Study of charmonia and charmed baryons at Belle

Yuji Kato (KMI, Nagoya University)
Contents

- Search for $\chi_{c1}(2P)$ and $X(3872)$ in $B^+ \rightarrow \chi_{c1}\pi^+\pi^- K^+$
- Search for XYZ in $\Upsilon(1S)$ decay
- Precise mass/width measurement of excited Ξ_c
- Excited Ξ_c in ΛD decay
- First observation of baryon DCS decay: $\Lambda_c^+ \rightarrow pK^+\pi^-$

Charmonia

Charmed baryons
Introduction: Charmonia

- The charmonium spectroscopy
 \(\rightarrow q\bar{q} \) potential = Linear + Coulomb.

- Phenomenological explanation of the confinement.
- Prove the constituent quark model.

- The discovery of so-called XYZ opened new era.
 - Not fit to constituent quark model.
 - Even states with charge (\(Z_c \)).
 - Existence established and \(J^{pc} \) measured for many states.
 - The nature not understood (molecule, tetra, hybrid??)
X(3872): Mysterious charmonium

\[B^- \rightarrow K^- \, J/\psi \, \pi^+ \pi^- \]

- First observed in \(J/\psi \pi^+ \pi^- \) at Belle (Phys. Rev. Lett. 91.262001) Most sited paper!
- No prediction by quark model in this mass.
- Decay breaks isospin: \(\pi \pi = \rho \), \(I=1 \)
- Mass just above the \(D^0 D^{*0} \)
- \(J^{pc} = 1^{++} \) by LHCb.
- What is the nature of \(X(3872) \)?
B^+ \rightarrow K^+ \chi_{c1} \pi^+ \pi^- : Motivation

- One plausible interpretation of X(3872) = Admixture of DD* molecule and \chi_{c1}(2P).

\[
\begin{align*}
\text{D} & \quad \text{(C)} & \quad \pi & \quad \text{(C)} & \quad \overline{D}^* \\
\overline{u} & \quad \pi & \quad u & \quad \overline{D}^*
\end{align*}
\]

+ \quad \text{(C)} & \quad \text{(C)} \\
\chi_{c1}(2P) & \quad \chi_{c1}(2P)

- Molecular picture can explain isospin breaking.
- Large prompt X(3872) cross section in pp require \chi_{c1}(2P) component.
- Non observation of \chi_{c1}(2P).
 If \chi_{c1}(2P) exists, it should decay into \chi_{c1}\pi^+\pi^-.

- Search for \chi_{c1}(2P) and X(3872) in B \rightarrow K^+ \chi_{c1} \pi^+ \pi^-.
 - Include first observation of B \rightarrow K\chi_{c1} \pi \pi
Search for $X(3872)$ and $\chi_{c1}(2P)$ in $\chi_{c1}\pi^+\pi^-$

- First observation of three $B \to K\chi_{c1}\pi\pi$ decays. Use $B^+ \to \chi_{c1}\pi^+\pi^-$ for resonance searches.

- No events in the $X(3872)$ region.
 \[
 \text{Br}(B^+ \to X(3872)K^+) \times \text{B}(X(3872) \to \chi_{c1}\pi^+\pi^-) < 0.15 \times 10^{-6} \text{ (90\% C.L.)}.
 \]

- $\chi_{c1}(2P)$ not significant.
 Assume $\chi_{c1}(2P)$ mass and width to be 3920 MeV/c2 and 20 MeV
 \[
 \text{Br}(B \to \chi_{c1}(2P)K^+) \times \text{B}(\chi_{c1}(2P) \to \chi_{c1}\pi^+\pi^-) < 1.10 \times 10^{-5} \text{ (90\% C.L.)}
 \]

- Not significant result is compatible with $X(3872)$ as DD^* and $\chi_{c1}(2P)$ admixture.
Search for XYZ in the Y(1S) decay

