Charmless *b*-meson and *b*-baryon decays at LHCb

Adam Morris

University of Edinburgh

on behalf of the LHCb Collaboration

13th International Conference on Heavy Quarks and Leptons 26th May 2016

Charmless *b*-hadron decays

Sensitive to new particles in the loop

- Tree-level $b \rightarrow u$ suppressed by V_{ub}
 - Similar magnitude of tree & penguin contributions
 - Tree & penguin have relative weak phase γ Interference \rightarrow CP violation

- $B_c \rightarrow$ annihilation diagrams
 - Sensitive to BSM charged propagators

Outline

- **1** Observations of $\Lambda_b \to \Lambda K^+ \pi^-$ and $\Lambda_b \to \Lambda K^+ K^-$ and searches for other Λ_b and Ξ_b^0 decays to $\Lambda h^+ h'^-$
 - LHCb-PAPER-2016-004
 - arXiv:1603.00413
 - JHEP 05 (2016) 081
- **2** Observation of the $\Lambda_b \rightarrow \Lambda \phi$ decay
 - LHCb-PAPER-2016-002
 - arXiv:1603.02870
 - Submitted to PLB
- **3** Search for B_c^+ decays to the $p\bar{p}\pi^+$ final state
 - LHCb-PAPER-2016-001
 - arXiv:1603.07037
 - Submitted to PLB

Introduction

Track types at LHCb

- Long tracks pass through all tracking stations
- Downstream tracks pass through the TT and T
 - Λ and K_S^0 can decay outside VELO

A. Morris (Edinburgh)

Charmless b decays at LHCt

Performance paper: LHCb-DP-2014-002

4

- Full Run 1 dataset: 3 fb⁻¹ of *pp* collisions at $\sqrt{s} = 7$ and 8 TeV
- Pre-selection using track quality, vertex quality, isolation criteria and kinematic information
- Multivariate Analysis to reduce combinatorial background
- Hadron PID requirements to suppress misidentified backgrounds

$\Lambda_b/\Xi_b^0 o \Lambda h^+ h'^-$

Introduction

Motivation:

- Only a handful of observed charmless b-baryon decay modes
 - $\Lambda_b
 ightarrow p\pi^-$ and $\Lambda_b
 ightarrow pK^-$
 - $\Lambda_b \to K_S^0 p \pi^-$
 - Some evidence for $\Lambda_b o \Lambda \eta$
- No charmless decays of the Ξ_b^0 have been observed
- Can be used to study hadronisation in *b*-baryons
- Complement *CP* violation studies performed in *b*-mesons This analysis:
 - Search for charmless Λ_b and Ξ_b^0 decays to $\Lambda \pi^+ \pi^-$, $\Lambda K^{\pm} \pi^{\mp}$ and $\Lambda K^+ K^-$
 - Veto open charm $\Lambda_c^+ o \Lambda h^+, \Xi_c^+ o \Lambda h^+$ and $D^0 o h^+ h'^-$
 - Normalise to $\Lambda_b o \Lambda_c^+ (o \Lambda \pi^+) \pi^-$
 - Measure branching fractions and CP asymmetries of observed modes

Branching fractions

• The Λ_b branching fractions are calculated as:

$$\frac{\mathcal{B}(\Lambda_b \to \Lambda h^+ h'^-)}{\mathcal{B}(\Lambda_b \to \Lambda_c^+ (\to \Lambda \pi^+) \pi^-)} = \frac{N_{\Lambda_b \to \Lambda h^+ h'^-}}{N_{\Lambda_b \to \Lambda_c^+ (\to \Lambda \pi^+) \pi^-}} \frac{\varepsilon_{\Lambda_b \to \Lambda_c^+ (\to \Lambda \pi^+) \pi^-}}{\varepsilon_{\Lambda_b \to \Lambda h^+ h'^-}}$$

• Since $f_{\Xi_{t}^{0}}$ is not known, we measure:

$$\frac{f_{\Xi_b^0}}{f_{\Lambda_b}} \frac{\mathcal{B}(\Xi_b^0 \to \Lambda h^+ h'^-)}{\mathcal{B}(\Lambda_b \to \Lambda_c^+ (\to \Lambda \pi^+) \pi^-)} = \frac{N_{\Xi_b^0 \to \Lambda h^+ h'^-}}{N_{\Lambda_b \to \Lambda_c^+ (\to \Lambda \pi^+) \pi^-}} \frac{\varepsilon_{\Lambda_b \to \Lambda_c^+ (\to \Lambda \pi^+) \pi^-}}{\varepsilon_{\Xi_b \to \Lambda h^+ h'^-}}$$

