Study of charmonia and charmed baryons at Belle

Yuji Kato (KMI, Nagoya University)

Kobayashi-Maskawa Institute for the Origin of Particles and the Universe

Introduction: Charmonia

- The charmonium spectroscopy $\rightarrow q\overline{q}$ potential = Linear + Coulomb.
- Phenomenological explanation of the confinement.
- Prove the constituent quark model.

- The discovery of so-called XYZ opened new era.
 Not fit to constituent quark model.
- Even states with charge (Z_c).
- Existence established and J^{pc} measured for many states.
- The nature not understood (molecule, tetra, hybrid??)

X(3872): Mysterious charmonium

• First observed in J/ $\psi \pi^+ \pi^-$ at Belle (Phys. Rev. Lett. 91.262001) Most sited paper!.

- •No prediction by quark model in this mass.
- Decay breaks isospin: ππ=ρ, I=1
- Mass just above the D⁰D*⁰
- J^{pc} = 1⁺⁺ by LHCb.
- What is the nature of X(3872)?

$B^+ \rightarrow K^+ \chi_{c1} \pi^+ \pi^-$: Motivation

One plausible interpretation of X(3872)
 = Admixture of DD* molecule and χ_{c1}(2P).

- Molecular picture can explain isospin breaking.
- Large prompt X(3872) cross section in $p\overline{p}$ require $\chi_{c1}(2P)$ component.
- Non observation of $\chi_{c1}(2P)$.

Phys.Rev.Lett.93:072001,2004

- If $\chi_{c1}(2P)$ exists, it should decay into $\chi_{c1}\pi^+\pi^-$.
- Search for $\chi_{c1}(2P)$ and X(3872) in $B \rightarrow K^+ \chi_{c1} \pi^+ \pi^-$. - Include first observation of $B \rightarrow K \chi_{c1} \pi \pi$

Search for X(3872) and $\chi_{c1}(2P)$ in $\chi_{c1}\pi^+\pi^-$ 6

• First observation of three $B \rightarrow K\chi_{c1}\pi\pi$ decays. Use $B^+ \rightarrow \chi_{c1}\pi^+\pi^-$ for resonance searches.

•No events in the X(3872) region. Br(B⁺ \rightarrow X(3872)K⁺) × B(X(3872) $\rightarrow\chi_{c1}\pi^{+}\pi^{-})< 0.15 \times 10^{-6}$ (90% C.L.).

• $\chi_{c1}(2P)$ not significant. Assume $\chi_{c1}(2P)$ mass and width to be 3920 MeV/c² and 20 MeV Br(B $\rightarrow \chi_{c1}(2P)K^+$) × B($\chi_{c1}(2P)\rightarrow \chi_{c1}\pi^+\pi^-$)< 1.10 × 10⁻⁵ (90% C.L.)

• Not significant result is compatible with X(3872) as DD* and $\chi_{c1}(2P)$ admixture.

Search for XYZ in the Y(1S) decay(1)

Submitted to PRD arXiv:1605.00990

- Almost of the XYZ are observed in the B-decay and Initial State Radiation (ISR).
- •Y(1S) decays into 3 gluons ⇔ Different dynamics with B-decay or ISR.
- Comprehensive search of XYZ decaying to J/ψ or ψ' from the ~10⁸ Y(1S) decay.

Search for XYZ in the Y(1S) decay(2)

No XYZ states observed from the decay of Y(1S). Input from theory is needed for interpretation.

Submitted to PRD arXiv:1605.00990

Precise mass, width measurements 10

- Mass difference of isodoublet = u-d mass difference and EM interactions Important input to deduce the wave function.
- Many of measurements are old and statistics not very high (errors are larger than splitting itself).
 For widths, many states have only upper limits.

```
• New measurements for 5 excited \Xi_c isodoublets
decaying into final states with \Xi_c^+ or \Xi_c^0
\Xi_c' \rightarrow \Xi_c \gamma
\Xi_c(2645) \rightarrow \Xi_c \pi
\Xi_c(2790) \rightarrow \Xi_c' \pi
\Xi_c(2815) \rightarrow \Xi_c \pi \pi and \Xi_c' \pi
\Xi_c(2980) \rightarrow \Xi_c \pi \pi and \Xi_c' \pi
```

• Ξ_c^+ and Ξ_c^{0} are reconstructed from 10 and 7 decay modes. Total yields are around 1 × 10⁵ and 5 × 10⁴.