- Almost of the XYZ are observed in the B-decay and Initial State Radiation (ISR).
- Y(1S) decays into 3 gluons ⇔ Different dynamics with B-decay or ISR.
- Comprehensive search of XYZ decaying to J/ψ or ψ' from the ~10^8 Y(1S) decay.

\[M(\pi^+\pi^-J/\psi) \]
No X(3872) and Y(4260)

\[M(\pi^+\pi^-\psi') \]
No Y(4360) and Y(4660)

\[M(K^+K^-J/\psi) \]
\[M(K^+K^-\psi') \]
No Y(4260) (~3σ evidence by CLEO)
Search for XYZ in the Y(1S) decay(2)

No XYZ states observed from the decay of Y(1S).
Input from theory is needed for interpretation.

M(\phi J/\psi)
M(\phi \psi ')
No X(4140) and X(4350)

M(\pi^+ J/\psi)
M(\pi^+ \psi ')
No Z(3900), Z(4050), and Z(4430)

M(K^+ J/\psi)
M(K^+ \psi ')
No new Z_{cs} states
Excited Ξ_c

- Small color spin interaction for charm ($\propto 1/m_1 m_2$).
- u-s diquark + charm quark.

- Two excitations:
 - λ mode: c and di-quark
 - ρ mode: di-quark

- $\sim 10 \Xi_c$ states observed.
 Excitation mode not identified for many states.
Precise mass, width measurements

- Mass difference of isodoublet = u-d mass difference and EM interactions
 Important input to deduce the wave function.

- Many of measurements are old and statistics not very high (errors are larger than splitting itself).
 For widths, many states have only upper limits.

- New measurements for 5 excited Ξ_c isodoublets decaying into final states with Ξ_c^+ or Ξ_c^0
 $\Xi_c^+ \rightarrow \Xi_c \gamma$
 $\Xi_c(2645) \rightarrow \Xi_c \pi$
 $\Xi_c(2790) \rightarrow \Xi_c^+ \pi$
 $\Xi_c(2815) \rightarrow \Xi_c \pi\pi$ and $\Xi_c^+ \pi$
 $\Xi_c(2980) \rightarrow \Xi_c \pi\pi$ and $\Xi_c^+ \pi$

- Ξ_c^+ and Ξ_c^0 are reconstructed from 10 and 7 decay modes.
 Total yields are around 1×10^5 and 5×10^4.
$\Xi_c \pi(\pi)$ (Preliminary)

Reduce background using decay chain $\Xi_c(2815) \rightarrow \Xi_c(2645)\pi \rightarrow \Xi_c\pi\pi$

$M(\Xi_c^0\pi^+\pi^-)$

$M(\Xi_c^{+}\pi^+\pi^-)$

$M(\Xi_c^0\pi^+)$

$M(\Xi_c^{+}\pi^-)$

$M(\Xi_c^0\pi^+\pi^-)$

$M(\Xi_c^{+}\pi^+\pi^-)$

$\Xi_c(2815)^0$

$\Xi_c(2815)^+$

$\Xi_c(2645)^0$

$\Xi_c(2645)^+$

$\Xi_c(2980)^0$

$\Xi_c(2980)^+$
First observations for
$\Xi_c^{(2815)} \rightarrow \Xi'_c \pi$
$\Xi_c^{(2980)} \rightarrow \Xi'_c \pi$

$\Xi'_c(\pi)$ (Preliminary)
Results (Preliminary)