- Yields are obtained by fitting mass distributions
- Efficiencies are found from simulation
 - Data-driven corrections

Fits to mass distributions

Components for $\Lambda_b/\Xi_b^0 \to \Lambda h^+ h'^-$ signal, cross-feed, partially reconstructed backgrounds (missing π^0 and missing γ) and combinatorial background

Fits to mass distributions

Components for $\Lambda_b/\Xi_b^0 \to \Lambda h^+ h'^-$ signal, cross-feed, partially reconstructed backgrounds (missing π^0 and missing γ) and combinatorial background

A. Morris (Edinburgh)

Branching fraction results

- Observation of $\Lambda_b \rightarrow \Lambda K^+ K^-$ with significance 15.8σ
- Observation of $\Lambda_b \to \Lambda K^+ \pi^-$ with significance 8.1 σ
- Evidence for $\Lambda_b \rightarrow \Lambda \pi^+ \pi^-$ at 4.7 σ

 $\begin{array}{lll} \mathcal{B}(\Lambda_b \to \Lambda \pi^+ \pi^-) &=& (4.6 \pm 1.2 \pm 1.4 \pm 0.6) \times 10^{-6} \\ \mathcal{B}(\Lambda_b \to \Lambda K^+ \pi^-) &=& (5.6 \pm 0.8 \pm 0.8 \pm 0.7) \times 10^{-6} \\ \mathcal{B}(\Lambda_b \to \Lambda K^+ K^-) &=& (15.9 \pm 1.2 \pm 1.2 \pm 2.0) \times 10^{-6} \end{array}$

- Order of uncertainties: \pm stat. \pm syst. \pm norm.
- No observation of any of the Ξ_b^0 decays

$$\begin{array}{ll} \frac{f_{\Xi_{b}^{0}}}{f_{\Lambda_{b}}} \times \mathcal{B}(\Xi_{b}^{0} \to \Lambda \pi^{+} \pi^{-}) &< 1.7 \times 10^{-6} \text{ at } 90 \,\% \,\text{CL} \\ \frac{f_{\Xi_{b}^{0}}}{f_{\Lambda_{b}}} \times \mathcal{B}(\Xi_{b}^{0} \to \Lambda K^{-} \pi^{+}) &< 0.8 \times 10^{-6} \text{ at } 90 \,\% \,\text{CL} \\ \frac{f_{\Xi_{b}^{0}}}{f_{\Lambda_{b}}} \times \mathcal{B}(\Xi_{b}^{0} \to \Lambda K^{+} K^{-}) &< 0.3 \times 10^{-6} \text{ at } 90 \,\% \,\text{CL} \end{array}$$

CP asymmetries

- Fit separately for Λ_b and $\bar{\Lambda}_b$ in the $\Lambda K^+\pi^-$ and ΛK^+K^- samples
- Calculate efficiency-corrected yields, N^{corr}, using Dalitz plots

$$\mathcal{A}_{CP}^{\mathsf{raw}} = rac{N_f^{\mathsf{corr}} - N_{ar{f}}^{\mathsf{corr}}}{N_f^{\mathsf{corr}} + N_{ar{f}}^{\mathsf{corr}}}$$

• $\Lambda_b \rightarrow \Lambda_c^+ (\rightarrow \Lambda \pi^+) \pi^-$ has the same *b*-hadron production asymmetry and similar detection asymmetry, therefore:

$$\Delta \mathcal{A}_{CP}(\Lambda_b \to \Lambda h^+ h'^-) = \mathcal{A}_{CP}^{raw}(\Lambda_b \to \Lambda h^+ h'^-) - \mathcal{A}_{CP}^{raw}(\Lambda_b \to \Lambda_c^+ (\to \Lambda \pi^+) \pi^-)$$

$$\begin{array}{lll} \Delta \mathcal{A}_{CP}(\Lambda_b \rightarrow \Lambda K^+ \pi^-) &=& -0.53 \pm 0.23 \pm 0.11 \\ \Delta \mathcal{A}_{CP}(\Lambda_b \rightarrow \Lambda K^+ K^-) &=& -0.28 \pm 0.10 \pm 0.07 \end{array}$$