$Ξ_c π(π)$ (Preliminary) 11

$Ξ_c'(π)$ (Preliminary) 12

			PDG val	ues in ()
	Mass (Mev/c²)	Width (MeV)		
Ξ _c (2645) ⁺	$2645.58 \pm 0.06 \pm 0.07^{+0.28}$ (2645.9 ± 0.5)	$2.06 \pm 0.13 \pm 0.13$ (2.6 \pm 0.2 \pm 0.4)		
Ξ _c (2815) ⁺	$2816.73 \pm 0.08 \pm 0.06^{+0.28}$ -0.40 (2816.6 ± 0.9)	2.43±0.20±0.17 (<3.5)		
Ξ _c (2980) ⁺	$2966.0 \pm 0.8 \pm 0.2^{+0.3}$ -0.4 (2970.7 ± 2.2)	$28.1 \pm 2.4^{+1.0}$ (17.9 ± 3.5)		
Ξ _c '+	$2578.4 \pm 0.1 \pm 0.4^{+0.3}$ -0.4 (2575.6 ± 3.1)	-		
Ξ _c (2790)+	$2791.6 \pm 0.2 \pm 0.1 \pm 0.4^{+0.3}$ (2789.8 \pm 3.2)	8.9±0.6±0.8 (<15)		

Significant improvement for the accuracy of masses.
 (third error is coming from ground state Ξ_c)

• First significant measurement for the widths for many states.

Isospin splitting (Preliminary)

Isospin splitting also quite accurate!

•Small splitting for $\Xi_c(2645)$ and Ξ_c' (spin 1 di-quark states) consistent with quark model (J. Phys. G 29, 2685 2003).

Higher excited states (past studies).

15

•All the excited Ξ_c are observed in (heavy baryon) + (light meson) final states. (Light baryon) + (heavy meson) decay provides complementary information $\rightarrow \Lambda D!$

M(ΛD) spectra (Preliminary)

Combine with Σ_c^(*)K⁻ modes (Preliminary)17


```
• In the chiral quark model,

\Xi_c(3055) = {}^2D_{\lambda\lambda}(3/2^+) and

\Xi_c(3080) = {}^2D_{\rho\rho}(3/2^+).

(Phys. Rev. D 86, 034024)
```

They predicted ΛD decay is suppressed. \rightarrow Inconsistent with this measurement.

Mass (MeV/c²) and width (MeV)

	∧D+	Σ _c K-	∑ _c *K⁻	Combined
M(Ξ _c (3055) ⁺)	$3055.8 \pm 0.4 \pm 0.2$	$3058.1 \pm 1.0 \pm 2.1$	-	3055.9 ± 0.4
M(Ξ _c (3080) ⁺)	$3079.6 \pm 0.4 \pm 0.2$	$3077.9 \pm 0.4 \pm 0.7$	$3076.9 \pm 0.3 \pm 0.2$	3077.9 ± 0.9
Г(Ξ _c (3055)+)	$7.0 \pm 1.2 \pm 1.5$	$9.7 \pm 3.4 \pm 3.3$	-	$7.8 \pm 1.2 \pm 1.5$
Г(Ξ _c (3080)+)	<6.3	$2.4 \pm 0.9 \pm 1.6$	$3.2 \pm 1.3 \pm 1.3$	$3.0 \pm 0.7 \pm 0.4$

DCS decay of the Λ_c^+

Accepted in PRL arXiv:1512.07366 18

- In the baryon sector, Doubly Cabbibo Suppressed (DCS) decay has NEVER been observed. $\Lambda_c^+ \rightarrow pK^+\pi^-$ is expected to be sensitive.
- Naively, ratio to CF decay, $pK^-\pi^+$ is expected to be $\frac{B(\Lambda_c^{^+} \to pK^+\pi^-)}{B(\Lambda_c^{^+} \to pK^-\pi^+)} \cong \tan^4 \theta_c$
- In the CF decay, the W exchange diagram may contribute.