<table>
<thead>
<tr>
<th></th>
<th>Mass (Mev/c²)</th>
<th>Width (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Xi_c(2645)^+$</td>
<td>$2645.58 \pm 0.06 \pm 0.07^{+0.28}_{-0.40}$</td>
<td>$2.06 \pm 0.13 \pm 0.13$</td>
</tr>
<tr>
<td></td>
<td>(2645.9 ± 0.5)</td>
<td>($2.6 \pm 0.2 \pm 0.4$)</td>
</tr>
<tr>
<td>$\Xi_c(2815)^+$</td>
<td>$2816.73 \pm 0.08 \pm 0.06^{+0.28}_{-0.40}$</td>
<td>$2.43 \pm 0.20 \pm 0.17$</td>
</tr>
<tr>
<td></td>
<td>(2816.6 ± 0.9)</td>
<td>(<3.5)</td>
</tr>
<tr>
<td>$\Xi_c(2980)^+$</td>
<td>$2966.0 \pm 0.8 \pm 0.2^{+0.3}_{-0.4}$</td>
<td>$28.1 \pm 2.4^{+1.0}_{-5.0}$</td>
</tr>
<tr>
<td></td>
<td>(2970.7 ± 2.2)</td>
<td>(17.9 ± 3.5)</td>
</tr>
<tr>
<td>Ξ_c'</td>
<td>$2578.4 \pm 0.1 \pm 0.4^{+0.3}_{-0.4}$</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(2575.6 ± 3.1)</td>
<td></td>
</tr>
<tr>
<td>$\Xi_c(2790)^+$</td>
<td>$2791.6 \pm 0.2 \pm 0.1 \pm 0.4^{+0.3}_{-0.4}$</td>
<td>$8.9 \pm 0.6 \pm 0.8$</td>
</tr>
<tr>
<td></td>
<td>(2789.8 ± 3.2)</td>
<td>(<15)</td>
</tr>
</tbody>
</table>

- Significant improvement for the accuracy of masses.
 (third error is coming from ground state Ξ_c)

- First significant measurement for the widths for many states.
Isospin splitting (Preliminary)

- Isospin splitting also quite accurate!

- Small splitting for $\Xi_c(2645)$ and Ξ_c' (spin 1 di-quark states) consistent with quark model (J. Phys. G 29, 2685 2003).

<table>
<thead>
<tr>
<th>Particle</th>
<th>$M(\Xi_c^+)-M(\Xi_c^0)$ (MeV/c^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Xi_c(2645)$</td>
<td>$-0.85 \pm 0.09 \pm 0.08 \pm 0.48$</td>
</tr>
<tr>
<td>$\Xi_c(2815)$</td>
<td>$-3.47 \pm 0.12 \pm 0.05 \pm 0.48$</td>
</tr>
<tr>
<td>$\Xi_c(2980)$</td>
<td>$-4.8 \pm 0.1 \pm 0.2 \pm 0.5$</td>
</tr>
<tr>
<td>$\Xi_c'(2790)$</td>
<td>$-0.8 \pm 0.1 \pm 0.1 \pm 0.5$</td>
</tr>
<tr>
<td>$\Xi_c(2980)$</td>
<td>$-3.3 \pm 0.4 \pm 0.1 \pm 0.5$</td>
</tr>
</tbody>
</table>
Higher excited states (past studies).

Both Belle and BaBar observed
\[\Xi_c(2980)^+, \Xi_c(3055)^+, \text{ and } \Xi_c(3080)^+ \] in \(\Sigma_c^{++}K^- \) final state.
\[\Xi_c(3080)^+ \] in \(\Sigma_c^{*++}K^- \) final state (only BaBar observed \(\Xi_c(3123)^+ \)).

All the excited \(\Xi_c \) are observed in (heavy baryon) + (light meson) final states.
(Light baryon) + (heavy meson) decay provides complementary information \(\rightarrow \Lambda D! \).
\(\text{M(ΛD) spectra (Preliminary)} \)

- First observation of \(Ξ_c(3055), (3080) \rightarrow ΛD \)
- First discovery of isospin partner, \(Ξ_c(3055)^0 \)!
- Simultaneous fit for \(\text{M(ΛD}^0) \) with common mass/width, fixed yield ratio.