Both consistent with zero

$\Lambda_b \to \Lambda \phi$

Introduction

Lнср

Motivation:

- $\Lambda_b \to \Lambda K^+ K^-$ should contain significant $\Lambda_b \to \Lambda \phi$ component
- $b \rightarrow s\bar{ss}$ FCNC transition \rightarrow penguin loop sensitive to new particles
- Of particular interest is non-SM CP violation
 - Previously studied in $B^0 o \phi K^0_S$, $B^0 o \phi K^{*0}$ and $B^0_s o \phi \phi$
 - Results so far consistent with SM
- Measurements with $\Lambda_b \rightarrow \text{look}$ for direct *CP* violation
 - CP asymmetries
 - T-odd observables

This analysis:

- Measure $\Lambda_b \rightarrow \Lambda \phi$ branching fraction
- Normalise to $B^0 \rightarrow \phi K_S^0$
- Measure *T*-odd triple-product asymmetries
- $\phi \to K^+ K^-$, $\Lambda \to p \pi^-$, $K^0_{\rm S} \to \pi^+ \pi^-$

Fits to mass distributions for $\Lambda_b o \Lambda \phi$

Components for $\Lambda_b \to \Lambda \phi$ signal, non-resonant $\Lambda_b \to \Lambda K^+ K^-$, Λ + random ϕ and pure combinatorial background

A. Morris (Edinburgh)

Fits to mass distributions for $B^0 o \phi K_S^0$

Components for $B^0 \to \phi K_S^0$ signal, non-resonant $B^0 \to K^+ K^- K_S^0$, $K_S^0 + \text{random } K^+ K^-$ pair and pure combinatorial background

Charmless b decays at

A. Morris (Edinburgh)

LHCb

Branching fraction result

- $\Lambda_b \rightarrow \Lambda \phi$ is observed with a significance of 5.9 σ
- Branching fraction calculated as:

$$\mathcal{B}(\Lambda_b \to \Lambda\phi) = \frac{f_d}{f_{\Lambda_b}} \frac{N_{\Lambda_b \to \Lambda\phi}}{N_{B^0 \to \phi K_S^0}} \frac{\varepsilon_{B^0 \to \phi K_S^0}}{\varepsilon_{\Lambda_b \to \Lambda\phi}} \frac{\mathcal{B}(B^0 \to \phi K^0)}{2} \frac{\mathcal{B}(K_S^0 \to \pi^+\pi^-)}{\mathcal{B}(\Lambda \to p\pi^-)}$$

Result:

$$\mathcal{B}(\Lambda_b o \Lambda\phi) = (5.18 \pm 1.04 \pm 0.35 ^{+0.50}_{-0.43} \pm 0.44) imes 10^{-6}$$

• Order of uncertainties: \pm stat. \pm syst. \pm norm. \pm f_d/f_{Λ_b}

T-odd observables

• 5 angles needed to describe the angular distribution of $\Lambda_b
ightarrow \Lambda\phi$

DOI:10.1016/j.nuclphysbps.2007.08.117

T-odd observables results

- Datasets split by sign of observables \rightarrow mass fits to obtain $N_D^{\pm,O}$
 - *D* is daughter: Λ or ϕ
 - *O* is observable: cos Φ_D or sin Φ_D
 - \pm denotes sign of O
- Asymmetries calculated as:

$$A_D^O = \frac{N_D^{+,O} - N_D^{-,O}}{N_D^{+,O} + N_D^{-,O}}$$

Results:

$$\begin{array}{rcl} A^c_{\Lambda} &=& -0.22 \pm 0.12 \pm 0.06 \\ A^s_{\Lambda} &=& +0.13 \pm 0.12 \pm 0.05 \\ A^c_{\phi} &=& -0.01 \pm 0.12 \pm 0.03 \\ A^s_{\phi} &=& -0.07 \pm 0.12 \pm 0.01 \end{array}$$

• All consistent with zero

$B_c^+ \to p \bar{p} \pi^+$

Introduction

Motivation:

- Charmless *B*⁺_c decays proceed via annihilation diagrams
- Probe BSM physics such as charged Higgs
- $\mathcal{A}(ar{b}c o W^+ o ar{q}u) \propto V_{cb}V^*_{uq}$ where q = d,s
- Cabibbo suppression ightarrow final states with zero strangeness dominate
- In B decays to states containing baryons, often enhancement at threshold
 - Poorly understood

This analysis:

- Search for $B_c^+ \rightarrow p\bar{p}\pi^+$
- Normalise to ${\it B}^+
 ightarrow p ar p \pi^+$
- Focus on $B_c^+
 ightarrow p ar p \pi^+$ with $m(p ar p) < 2.85~{
 m GeV}/c^2$
 - Below *cc* threshold
- Cross-check with ${\cal B}_c^+ o (J/\psi o par p) \pi^+$

Analysis strategy

Since f_c is unknown, the measured quantites are:

$$R_{p} \equiv \frac{f_{c}}{f_{u}} \mathcal{B}(B_{c}^{+} \to p\bar{p}\pi^{+}) = \frac{N_{B_{c}^{+} \to p\bar{p}\pi^{+}}}{N_{B^{+} \to p\bar{p}\pi^{+}}} \frac{\varepsilon_{u}}{\varepsilon_{c}} \mathcal{B}(B^{+} \to p\bar{p}\pi^{+})$$
$$R_{p}^{J/\psi} \equiv \frac{f_{c}}{f_{u}} \mathcal{B}(B_{c}^{+} \to J/\psi\pi^{+}) = \frac{N_{B_{c}^{+} \to J/\psi(\to p\bar{p})\pi^{+}}}{N_{B^{+} \to p\bar{p}\pi^{+}}} \frac{\varepsilon_{u}}{\varepsilon_{c}^{J/\psi}} \frac{\mathcal{B}(B^{+} \to p\bar{p}\pi^{+})}{\mathcal{B}(J/\psi \to p\bar{p})}$$

Mass fits: $B_c^+ ightarrow p \bar{p} \pi^+$ signal

Fits to $m(p\bar{p}\pi^+)$ with components for $B^+_{(c)}$ signal, combinatorial background and partially reconstructed $B^+_{(c)} \rightarrow p\bar{p}\rho^+(\rightarrow \pi^+\pi^0)$

Simultaneous fit to 3 bins in multivariate classifier output for B_c^+ region

Mass fits: normalisation mode

Fits to $m(p\bar{p}\pi^+)$ with components for $B^+_{(c)}$ signal, combinatorial background and partially reconstructed $B^+_{(c)} \rightarrow p\bar{p}\rho^+(\rightarrow \pi^+\pi^0)$

Upper limits

- Profile likelihood ratio scans for S+B and B-only hypotheses
- Signal *p*-value profiles calculated by dividing S+B by B

Summary

 $\Lambda_b/\Xi_b^0
ightarrow \Lambda h^+ h'^-$

- Observations of $\Lambda_b \to \Lambda K^+ K^-$ and $\Lambda_b \to \Lambda K^+ \pi^-$
 - Branching fractions: (15.9 \pm 2.6) \times 10 $^{-6}$ and (5.6 \pm 1.3) \times 10 $^{-6}$
 - CP asymmetries consistent with zero
- Evidence for $\Lambda_b
 ightarrow \Lambda \pi^+ \pi^-$ at 4.7 σ
- New upper limits on $\Xi_b^0 \to \Lambda h^+ h'^-$ branching fractions

 $\Lambda_b\to\Lambda\phi$

- Observation of $\Lambda_b \to \Lambda \phi$
- Branching fraction: (5.2 \pm 1.3) \times 10^{-6}
- T-odd triple product asymmetries consistent with zero

 $B_c^+
ightarrow p ar p \pi^+$

• No evidence for this decay ightarrow upper limits on $rac{f_c}{f_c} \mathcal{B}(\mathcal{B}_c^+
ightarrow
ho ar{p} \pi^+)$

Many more analyses in progress with Run I data and soon with Run II data. Stay tuned...