Observation of $\Lambda_c^+ \rightarrow pK^+\pi^-$

- Branching fraction ratio = $(2.35 \pm 0.27(\text{Stat}) \pm 0.21(\text{Sys})) \times 10^{-3}$ = $(0.82 \pm 0.12) \times \tan^4\Theta$
- After subtracting contribution of Λ(1520) or Δ intermediate, which contribute only on the CF decay, the ratio is (1.10±0.17) × tan⁴Θ
- Contribution from W exchange diagram is small.

- Belle is actively publishing on charmonia and charmed baryons!
- • $\chi_{c1}(2P)$ not observed in $\chi_{c1}\pi\pi$:
 - \rightarrow Comparable with X(3872) as admixture picture.
- No XYZ from Y(1S) decay. Theoretical input needed to understand.
- New results on excited Ξ_c baryons.
 - Precise mass/width for excited states decaying into Ξ_c
 - $\Xi_c(3055)$ and $\Xi_c(3080)$ into ΛD final state. Discovery of $\Xi_c(3055)^0$ and relative branching fraction measurements.
- First observation of DCS decay of baryon: $\Lambda_c^+ \rightarrow pK^+\pi^-$
- Stay tuned for more results from upcoming Belle II!

Comparison of 3 body $B \rightarrow \chi_{c1}\pi K$ and $B \rightarrow \chi_{c2}\pi K$ 23

• First observation of two $B \rightarrow \chi_{c2} X$ exclusive decays.

- K*:K*(1430) etc is different for χ_{c1} and χ_{c2} . \rightarrow Important input for decay dynamics.
- $M(\chi_{c1}\pi)$ consistent with previous Belle observation of two charged Z states. No narrow structure in $M(\chi_{c2}\pi)$.

B decays to χ_{c1} and χ_{c2}

- The two body decay $B \rightarrow K^+ \chi_{c2}$ is suppressed relative to χ_{c1} (~2 %).
 - Due to the angular momentum conservation. Need FSI.
- In the inclusive measurement, the suppression is moderate (~25 %).
 - \rightarrow Multi body decays. Study of intermediate resonance clarifies decay dynamics.

- Most plausible explanation of X(3872) is mixing of DD* molecule and $\chi_{c1}(2p)$, which Is not observed so far.
 - \rightarrow Search for X(3872) and $\chi_{c1}(2p)$ in B \rightarrow K⁺ $\chi_{c1}\pi^{+}\pi^{-}$.

1. Improvement measurement of inclusive χ_{c12} with full statistics

2. Several (new) exclusive decay modes and study of intermediate states.

Inclusive measurements

• Continuum, feed down are subtracted.

- Good agreement with previous measurements with improved accuracy.
- Differential measurement shows most of χ_{c2} decay are multi-body.

Exclusive measurements

	Decay	Yield (Y)	$\mathcal{S}(\sigma)$	$\epsilon(\%)$	$B(10^{-4})$	$\mathcal{R}_{\mathcal{B}}$
	$B^0 \rightarrow \gamma$	$\chi_{cJ}\pi^-K^+$				0.14 ± 0.02
	χ_{c1}	2774 ± 66	66.7	17.9	$4.97 \pm 0.12 \pm 0.28$	
	χ_{c2}	206 ± 25	8.7	16.2	$0.72 \pm 0.09 \pm 0.05$	
	$B^+ \rightarrow j$	$\chi_{cJ}\pi^+K^0$				0.20 ± 0.04
	χ_{c1}	770 ± 35	33.7	8.6	$5.75 \pm 0.26 \pm 0.32$	
	χ_{c2}	76.4 ± 14.7	4.6	7.5	$1.16 \pm 0.22 \pm 0.12$	
	$B^+ \rightarrow j$	$\chi_{cJ}\pi^0 K^+$				< 0.21
	χ_{c1}	803 ± 70	15.6	7.8	$3.29 \pm 0.29 \pm 0.19$	
	χ_{c2}	17.5 ± 28.4	0.4	7.0	< 0.62	
	$B^+ \rightarrow g$	$\chi_{cJ}\pi^+\pi^-K^+$				0.36 ± 0.05
\rightarrow	χ_{c1}	1502 ± 70	19.2	12.8	$3.74 \pm 0.18 \pm 0.24$	
	χ_{c2}	269 ± 34	8.4	11.4	$1.34 \pm 0.17 \pm 0.09$	
	$B^0 \rightarrow \gamma$	$\chi_{cJ}\pi^+\pi^-K^0$				< 0.61
	χ_{c1}	268 ± 30	7.1	5.4	$3.16 \pm 0.35 \pm 0.32$	
	χ_{c2}	37.8 ± 14.2	1.8	4.8	< 1.70	
	$B^0 \rightarrow \gamma$	$\chi_{cJ}\pi^-\pi^0K^+$				< 0.25
	χ_{c1}	545 ± 81	6.5	5.0	$3.52 \pm 0.52 \pm 0.24$	
	χ_{c2}	$\frac{76.7 \pm 42.0}{100}$		4.3	< 0.74	

