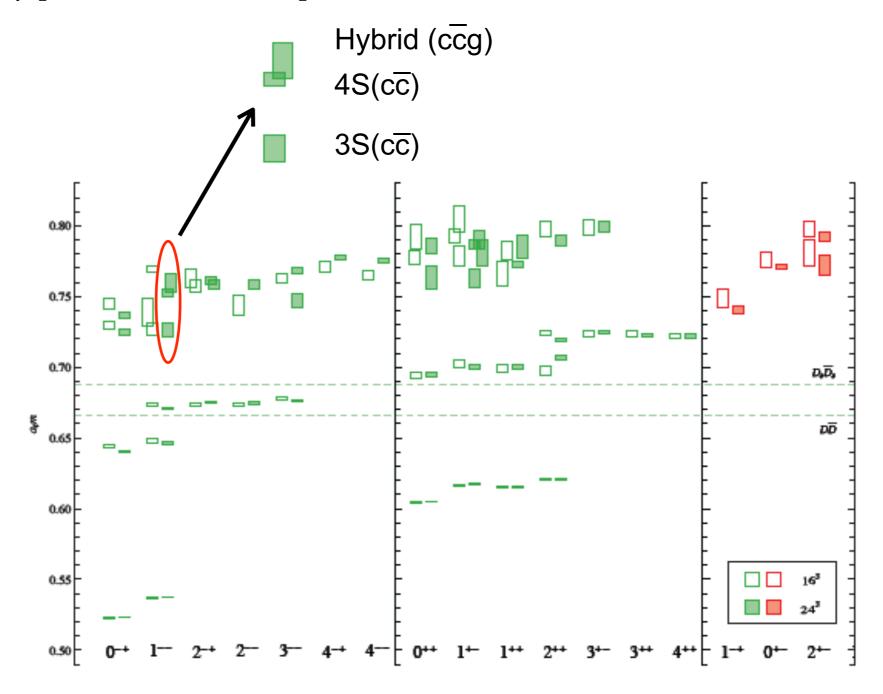
ZHU S L. Phys. Lett. B, 2005, **625**: 212

Kou E and Pene O. Phys. Lett. B, 2005, 631: 164 Close F E and Page P R. Phys. Lett. B, 2005, **628**: 215

DING G J, Zhu J J and YAN M L. Phys. Rev. D, 2008, 77: 014033

Ding G J. Phys. Rev. D, 2009, 79: 014001 WANG Q, Hanhart C and ZHAO Q. Phys. Rev. Lett., 2013, **111**: 132003

Voloshin M B. Prog. Part. Nucl. Phys., 2008, **61**: 455 S. Dubynskiy and Voloshin M B. Phys. Lett. B, 2008, 666: 344 LI X and Voloshin M B. Phys. Rev. D, 2013, 588: 034012


Maiani L, Riquer V, Piccinini F and Polosa A D. Phys. Rev. D, 2005, **72**: 031502

Beveren E van and Rupp G. arXiv:0904.4351 [hep-ph] Beveren E van and Rupp G. Phys. Rev. D, 2009, 79: 111501 Beveren E van, Rupp G and Segovia J. Phys. Rev. Lett., 2010, **105** 102001

CHEN D Y, HE J and LIU X. Phys. Rev. D, 2011, 83 054021

- Lattice results from the hadron spectroscopy collaboration suggest the possibility of a hybrid
- HQS expectations require to see an analog state in the bottomonium system
 - 1. Using the static potential of the excited string Πu : Hybrid state should be ~ 10,870 MeV
 - 2. At threshold of $B_1B: 11,000 \text{ MeV}$

HQL 2016 24 May, 2016 L. Liu et al (HSC) [arXiv:1204.5425]

• These preliminary results (quenched) support the identification of the Y(4260) as a hybrid meson.

