

Con Con Con Con Con

Recent results from Daya Bay TJ Langford - Yale University on behalf of the Daya Bay Collaboration

Daya Bay Collaboration

256 collaborators from 42 institutions:

Europe (2) Charles University, JINR Dubna

North America (16) Brookhaven Nat'l Lab, Illinois Institute of

Technology, Iowa State, Lawrence Berkeley Nat'l Lab, Princeton, Rensselaer Polytechnic, Siena College, Temple Univ., UC Berkeley, Univ. of Cincinnati, Univ. of Houston, UIUC, Univ. of Wisconsin, Virginia Tech, William &

Mary, Yale

Asia (23)

Beijing Normal Univ., CNGPG, CIAE, Chongqing Univ., Dongguan Polytechnic, ECUST, IHEP, Nanjing Univ.,
Nankai Univ., NCEPU, NUDT, Shandong Univ., Shanghai Jiao Tong Univ., Shenzhen Univ., Tsinghua Univ., USTC,
Xi'an Jiaotong Univ., Zhongshan Univ., Chinese Univ. of Hong Kong, Univ. of Hong Kong, National Chiao Tung Univ., National Taiwan Univ., National United Univ.

South America (1) Catholic Univ. of Chile

Where is Daya Bay?

Neutrino Oscillations

Experiments at different Baselines

Detecting Reactor Neutrinos

Inverse Beta Decay

Extract θ_{13} from $\overline{\nu_e}$ deficit

Study Far/Near event ratio and spectral distortion

Eight Detectors in Three Halls

T.J. Langford - Yale University

7

Antineutrino Detectors (AD)

Detector Tanks: Two acrylic vessels and outer steel tank

Detector Liquids: 20t GdLS and 22t LS target, 36t MO buffer and shield

Light Detection: 192 20cm PMTs around side, top and bottom reflector

Calibration Systems: Three automated calibration units, LED, neutron, and gamma sources

Data Collection

AD Energy Calibration

Automated calibration

- **PMT Gain:** rolling SPE calibration
- Absolute energy scale: Am-C at detector center
- **Time Variation:** ⁶⁰Co at detector center
- Non-uniformity: ⁶⁰Co off-axis at multiple positions

Relative energy scale uncertainty: 0.2%

Energy non-linearity calibration

Discrete and continuous calibration sources map out detector response

•

- Address scintillator and electronics non-linearities
- Uncertainty <1% above 2MeV

Antineutrino Event Selection

Backgrounds

Background	Near Hall	Far Hall	Uncertainty	Method
Accidentals	1.4%	2.3%	~1%	Statistically determined from uncorrelated events
⁹ Li/ ⁸ He	0.4%	0.4%	~50%	Measured with muon-tagged events
²⁴¹ Am- ¹³ C	0.1%	0.1%	~50%	Tuned with MC
Fast Neutrons	0.03%	0.2%	~30%	Measured with muon-tagged events
(α,n)	0.01%	0.1%	~50%	Calculated from measured radioactivity

Daya Bay near hall fast n spectrum

T.J. Langford - Yale University

HQL2016 - Virginia Tech

Updated nGd Oscillation

PRL 115, 111802 (2015)

PHYSICAL REVIEW LETTERS

week ending 11 SEPTEMBER 2015

G

New Measurement of Antineutrino Oscillation with the Full Detector Configuration at Daya Bay

New Measurement of Antmeutrino Oscillation with the Full Detector Configuration at Daya Bay

- 6.9x10⁵ GW_{th}-Ton-Day exposure,
 150k IBDs in far detectors
- Use near hall to predict far hall spectrum with and without oscillations

Uncertainties dominated by statistics

 $sin^{2}(2\theta_{13}) = 0.084 \pm 0.005 \ |\Delta m^{2}_{ee}| = (2.42 \pm 0.11) \cdot 10^{-3} \ eV^{2}$ $|\Delta m^{2}_{32}| (NH) = (2.37 \pm 0.11) \cdot 10^{-3} \ eV^{2} \ |\Delta m^{2}_{32}| (IH) = (2.47 \pm 0.11) \cdot 10^{-3} \ eV^{2}$

Updated nGd Oscillation

11 SEPTEMBER 2015

New nH Oscillation Results

Daya Bay 13

Data Sample:

Same exposure as recent nGd results

Key Features:

- Independent sample of IBD events
- Different systematics

Challenges:

- Higher accidental backgrounds
- More energy leakage at detector edge

Strategy:

- Prompt Energy Cut: 1.5MeV
- Delay Energy: Peak $\pm 3\sigma$ (1.9-2.7MeV)
- Distance between prompt and delay: 0.5m
- Statistical accidental subtraction (from data)