\[
\begin{align*}
\text{M(Ξ_c(3055))^0} & = 3059.0 \pm 0.5 \pm 0.6 \text{ MeV}/c^2 \\
\Gamma(Ξ_c(3055)^0) & = 6.4 \pm 2.1 \pm 1.1 \text{ MeV}
\end{align*}
\]
Combine with $\Sigma_c^{(*)}K^-$ modes (Preliminary)\(^{17}\)

Branching fraction ratios:
- $\Xi_c(3055)^+$
 \[
 \text{Br}(\Lambda D^+)/\text{Br}(\Sigma_c^{++}K^-) = 5.09 \pm 1.01 \pm 0.76
 \]
 Prefer ΛD
- $\Xi_c(3080)^+$
 \[
 \text{Br}(\Lambda D^+)/\text{Br}(\Sigma_c^{++}K^-) = 1.29 \pm 0.30 \pm 0.15
 \]
 Similar in 3 decays
 \[
 \text{Br}(\Sigma_c^{*++}K^-)/\text{Br}(\Sigma_c^{++}K^-) = 1.07 \pm 0.27 \pm 0.01
 \]

In the chiral quark model,
$\Xi_c(3055) = 2D_{\lambda\lambda}(3/2^+)$ and $\Xi_c(3080) = 2D_{\rho\rho}(3/2^+)$.
(Phys. Rev. D 86, 034024)

They predicted ΛD decay is suppressed.
\[\rightarrow\text{Inconsistent}\] with this measurement.

Mass (MeV/c^2) and width (MeV)

<table>
<thead>
<tr>
<th></th>
<th>ΛD^+</th>
<th>$\Sigma_c K^-$</th>
<th>$\Sigma_c^{*} K^-$</th>
<th>Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M(\Xi_c(3055)^+)$</td>
<td>3055.8 ± 0.4 ± 0.2</td>
<td>3058.1 ± 1.0 ± 2.1</td>
<td>-</td>
<td>3055.9 ± 0.4</td>
</tr>
<tr>
<td>$M(\Xi_c(3080)^+)$</td>
<td>3079.6 ± 0.4 ± 0.2</td>
<td>3077.9 ± 0.4 ± 0.7</td>
<td>3076.9 ± 0.3 ± 0.2</td>
<td>3077.9 ± 0.9</td>
</tr>
<tr>
<td>$\Gamma(\Xi_c(3055)^+)$</td>
<td>7.0 ± 1.2 ± 1.5</td>
<td>9.7 ± 3.4 ± 3.3</td>
<td>-</td>
<td>7.8 ± 1.2 ± 1.5</td>
</tr>
<tr>
<td>$\Gamma(\Xi_c(3080)^+)$</td>
<td><6.3</td>
<td>2.4 ± 0.9 ± 1.6</td>
<td>3.2 ± 1.3 ± 1.3</td>
<td>3.0 ± 0.7 ± 0.4</td>
</tr>
</tbody>
</table>
In the baryon sector, Doubly Cabbibo Suppressed (DCS) decay has NEVER been observed. $\Lambda_c^+ \to pK^+\pi^-$ is expected to be sensitive.

Naively, ratio to CF decay, $pK^-\pi^+$ is expected to be

$$\frac{B(\Lambda_c^+ \to pK^+\pi^-)}{B(\Lambda_c^+ \to pK^-\pi^+)} \approx \tan^4 \theta_c$$

In the CF decay, the W exchange diagram may contribute.
Observation of $\Lambda_c^+ \rightarrow pK^+\pi^-$

CF mode: $pK^-\pi^+$

$$\left(1.452 \pm 0.0015\right) \times 10^6$$ events

DCS mode: $pK^+\pi^-$

- 3587 ± 380 events
- ΛK^+ decay subtracted
- Significance: 9σ
Branching fraction ratio

- Branching fraction ratio = (2.35 ± 0.27 (Stat) ± 0.21 (Sys)) × 10^{-3} = (0.82 ± 0.12) × tan^4 \Theta

- After subtracting contribution of Λ(1520) or Δ intermediate, which contribute only on the CF decay, the ratio is (1.10 ± 0.17) × tan^4 \Theta

- Contribution from W exchange diagram is small.
Belle is actively publishing on charmonia and charmed baryons!