Backup slides

Backup slides

$\Lambda_b \rightarrow \Lambda K^+ h^-$ Dalitz plots

$\Lambda_b/\Xi_b^0 o \Lambda h^+ h'^-$ signal yields

Mode	Run period	Yield				
		Λ_b		\equiv^0_b		
		downstream	long	downstream	long	
	2011	10.2 ± 5.5	$\textbf{8.7} \pm \textbf{4.7}$	-0.6 ± 2.4	$\textbf{4.9}\pm\textbf{3.2}$	
$\Lambda \pi^+ \pi^-$	2012a	9.1 ± 5.2	13.6 ± 5.7	5.3 ± 3.6	1.0 ± 2.6	
	2012b	17.2 ± 7.1	$\textbf{6.2} \pm \textbf{4.6}$	$\textbf{3.9} \pm \textbf{4.0}$	$\textbf{4.1} \pm \textbf{2.7}$	
	Total	$65\pm$	14	19 ± 8		
	2011	20.9 ± 6.4	8.2 ± 3.5	3.5 ± 3.7	-0.7 ± 2.4	
$\Lambda K^+\pi^-$	2012a	9.3 ± 3.7	1.7 ± 3.6	-0.1 ± 1.7	$\textbf{0.3}\pm\textbf{1.5}$	
	2012b	39.7 ± 8.9	$\textbf{16.9} \pm \textbf{5.1}$	$\textbf{2.9} \pm \textbf{4.5}$	-1.8 ± 1.5	
	Total	97 ± 14		4 ± 7		
	2011	32.3 ± 6.4	$\textbf{20.1} \pm \textbf{4.6}$	$\textbf{0.6}\pm\textbf{2.3}$	0.0 ± 0.6	
$\Lambda K^+ K^-$	2012a	22.2 ± 5.3	$\textbf{15.9} \pm \textbf{4.2}$	0.5 ± 2.4	$\textbf{0.0}\pm\textbf{0.5}$	
	2012b	60.5 ± 8.5	34.4 ± 6.1	$\textbf{3.0} \pm \textbf{2.7}$	$\textbf{0.0}\pm\textbf{0.6}$	
	Total	185 ± 15		4 ± 4		
	2011	78.1 ± 9.1	$\textbf{78.9} \pm \textbf{9.2}$			
$\left(\Lambda\pi^{+} ight)_{\Lambda^{+}_{a}}\pi^{-}$	2012a	45.0 ± 7.0	63.0 ± 8.3			
	2012b	115.3 ± 11.1	90.7 ± 9.8			
	Total	$\textbf{471} \pm \textbf{22}$				

$\Lambda_b/\Xi_b^0 \to \Lambda h^+ h'^-$ systematics

Systematic uncertainties ($ imes 10^{-3}$)							
	Fit	Eff.	Ph. sp.	PID	Vetoes	$N_{\Lambda_c^+\pi^-}$	Total
$\Lambda_b ightarrow \Lambda \pi^+ \pi^-$	8.4	2.0	19.7	0.4	2.2	3.5	21.9
$\Lambda_b ightarrow \Lambda K^+ \pi^-$	1.7	11.7	-	2.9	1.3	4.6	13.1
$\Lambda_b ightarrow \Lambda K^+ K^-$	6.7	5.4	_	4.2	2.2	15.9	18.7
$\Xi_{b}^{0} \rightarrow \Lambda \pi^{+} \pi^{-}$	4.1	0.7	7.0	0.1	_	1.2	8.2
$\Xi_{b}^{0} \rightarrow \Lambda \pi^{+} K^{-}$	1.5	0.4	3.5	0.1	-	0.7	4.0
$\Xi_b^{\bar{0}} ightarrow \Lambda K^+ K^-$	0.1	0.1	0.8	0.0	-	0.2	0.8

$\Lambda_b/\Xi_b^0 ightarrow \Lambda h^+ h'^-$ CP asymmetries

Systematic uncertainties ($\times 10^{-3}$)			
	$\Delta {\cal A}_{CP}(\Lambda_b o \Lambda K^+ \pi^-)$	$\Delta A_{CP}(\Lambda_b o \Lambda K^+ K^-)$	
Control mode	66	57	
PID asymmetry	20	-	
Fit model	27	32	
Fit bias	14	4	
Efficiency uncertainty	80	28	
Total	110	71	

$\Lambda_b \rightarrow \Lambda \phi$ efficiencies

Combination of efficiencies for reconstruction, offline selection, trigger requirements and detector acceptance, ε^{tot} , taken from simulation.