X(3872)

• $X(3872) - J^{PC} = 1^{++}$ M= $3871.69 \pm 0.16 \pm 0.19$ $\Gamma < 1.2$ MeV from $J/\psi \pi\pi$ mode

- Decays observed: $\int_{\omega}^{n} \rho$

$$\pi^{+}\pi^{-}J/\psi(1S)$$
 $\rho^{0}J/\psi(1S)$
 $\omega J/\psi(1S)$
 $D^{0}\overline{D}{}^{0}\pi^{0}$
 $\overline{D}{}^{*0}D^{0}$
 $\gamma \psi(2S)$

> 1.9 %

>32 %

>24 %

[a] > 3.0 %

large Isospin violation

Fermilab

- LHCb [arXiv:1404.0275]

$$\frac{\mathcal{B}(X(3872) \to \psi(2S)\gamma)}{\mathcal{B}(X(3872) \to J/\psi\gamma)} = 2.46 \pm 0.64 \pm 0.29 \qquad \text{suggests 2P state}$$

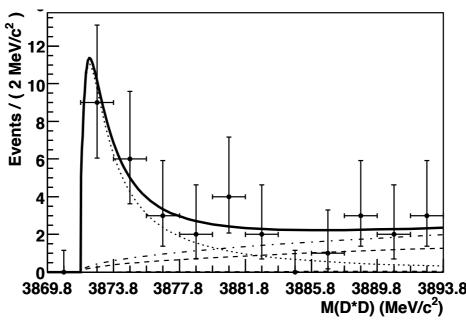
 $- M_X - M_D - M_{D^*} = -0.11 \pm 0.23 \text{ MeV}$

suggests molecule

- Two primary models:

χ_{c1}'(2³P₁) state
 D⁰ D^{0*} molecule

M. Suzuki, hep-ph/0307118.


DeRujula, Georgi, Glashow, PRL 38(1997)317 F. Close and P. Page, Phys. Lett. B578 (2004) 119 M. Voloshin, Phys. Letts. B579 (2004) 316.

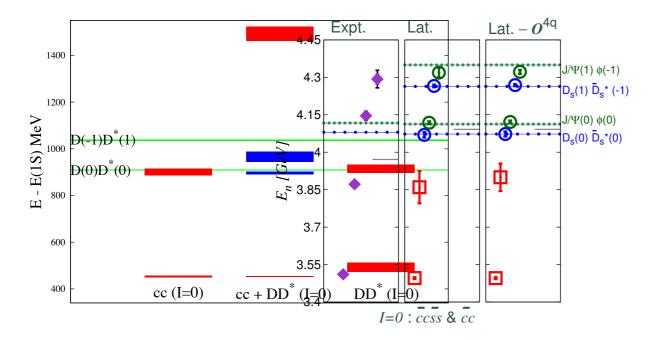
E. Braaten [arXiv1503.04791]

- Mixed state with sizable quarkonium component likely.
- For LQCD: Where is the $\chi_{c0}'(2^3P_0)$ state?

- B -> X(3872) K -> $(D^0 \overline{D}^{0*})$ K
- Strong peaking at threshold for S-wave observed experimentally.

Belle Phys.Rev. D81 (2010) 031103

- · Lattice calculations:
 - `A pole appears just below threshold in the $J^{PC} = 1^{++} I = 0$ channel.
 - But requires both the $(c\overline{c})$ and the $D\overline{D}^*$ components.
 - Suggests there is a significant ($c\overline{c}$) component of the X(3872)
 - No pole observed in the I = 1 channel.


- B. A. Galloway, P. Knecht, J. Koponen, C. T. H. Davies, and G. P. Lepage, PoS **LATTICE2014**, 092 (2014), 1411.1318.
- S. Prelovsek and L. Leskovec, Phys.Rev.Lett. 111, 192001 (2013), 1307.5172.

Fermilab Lattice, MILC, S.-h. Lee, C. DeTar, H. Na, and D. Mohler, (2014), 1411.1389.

M. Padmanath, C. B. Lang, and S. Prelovsek, Phys. Rev. **D92**, 034501 (2015), 1503.03257.

Estia Eichten Fermilab

arXiv:1411.1389

X_b(10604) ??

- No isospin breaking: X is I=0 => G-parity forbids the decay X -> $\pi\pi\Upsilon(15)$.
- Dominate decay X -> wY(15)?
- $M(\chi_{b1}(3P)) M(B) M(B^*) \approx -75 \text{ MeV}$
- So the (bb) state is decoupled.