$\chi_{c1}(2P)$ not observed in $\chi_{c1}\pi\pi$:
→ Comparable with $X(3872)$ as admixture picture.

No XYZ from $\Upsilon(1S)$ decay. Theoretical input needed to understand.

New results on excited Ξ_c baryons.
- Precise mass/width for excited states decaying into Ξ_c
- $\Xi_c(3055)$ and $\Xi_c(3080)$ into ΛD final state.
 Discovery of $\Xi_c(3055)^0$ and relative branching fraction measurements.

First observation of DCS decay of baryon: $\Lambda_c^+ \rightarrow pK^+\pi^-$

Stay tuned for more results from upcoming Belle II!
Comparison of 3 body $B \to \chi_{c1} \pi K$ and $B \to \chi_{c2} \pi K$

- First observation of two $B \to \chi_{c2} X$ exclusive decays.

- $K^* : K^*(1430)$ etc is different for χ_{c1} and χ_{c2}. → Important input for decay dynamics.

- $M(\chi_{c1} \pi)$ consistent with previous Belle observation of two charged Z states. No narrow structure in $M(\chi_{c2} \pi)$.
Ξ_c^+ reconstruction

Ξ_c^0 reconstruction
B decays to χ_{c1} and χ_{c2}

- The two body decay $B \to K^+ \chi_{c2}$ is suppressed relative to χ_{c1} (~2 %).
 - Due to the angular momentum conservation. Need FSI.

- In the inclusive measurement, the suppression is moderate (~25 %).
 \rightarrow Multi body decays. Study of intermediate resonance clarifies decay dynamics.

- Most plausible explanation of $X(3872)$ is mixing of DD* molecule and $\chi_{c1}(2p)$, which is not observed so far.
 \rightarrow Search for $X(3872)$ and $\chi_{c1}(2p)$ in $B \to K^+ \chi_{c1} \pi^+ \pi^-$.

1. Improvement measurement of inclusive χ_{c12} with full statistics
2. Several (new) exclusive decay modes and study of intermediate states.
Inclusive measurements

M(J/ψγ)

Differential branching fractions

<table>
<thead>
<tr>
<th></th>
<th>New ((10^{-3}))</th>
<th>Previous ((10^{-3}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B \to χ_{c1} X)</td>
<td>3.03 ± 0.05 ± 0.24</td>
<td>2.60 ± 0.17 ± 0.23</td>
</tr>
<tr>
<td>(B \to χ_{c2} X)</td>
<td>0.70 ± 0.06 ± 0.10</td>
<td>0.97^{+0.16}_{-0.19} ± 0.13</td>
</tr>
</tbody>
</table>

- Continuum, feed down are subtracted.
- Good agreement with previous measurements with improved accuracy.
- Differential measurement shows most of \(χ_{c2}\) decay are multi-body.