- First observation of χ_{c2} exclusive decays
- First observation of χ_{c1} decays with 2π .
- Improved previous measurements.
- Cover 58 (32) % of inclusive BF for χ_{c1} (χ_{c2}).

Upper limit on the branching fractions

State	$N_{ m fit}$	$N_{\rm up}$	$\varepsilon(\%)$	$\sigma_{\rm syst}(\%)$	$\Sigma(\sigma)$	$\mathcal{B}_R^{\mathrm{prod}}$
$X(3872) \to \pi^+\pi^- J/\psi$	4.8 ± 15.4	31.4	3.26	18.7	0.3	$< 9.5 \times 10^{-6}$
$Y(4260) \to \pi^+ \pi^- J/\psi$	-31.1 ± 88.9	134.6	3.50	35.6	—	$< 3.8 \times 10^{-5}$
$Y(4260) \to \pi^+ \pi^- \psi(2S)$	6.7 ± 29.4	56.9	0.71	35.0	0.2	$< 7.9 \times 10^{-5}$
$Y(4360) \to \pi^+ \pi^- \psi(2S)$	-25.4 ± 30.1	45.6	0.86	50.0	—	$< 5.2 \times 10^{-5}$
$Y(4660) \to \pi^+ \pi^- \psi(2S)$	-55.0 ± 26.2	23.1	1.06	40.7	—	$< 2.2 \times 10^{-5}$
$Y(4260) \to K^+ K^- J/\psi$	-13.7 ± 10.9	14.5	1.91	45.8	_	$< 7.5 \times 10^{-6}$
$Y(4140) \rightarrow \phi J/\psi$	-0.1 ± 1.2	3.6	0.69	11.0	—	$< 5.2 \times 10^{-6}$
$X(4350) \rightarrow \phi J/\psi$	2.3 ± 2.5	7.6	0.92	10.4	1.2	$< 8.1 \times 10^{-6}$
$Z_c(3900)^{\pm} \to \pi^{\pm} J/\psi$	-26.5 ± 39.1	57.5	4.39	47.3	—	$< 1.3 \times 10^{-5}$
$Z_c(4200)^{\pm} \to \pi^{\pm} J/\psi$	$-238.6{\pm}154.2$	235.1	3.87	48.4	—	$< 6.0 \times 10^{-5}$
$Z_c(4430)^{\pm} \to \pi^{\pm} J/\psi$	94.2 ± 71.4	195.8	3.97	34.4	1.2	$< 4.9 \times 10^{-5}$
$Z_c(4050)^{\pm} \to \pi^{\pm}\psi(2S)$	37.0 ± 47.7	112.7	1.27	46.2	0.4	$< 8.8 \times 10^{-5}$
$Z_c(4430)^{\pm} \to \pi^{\pm}\psi(2S)$	23.2 ± 42.4	92.0	1.35	47.1	0.1	$< 6.7 \times 10^{-5}$
$Z_{cs}^{\pm} \to K^{\pm} J/\psi$	-22.2 ± 17.4	22.4	3.88	48.7	_	$< 5.7 \times 10^{-6}$