Expect no analog of the X(3872) in the bottomonium system

arXiv:1503.03257

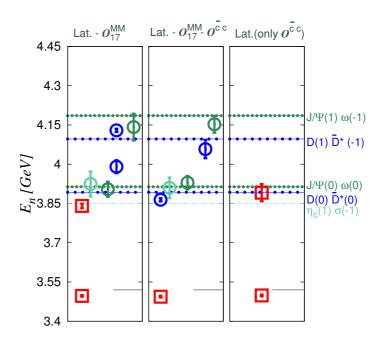
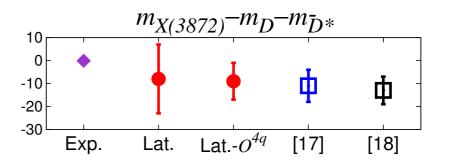
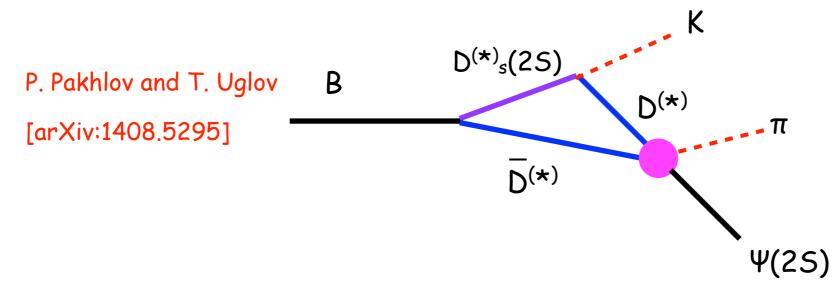
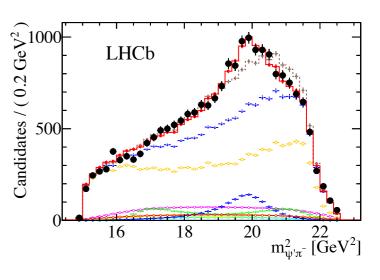
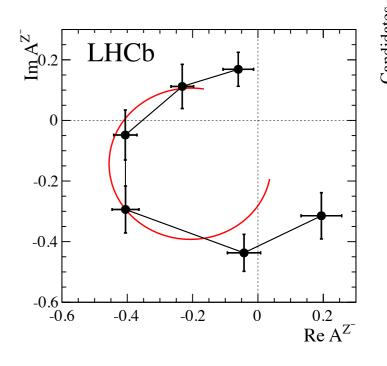




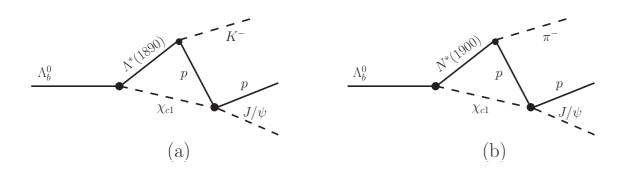
FIG. 5. The spectrum of states (Eq. (11)) with $J^{PC} = 1^{++}$ and quark content $\bar{c}c(\bar{u}u + \bar{d}d)$ & $\bar{c}c$. (i) Optimized basis (without O_{17}^{MM}), (ii) optimized basis without $\bar{c}c$ operators (and without O_{17}^{MM}) and (iii) basis with only $\bar{c}c$ operators. Note that candidate for X(3872) disappears when removing $\bar{c}c$ operators although diquark-antidiquark operators are present in the basis, while it is not clear to infer on the dominant nature of this state just from the third panel. The $O_{17}^{MM} = \chi_{c1}(0)\sigma(0)$ is excluded from the basis to achieve better signals and clear comparison.