Belle, PRL 89, 011803(2002)
Exclusive measurements

<table>
<thead>
<tr>
<th>Decay</th>
<th>Yield (Y)</th>
<th>$S(\sigma)$</th>
<th>ϵ (%)</th>
<th>B (10^{-4})</th>
<th>\mathcal{R}_B</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B^0 \to \chi_{cJ}\pi^-K^+$</td>
<td>2774 ± 66</td>
<td>66.7</td>
<td>17.9</td>
<td>$4.97 \pm 0.12 \pm 0.28$</td>
<td>0.14 ± 0.02</td>
</tr>
<tr>
<td>χ_{c1}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>χ_{c2}</td>
<td>206 ± 25</td>
<td>8.7</td>
<td>16.2</td>
<td>$0.72 \pm 0.09 \pm 0.05$</td>
<td></td>
</tr>
<tr>
<td>$B^+ \to \chi_{cJ}\pi^+K^0$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.20 ± 0.04</td>
</tr>
<tr>
<td>χ_{c1}</td>
<td>770 ± 35</td>
<td>33.7</td>
<td>8.6</td>
<td>$5.75 \pm 0.26 \pm 0.32$</td>
<td></td>
</tr>
<tr>
<td>χ_{c2}</td>
<td>76.4 ± 14.7</td>
<td>4.6</td>
<td>7.5</td>
<td>$1.16 \pm 0.22 \pm 0.12$</td>
<td></td>
</tr>
<tr>
<td>$B^+ \to \chi_{cJ}\pi^0K^+$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>< 0.21</td>
</tr>
<tr>
<td>χ_{c1}</td>
<td>803 ± 70</td>
<td>15.6</td>
<td>7.8</td>
<td>$3.29 \pm 0.29 \pm 0.19$</td>
<td></td>
</tr>
<tr>
<td>χ_{c2}</td>
<td>17.5 ± 28.4</td>
<td>0.4</td>
<td>7.0</td>
<td>< 0.62</td>
<td></td>
</tr>
<tr>
<td>$B^+ \to \chi_{cJ}\pi^0K^+$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.36 ± 0.05</td>
</tr>
<tr>
<td>χ_{c1}</td>
<td>1502 ± 70</td>
<td>19.2</td>
<td>12.8</td>
<td>$3.74 \pm 0.18 \pm 0.24$</td>
<td></td>
</tr>
<tr>
<td>χ_{c2}</td>
<td>269 ± 34</td>
<td>8.4</td>
<td>11.4</td>
<td>$1.34 \pm 0.17 \pm 0.09$</td>
<td></td>
</tr>
<tr>
<td>$B^0 \to \chi_{cJ}\pi^+\pi^-K^0$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>< 0.61</td>
</tr>
<tr>
<td>χ_{c1}</td>
<td>268 ± 30</td>
<td>7.1</td>
<td>5.4</td>
<td>$3.16 \pm 0.35 \pm 0.32$</td>
<td></td>
</tr>
<tr>
<td>χ_{c2}</td>
<td>37.8 ± 14.2</td>
<td>1.8</td>
<td>4.8</td>
<td>< 1.70</td>
<td></td>
</tr>
<tr>
<td>$B^0 \to \chi_{cJ}\pi^-\pi^0K^+$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>< 0.25</td>
</tr>
<tr>
<td>χ_{c1}</td>
<td>545 ± 81</td>
<td>6.5</td>
<td>5.0</td>
<td>$3.52 \pm 0.52 \pm 0.24$</td>
<td></td>
</tr>
<tr>
<td>χ_{c2}</td>
<td>76.7 ± 42.0</td>
<td>4.3</td>
<td></td>
<td>< 0.74</td>
<td></td>
</tr>
</tbody>
</table>

- First observation of χ_{c2} exclusive decays
- First observation of χ_{c1} decays with 2π.
- Improved previous measurements.
- Cover 58 (32) % of inclusive BF for χ_{c1} (χ_{c2}).
Upper limit on the branching fractions