Difference in detector-material interaction cross section determined from simulation

Data-driven corrections applied where necessary

- Hardware-level hadron trigger corrected with calibration samples from charm decays
- Reconstruction efficiency for long tracks corrected with tag-and-probe method with J/ ψ calibration samples
- $D^0 \rightarrow \phi K_S^0$ samples used to correct vertexing efficiency

$\Lambda_b \rightarrow \Lambda \phi$ branching fraction systematics

Source	Uncertainty (%)
Mass model	3.0
Simulation sample size	2.2
Tracking efficiency	0.5
Vertex efficiency	2.6
Hardware trigger	2.8
Selection efficiency	4.1
Peaking background	0.1
Total	6.7

$\Lambda_b o \Lambda \phi \ T$ -odd observables

$\Lambda_b o \Lambda \phi$ T-odd observables

Systematic uncertainties

Source	A^c_{Λ}	A^s_{Λ}	A^c_{ϕ}	A^s_ϕ
Mass model	0.061	0.051	0.026	0.009
Angular acceptance	0.010	0.010	0.010	0.010
Angular resolution	0.008	0.008	0.005	0.005
Total	0.062	0.053	0.028	0.014

$B_c^+ ightarrow p ar p \pi^+$ mass fits: signal

$$egin{aligned} & N_{\mathcal{B}^+_c o
ho ar{p} ar{p} \pi^+} = -2.7 \pm 6.3 \, (ext{stat}) \ & N_{\mathcal{B}^+_c o J/\psi(o
ho ar{p}) \pi^+} = -0.1 \pm 3.0 \, (ext{stat}) \end{aligned}$$

A. Morris (Edinburgh)

$B_c^+ ightarrow p ar p \pi^+$ efficiencies

Detector acceptance efficiency, ε^{acc} , taken from simulation. Selection efficiency, ε^{sel} :

- Acceptance maps in the $m^2(p\bar{p})$ vs $m^2(p\pi)$ plane
- Account for reconstruction, triggers, preselection, BDT, PID
- All but PID calculated from simulation
- PID part calculated using calibration samples from charm decays
- Use s-weights to calculate average $\varepsilon^{\rm sel}$ for B^+
- No B_c^+ signal \rightarrow simple average over phase space region \rightarrow large systematic
- Ratio $\varepsilon_u^{\text{sel}}/\varepsilon_c^{\text{sel}}$ corrected for differences in data and simulation

$$\frac{\varepsilon_u^{\text{sel}}}{\varepsilon_c^{\text{sel}}} = 2.495 \pm 0.028 \qquad \qquad \frac{\varepsilon_u^{\text{sel}}}{\varepsilon_c^{//\psi, \text{sel}}} = 2.513 \pm 0.032$$

$$\frac{\varepsilon_u^{\text{acc}}}{\varepsilon_c^{\text{acc}}} = 1.195 \pm 0.007 \qquad \qquad \frac{\varepsilon_u^{\text{acc}}}{\varepsilon_c^{//\psi, \text{acc}}} = 1.186 \pm 0.007$$

$B_c^+ ightarrow p ar p \pi^+$ efficiencies

$B_c^+ ightarrow p ar p \pi^+$ systematics

Relative systematic uncertainties on $\varepsilon_u/\varepsilon_c$ and input $\mathcal{B}s$

Source	$m(p\bar{p}) < 2.85 \; { m GeV}/c^2$	$B_c^+ \rightarrow J/\psi (\rightarrow p\bar{p})\pi^+$
PID	3.0 %	3.0 %
B_c^+ lifetime	2.0 %	2.0 %
Simulation	0.8 %	0.9 %
Detector acceptance	0.6 %	0.6 %
BDT shape	1.5 %	1.5 %
Hardware trigger correction	0.8 %	0.9 %
Fiducial cut	0.1 %	0.1 %
Modelling	15 %	_
${\cal B}(B^+ o p ar p \pi^+)$	15 %	15 %
${\cal B}(J/\psi o ho ar p ar p)$	-	1.4 %

PID uncertainty dominated by proton calibration sample size

- B_c^+ lifetime = 0.507 \pm 0.009 ps
- "Modelling": variation in efficiency over phase space
- $\mathcal{B}(B^+ \to p\bar{p}\pi^+) = (1.07 \pm 0.16) \times 10^{-6}$
- $\mathcal{B}(J/\psi \to p\bar{p}) = (2.120 \pm 0.029) \times 10^{-3}$