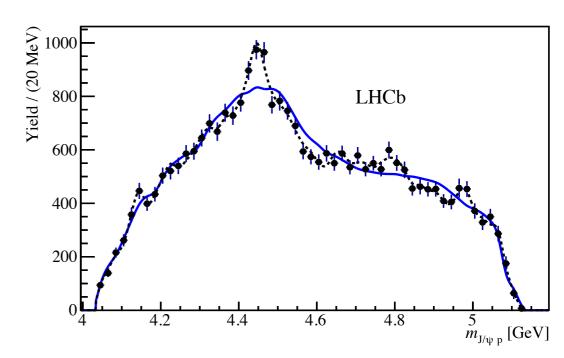


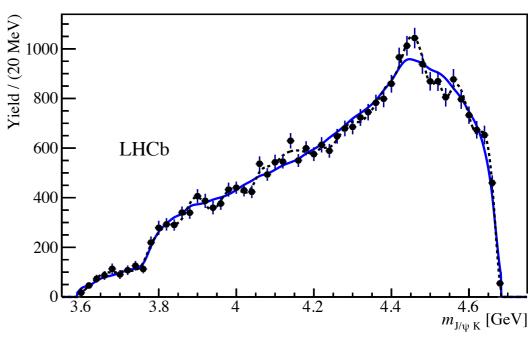
Systematics: Other States


- $Z^{-}(4430)$: seen in $B^{0} \to K^{+} \pi^{-} \psi'$
 - $J^P = 1^+$; $M = (4,475\pm7\pm[15/25])$ MeV; $\Gamma = (172\pm13\pm[37/34])$ MeV
 - Resonance behavior observed.
 - Same mechanism in B-decays with $D_s(25)$ states?
 - $D_s*(25)$ M = 2,709 ± 4 MeV Γ = 117 ± 13 MeV
 - B -> $D_s(2^3S_1) D^*$, $D_s(2^1S_0) D^*$, or $D_s(2^3S_1) D$ then
 - $D_s(2^3S_1) \rightarrow K^+ D^{*-} \text{ or } K^+ D^-; D_s(2^1S_0) \rightarrow K^+ D^{*-}$
 - Possible rescattering explanation

- X(5568): decaying into $B_s \pi^+$
 - by observed by Dzero but not confirmed by LHCb


LHCb [arXiv:1404.1903]

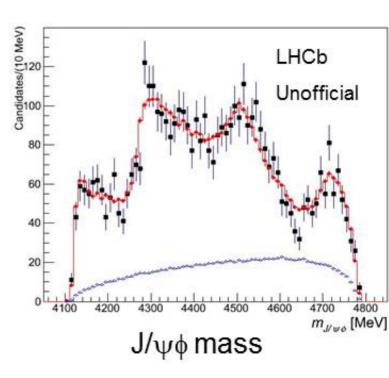

• Pentaquarks: $[\Lambda_b \rightarrow p J/\psi K \text{ weak decay}]$


LHCb: [arXiv:507.03414, 1604.05708]

- $P_c(4450)$ $J^P = 5/2^+$; $M=(4,449.8\pm1.7\pm2.5)$ MeV; $\Gamma=(39\pm5\pm19)$ MeV
- $P_c(4380) J^P = 3/2^-$; $M=(4,380\pm8\pm29)$ MeV; $\Gamma=(205\pm18\pm86)$ MeV
- complicated analysis required.
- possible J/ψ K state investigated also
- Note nearby thresholds
 - χ_{c1} p threshold 4,448 MeV
 - Maybe a cusp effect?

F.-K. Guo, U.-G. Meißner, W. Wang and Z. Yang [arXiv:1507.04950]
F.-K. Guo, U.-G. Meißner, J.Nieves and Z. Yang [arXiv:1605.05113]

Unexplored Territory

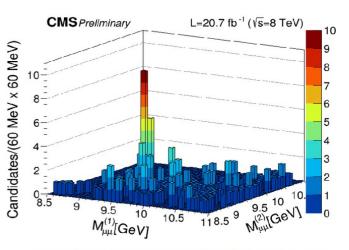

Many surprises still ahead?

- The dynamics of the new states is likely a cocktail of the models so far proposed. Lattice QCD may provide some answers. More experimental data will also clarify the situation:
 - Resolve the status of (cc) new exotic states only seen by one experiment.
 - HQS predicts the expectations (cc) -> (bb) within a given model. Provides a test for various models.
- We see enhancements (resonances) at two heavy-light meson thresholds for I=1 channels. What about the rest of the SU(3) nonet?
 - For strange heavy-light meson pair thresholds: Resonances and hadronic transitions with single η and ϕ light hadrons?
 - No wide $j^p = \frac{1}{2}$ heavy-light mesons in charm or bottom systems -> no sequential transitions (as in the Y(5S) system).
 - $M(D_s^+ D_s^{-*}) = 4,081$; $M(D_s^{+*} D_s^{-*}) = 4,225$; $M(3^3 P_1) = 4,310 \text{ MeV } \rightarrow \text{no analogy of } X(3872)$.
 - Narrow $D_P(\frac{1}{2}^+) + D_S(\frac{1}{2}^-)$ thresholds? (and B analogs)
 - Possible in decays of B mesons