New measurement of θ_{13} via neutron capture on hydrogen at Daya Bay

F. P. An,¹ A. B. Balantekin,² H. R. Band,³ M. Bishai,⁴ S. Blyth,^{5,6} D. Cao,⁷ G. F. Cao,⁸ J. Cao,⁸ W. R. Cen,⁸ Y. L. Chan,⁹ J. F. Chang,⁸ L. C. Chang,¹⁰ Y. Chang,⁶ H. S. Chen,⁸ Q. Y. Chen,¹¹ S. M. Chen,¹² Y. X. Chen,¹³ Y. Chen,¹⁴ J. H. Cheng,¹⁰

New nH Oscillation Results

- Statistical uncertainty reduced by 49% vs
 6AD nH result
- Systematics reduced by 26%
 - Improved study of cosmogenic backgrounds and neutron capture efficiency

Oscillation analysis based on rate information

$$\sin^2 2\theta_{13} = 0.071 \pm 0.011$$

Combined nGd and nH Results

Correlation between datasets estimated for efficiencies, backgrounds and reactor-related uncertainties

Combine the nGd result with nH $\sin^2 2\theta_{13} = 0.071 \pm 0.011$ (nH) $\sin^2 2\theta_{13} = 0.084 \pm 0.005$ (nGd) $\sin^2 2\theta_{13} = 0.082 \pm 0.004$ (Combined)

Overall correlation coefficient of 0.02 indicates independence of the analyses

Absolute Flux Measurement

- Data from 6AD period (217days)
- Measured IBD rates corrected for oscillation
- Efficiencies and uncertainties determined for each cut
- R (Huber+Muller) = 0.946 ± 0.022
- Consistent with previous measurements

TABLE I. Summary of IBD selection efficiencies and their AD-correlated uncertainties. The uncertainties are given in relative units.

	Efficiency (<i>\varepsilon</i>)	Uncertainty $(\delta_{\varepsilon}/\varepsilon)$
Target protons		0.47%
Flasher cut	99.98%	0.01%
Capture-time cut	98.70%	0.12%
Prompt-energy cut	99.81%	0.10%
Gd-capture fraction	84.17%	0.95%
Delayed-energy cut	92.71%	0.97%
Spill-in correction	104.86%	1.50%
Combined	80.6%	2.1%

Reactor Spectrum Measurement

Spectral shape not consistent with Huber model 4σ discrepancy between 4-6MeV

Antineutrino spectrum extracted via detector response unfolding Reference spectrum for other experiments

Sterile Neutrino Search

week ending

PRL 113, 141802 (2014) 3 OCTOBER 2014 ý Search for a Light Sterile Neutrino at Daya Bay F. P. An,¹ A. B. Balantekin,² H. R. Band,² W. Beriguete,³ M. Bishai,³ S. Blyth,⁴ I. Butorov,⁵ G. F. Cao,⁶ J. Cao,⁶ Y. L. Chan,⁷ J. Chan,⁶ D. Y. Chan,⁶ D. Y. Chan,⁶ D. Y. Chan,⁶ J. Cao,⁶ Y. L. Chan,⁷ Y. Chan,⁶ D. Y. Chan,⁶ D. Y. Chan,⁶ J. Cao,⁶ Y. L. Chan,⁶ J. Cao,⁶ Y. L. Chan,⁷ Y. Chan,⁶ D. Y. Chan,⁶ D. Y. Chan,⁶ J. Cao,⁶ Y. L. Chan,⁷ Y. Chan,⁶ D. Y. Chan,⁶ D. Y. Chan,⁶ J. Cao,⁶ Y. L. Chan,⁷ Y. Chan,⁶ D. Y. Chan,⁶ D. Y. Chan,⁶ D. Y. Chan,⁶ J. Cao,⁶ Y. L. Chan,⁷ Y. Chan,⁶ D. Y. $P_{\overline{\nu}_e \to \overline{\nu}_e} \approx 1 - \sin^2 2\theta_{14} \sin^2 (\Delta m_{41}^2 \frac{L}{\Delta F}) - \cos^4 \theta_{14} \sin^2 2\theta_{13} \sin^2 (\Delta m_{ee}^2 \frac{L}{\Delta F})$

PHYSICAL REVIEW LETTERS

- Multiple detectors at different baselines provide unique probe for sterile neutrinos
- Relative measurement at different • baselines
- No significant oscillation observed, • consistent with 3-flavor neutrino oscillation
- Most stringent limit in the mass splitting • range: $10^{-3} \text{eV}^2 < |\Delta m_{14}^2| < 10^{-1} \text{eV}^2$

Summary

- Updated reactor oscillation analyses with enlarged datasets for both nGd and nH selections
- Combined analysis with 621 days of data: $\sin^2 2\theta_{13} = 0.082 \pm 0.004$
- Precision measurements of antineutrino flux and energy spectra performed with 217 days of data:
 - Flux consistent with previous short baseline experiments, Measured/Predicted = 0.946
 - Spectral measurement disagrees with Huber model at 4σ between 4-6MeV
- Data collection will continue through 2017, precision will continue to improve for all measurements