<table>
<thead>
<tr>
<th>State</th>
<th>N_{fit}</th>
<th>N_{up}</th>
<th>$\varepsilon(%)$</th>
<th>$\sigma_{\text{syst}}(%)$</th>
<th>$\Sigma(\sigma)$</th>
<th>B_{prod}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X(3872) \rightarrow \pi^+\pi^- J/\psi$</td>
<td>4.8±15.4</td>
<td>31.4</td>
<td>3.26</td>
<td>18.7</td>
<td>0.3</td>
<td>< 9.5 × 10^{-6}</td>
</tr>
<tr>
<td>$Y(4260) \rightarrow \pi^+\pi^- J/\psi$</td>
<td>-31.1±88.9</td>
<td>134.6</td>
<td>3.50</td>
<td>35.6</td>
<td>-</td>
<td>< 3.8 × 10^{-5}</td>
</tr>
<tr>
<td>$Y(4260) \rightarrow \pi^+\pi^- \psi(2S)$</td>
<td>6.7±29.4</td>
<td>56.9</td>
<td>0.71</td>
<td>35.0</td>
<td>0.2</td>
<td>< 7.9 × 10^{-5}</td>
</tr>
<tr>
<td>$Y(4360) \rightarrow \pi^+\pi^- \psi(2S)$</td>
<td>-25.4±30.1</td>
<td>45.6</td>
<td>0.86</td>
<td>50.0</td>
<td>-</td>
<td>< 5.2 × 10^{-5}</td>
</tr>
<tr>
<td>$Y(4660) \rightarrow \pi^+\pi^- \psi(2S)$</td>
<td>-55.0±26.2</td>
<td>23.1</td>
<td>1.06</td>
<td>40.7</td>
<td>-</td>
<td>< 2.2 × 10^{-5}</td>
</tr>
<tr>
<td>$Y(4260) \rightarrow K^+K^- J/\psi$</td>
<td>-13.7±10.9</td>
<td>14.5</td>
<td>1.91</td>
<td>45.8</td>
<td>-</td>
<td>< 7.5 × 10^{-6}</td>
</tr>
<tr>
<td>$Y(4140) \rightarrow \phi J/\psi$</td>
<td>-0.1±1.2</td>
<td>3.6</td>
<td>0.69</td>
<td>11.0</td>
<td>-</td>
<td>< 5.2 × 10^{-6}</td>
</tr>
<tr>
<td>$X(4350) \rightarrow \phi J/\psi$</td>
<td>2.3±2.5</td>
<td>7.6</td>
<td>0.92</td>
<td>10.4</td>
<td>1.2</td>
<td>< 8.1 × 10^{-6}</td>
</tr>
<tr>
<td>$Z_c(3900)_{\pm} \rightarrow \pi^\pm J/\psi$</td>
<td>-26.5±39.1</td>
<td>57.5</td>
<td>4.39</td>
<td>47.3</td>
<td>-</td>
<td>< 1.3 × 10^{-5}</td>
</tr>
<tr>
<td>$Z_c(4200)_{\pm} \rightarrow \pi^\pm J/\psi$</td>
<td>-238.6±154.2</td>
<td>235.1</td>
<td>3.87</td>
<td>48.4</td>
<td>-</td>
<td>< 6.0 × 10^{-5}</td>
</tr>
<tr>
<td>$Z_c(4430)_{\pm} \rightarrow \pi^\pm J/\psi$</td>
<td>94.2±71.4</td>
<td>195.8</td>
<td>3.97</td>
<td>34.4</td>
<td>1.2</td>
<td>< 4.9 × 10^{-5}</td>
</tr>
<tr>
<td>$Z_c(4050)_{\pm} \rightarrow \pi^\pm \psi(2S)$</td>
<td>37.0±47.7</td>
<td>112.7</td>
<td>1.27</td>
<td>46.2</td>
<td>0.4</td>
<td>< 8.8 × 10^{-5}</td>
</tr>
<tr>
<td>$Z_c(4430)_{\pm} \rightarrow \pi^\pm \psi(2S)$</td>
<td>23.2±42.4</td>
<td>92.0</td>
<td>1.35</td>
<td>47.1</td>
<td>0.1</td>
<td>< 6.7 × 10^{-5}</td>
</tr>
<tr>
<td>$Z_{cs} \rightarrow K^\pm J/\psi$</td>
<td>-22.2±17.4</td>
<td>22.4</td>
<td>3.88</td>
<td>48.7</td>
<td>-</td>
<td>< 5.7 × 10^{-6}</td>
</tr>
</tbody>
</table>