- Have four quark states with heavier light quarks been observed?
 - $(c\overline{s}s\overline{c})$ X(4140) and others?
- CMS at $\sqrt{s} = 8$ TeV observes double Y production in the μ + μ - μ + μ - final state:
 - σ (pp -> Y Y) = 68.8 ± 12.7 (stat) ± 7.4 (syst) pb for |y| < 2.0 and $p_T^{\Upsilon} < 50$ GeV
 - Possible to search for heavy quark hadrons $(c\overline{c}c\overline{c})$, (cbbc), $(b\overline{b}b\overline{b})$
 - Quarkonium states increasingly bound as heavy qu mass increases. What about tetraquark states?

Are there any narrow bound tetraquark states?

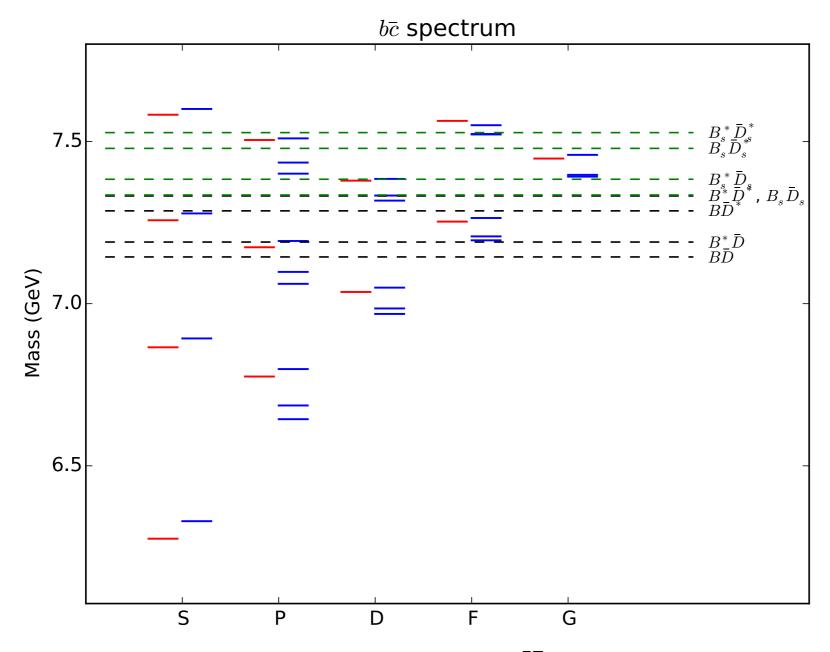
 Bumpy structure at all J/ψφ masses. First meaningful exploration of the high mass region. Cannot discuss yet whether these structures are reflections or exotic contributions.



Maksat Haymyradov: APS April meeting

Selected Events

Image



Two dimensional scatter plot of selected events.

Significant excess of events around ~9.5 GeV.

HQL 2016

- B_c a rich excitation spectrum of states.
 - Atlas observed: Bc(25) -> Bc(15) + $\pi\pi$. The first radially excited state.
 - Many states observable at the LHC and a future TevaZ factory.

• B_c is the only heavy-heavy meson that only has weak decays.

Many opportunities to study CKM and BSM physics.

TABLE XI: Branching ratios of exclusive B_c^+ decays at the fixed choice of factors: $a_1^c = 1.20$ and $a_2^c = -0.317$ in the non-leptonic decays of c quark, and $a_1^b = 1.14$ and $a_2^b = -0.20$ in the non-leptonic decays of \bar{b} quark. The lifetime of B_c is appropriately normalized by $\tau[B_c] \approx 0.45$ ps.

Fermilab

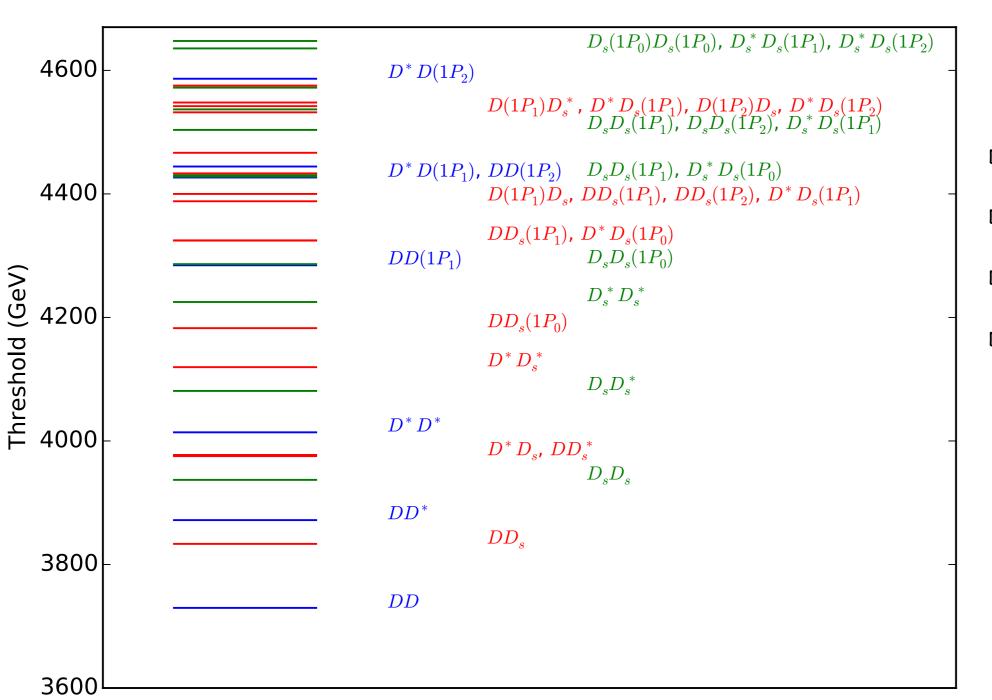
First lattice calculations Bc -> η_c and Bc -> J/ψ weak form factors.

A. Lytle, B. Colquhoun, C. Davies, J. Koponen [arXiv:1605.05645]

Mode	BR, %	Mode	BR, %	Mode	BR, %
$B_c^+ \to \eta_c e^+ \nu$	0.75	$B_c^+ \to J/\psi K^+$	0.011	$B_c^+ \to B_s^0 K^+$	1.06
$B_c^+ o \eta_c au^+ u$	0.23	$B_c \to J/\psi K^{*+}$	0.022	$B_c^+ \to B_s^{*0} K^+$	0.37
$B_c^+ \to \eta_c' e^+ \nu$	0.020	$B_c^+ \to D^+ \overline{D}^{0}$	0.0053	$B_c^+ \to B_s^0 K^{*+}$	_
$B_c^+ \to \eta_c' \tau^+ \nu$	0.0016	$B_c^+ \to D^+ \overline{D}^{*0}$	0.0075	$B_c^+ \to B_s^{*0} K^{*+}$	_
$B_c^+ \to J/\psi e^+ \nu$	1.9	$B_c^+ \to D^{*+} \overline{D}^{0}$	0.0049	$B_c^+ \to B^0 \pi^+$	1.06
$B_c^+ \to J/\psi \tau^+ \nu$	0.48	$B_c^+ \to D^{*+} \overline{D}^{*0}$	0.033	$B_c^+ \to B^0 \rho^+$	0.96
$B_c^+ \to \psi' e^+ \nu$	0.094	$B_c^+ \to D_s^+ \overline{D}^{0}$	0.00048	$B_c^+ \to B^{*0} \pi^+$	0.95
$B_c^+ \to \psi' \tau^+ \nu$	0.008	$B_c^+ \to D_s^+ \overline{D}^{*0}$	0.00071	$B_c^+ \to B^{*0} \rho^+$	2.57
$B_c^+ \to D^0 e^+ \nu$	0.004	$B_c^+ \to D_s^{*+} \overline{D}^{0}$	0.00045	$B_c^+ \to B^0 K^+$	0.07
$B_c^+ \to D^0 \tau^+ \nu$	0.002	$B_c^+ \to D_s^{*+} \overline{D}^{*0}$	0.0026	$B_c^+ \to B^0 K^{*+}$	0.015
$B_c^+ \to D^{*0} e^+ \nu$	0.018	$B_c^+ \to \eta_c D_s^+$	0.28	$B_c^+ \to B^{*0} K^+$	0.055
$B_c^+ \to D^{*0} \tau^+ \nu$	0.008	$B_c^+ \to \eta_c D_s^{*+}$	0.27	$B_c^+ \to B^{*0} K^{*+}$	0.058
$B_c^+ \to B_s^0 e^+ \nu$	4.03	$B_c^+ \to J/\psi D_s^+$	0.17	$B_c^+ \to B^+ \overline{K^0}$	1.98
$B_c^+ \to B_s^{*0} e^+ \nu$	5.06	$B_c^+ \to J/\psi D_s^{*+}$	0.67	$B_c^+ \to B^+ \overline{K^{*0}}$	0.43
$B_c^+ \to B^0 e^+ \nu$	0.34	$B_c^+ \to \eta_c D^+$	0.015	$B_c^+ \to B^{*+} \overline{K^0}$	1.60
$B_c^+ \to B^{*0} e^+ \nu$	0.58	$B_c^+ \to \eta_c D^{*+}$	0.010	$B_c^+ \to B^{*+} \overline{K^{*0}}$	1.67
$B_c^+ \to \eta_c \pi^+$	0.20	$B_c^+ \to J/\psi D^+$	0.009	$B_c^+ \to B^+ \pi^0$	0.037
$B_c^+ \to \eta_c \rho^+$	0.42	$B_c^+ \to J/\psi D^{*+}$	0.028	$B_c^+ \to B^+ \rho^0$	0.034
$B_c^+ \to J/\psi \pi^+$	0.13	$B_c^+ \to B_s^0 \pi^+$	16.4	$B_c^+ \to B^{*+} \pi^0$	0.033
$B_c^+ \to J/\psi \rho^+$	0.40	$B_c^+ \to B_s^0 \rho^+$	7.2	$B_c^+ \to B^{*+} \rho^0$	0.09
$B_c^+ \to \eta_c K^+$	0.013	$B_c^+ \to B_s^{*0} \pi^+$	6.5	$B_c^+ \to au^+ u_ au$	1.6
$B_c^+ \to \eta_c K^{*+}$	0.020	$B_c^+ \to B_s^{*0} \rho^+$	20.2	$B_c^+ \to c\bar{s}$	4.9

- Double heavy baryons (ccq), (cbq), (bbq). Both HQET and NRQCD play a role in the excitation spectra of these states.
 - double expansion
 - NRQCD for the two heavy quarks and HQET expansion for the heavy core (QQ) light quark system.
 - In leading order in $1/m_Q$: Excitation spectrum for the light quark is same as for heavy-light mesons (HQET)

Conclusions


- Heavy quark states are ideal systems to study QCD strong dynamics.
- Observation of $j_1^P = \frac{1}{2} + B_s(1P)$ states and their decays will help distinguish models of heavy-light dynamics.
- Narrow quarkonium states below threshold allow precision studies of the nonrelativistic limit of QCD. Lattice QCD and the non-relativistic expansion provides a detailed picture of these states.
- In the threshold region for decays to open heavy flavor states QCD dynamics is more complicated. There have been many surprises and a still incomplete picture of the dynamics:
 - Large hadronic transition rates. New transition contributions with two open flavor intermediate states.
 - Large violations of heavy quark spin symmetry and SU(3) expectations. Likely induced by the symmetry breaking of the heavy-light mesons masses coupled to the rapid energy variation of the decay amplitudes.
 - New states with additional degrees of freedom: Threshold effects, hybrid states, tetraquarks, pentaquark provide a multitude of possibilities. More clues from BESIII, Belle2, LHCb, PANDA,... coupled with Lattice QCD calculations are needed.
- Many heavy quark systems remain essentially unexplored; more surprises may await.

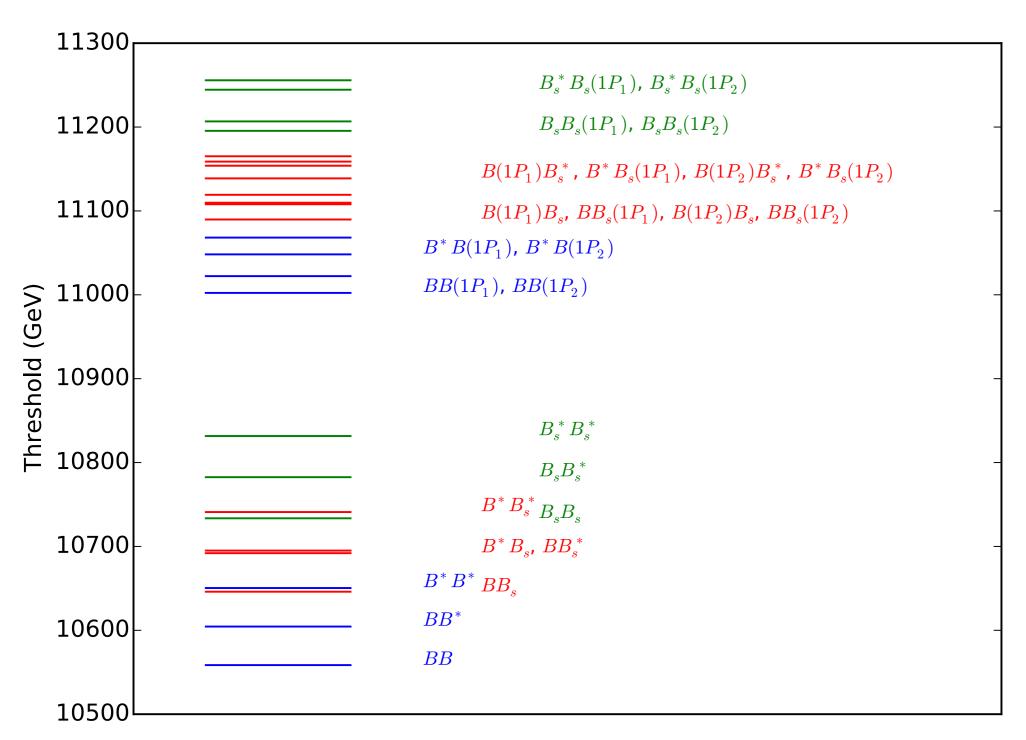
BACKUP SLIDES

Estia Eichten Fermilab

Low-lying thresholds

Low-lying (Narrow) Charm Meson Pair Thresholds

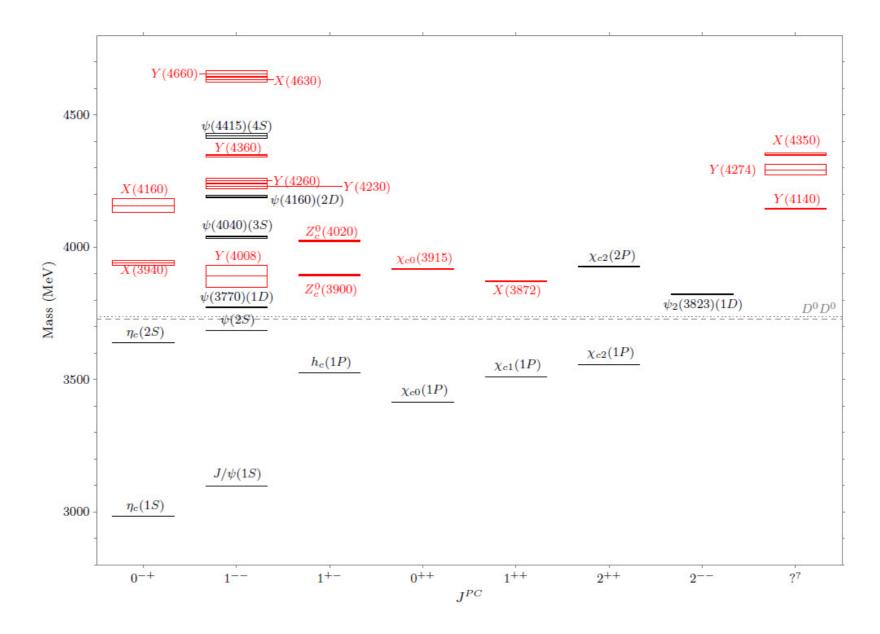
Narrow-Wide Thresholds


 D_s * $D(P_1)$

 $D_s D(P_1); D_s * D(P_0)$

 $D_s D(P_0)$; $D^* D(P_0)$; $D D(P_1)$

 $D D(P_0)$


Low-lying (Narrow) Bottom Meson Pair Thresholds

Narrow-Wide Thresholds

HQL 2016 24 May 2016

· All the X states above threshold

