

BOREXINO & SOX
Solar, geo and sterile neutrino observatory23rd May, 2016David Bravo-Berguño (Borexino/SOX Collaborations)

Outline

* **Detector** overview

* Results update

- Geo-neutrino latest
- Recent achievements in solar observations

* Ongoing efforts

- Wideband solar neutrino spectroscopy
- CNO neutrino studies
- Temperature monitoring and management systems
- * Solar-to-sterile calibration campaign
- * **SOX-Ce** source for anomalous oscillation studies
 - Source characteristics and experiment outline
 - Calorimetry and sensitivity

Geo-v latest result

- Inverse Beta Decay Channel (1.8 MeV threshold: <u>no</u> ⁴⁰K or ²³⁵U; only ²³⁸U/²³²Th)
- * **5.9σ** observation
- * 77 golden v candidates:
 23.7 ^{+6.5}_{-5.7} (stat) ^{+0.9}_{-0.6} (sys) geo-v
- Reactor loads known to ~4%.
 No Italian reactors
- All other backgrounds (mainly (α,n) in buffer, accidental coincidences and ⁸Li-⁸He) very low:
 0.78^{+0.13}_{-0.10} events.
- Statistics-limited ~27% precision, can just improve!

Smantle=0 rejected at 98% c.l.

Cosmochemical Bulk Silicate Earth model disfavored

Solar v observation latest

- Borexino's solar observation program has directly measured all but 2* of the solar v spectrum components:
 - ⁷Be VS (5% precision): 1st direct detection
 - ⁸B VS (20% precision): lowest threshold (3 MeV)
 - pep VS (20% precision): 1st direct detection
 - **pp** VS (10% precision): **1st direct detection**
- In addition, it set the best CNO v flux limit (<7.7.10⁸ cm⁻²s⁻¹,95% c.l.)
- Also: seasonal modulation of solar v flux, (lack of) day-night asymmetry in the vacuum-dominated region,
 MSW-LMA verification through Pee (& best limit on e⁻ decay by 100x!)

*hep is too feeble, CNO is work in progress

Toward wideband solar v spectroscopy

- Incorporate new statistics to increase
 precision
- Phase II data (2012-today) cleanest and most stable = lower background contributions
- First direct CNO detection? At least improve best limit: solar metallicity problem
- Full spectrum analysis & fit:
 - New neural network a/B PSD
 - Three-Fold Coincidence revamp (¹¹C)
 - New fitting tools

Best background reductions

	Ambient	Phase I (original design reduction requirement)	Phase II
¹⁴ C	~10 ⁻¹² g/g	~2·10 ⁻¹⁸ g/g (1x)	same
²³⁸ U	~10 ⁻⁵ or 10 ⁻⁶ g/g	~10 ⁻¹⁷ g/g (0.1-0.001x)	<9·10 ⁻²⁰ g/g
²³² Th	~10 ⁻⁵ or 10 ⁻⁶ g/g	~10 ⁻¹⁷ g/g (0.1-0.001x)	<7·10 ⁻¹⁹ g/g
²¹⁰ Po	~?	[70,1] cpd/100t ([70,1]x)	<1 cpd/100t
⁸⁵ Kr	~1 Bq/m ³	30±5 cpd/100t (30x)	<7 cpd/100t

Thermal Insulation System (TIS)

- * ²¹⁰Bi levels need to be known with extreme precision (<10% at the current other backgrounds levels) and <u>stability</u> to have a shot at CNO
- Historically: Large, uncontrolled ambient temperature fluctuations in the experimental Hall.
- Some mechanism (possibly convection?) cause ²¹⁰Po (²¹⁰Bi daughter) background shifts and out-of-equilibrium reintroduction in the FV
- Large effort (\$\$ & manpower) to install 20cm-thick mineral wool (λ_D~0.03W/(m·K))
 + reflective coating around the WHOLE detector

Latitudinal Temperature Probe System (LTPS)

- 65+ new internal and external monitoring
 probes, with dedicated centralized electronics
- Basic heritage system too coarse (and degraded) for latest extended objectives
- Custom-calibrated Vernier Extra-Long 30m
 TPL-BTA (AD590JH) probe with ~0.1°C absolute accuracy and ~0(0.01)°C resolution stability
- FLUENT fluidodynamical simulations in progress in collaboration with Milano Polytechnic University to understand past & present currents

- Phase III.a (AGSS)Phase III.b (in CR4)
- +4 Phase III.c (external)

Solar-to-sterile calibrations

* New calibration campaign needed after the 2009-10 one:

- Investigate detector response changes.
- New data for MC tweak.
- SOX inhomogeneous signal vs solar

- Opportunity for studies that were not feasible during the first campaign

Upgraded IR source location system

<u>HW ready, getting good data</u> until transition (late this year, early 2017)

- "High"-activity γ and e⁺ sources
- * New AmBe source with Ni foil for high-energy γs + AmC low background neutron source

The future: light sterile neutrino short-baseline search

Can there be a fourth (or fifth...) neutrino that doesn't couple with the W or Z⁰ bosons:

STERILE?

- Borexino is sensitive to most promising mass scale: ~<1eV², (see-saw type I with light sterile neutrinos, 3+1 or 3+2 models; many other models proposed)
- Visible oscillation in short-baseline experiment (other short-distance oscillation effects on P_{ee}?)
- Need a powerful ~1-10MeV source separated from the detector by 1-10m.

Short-distance Oscillations with BoreXino

- Borexino aims to test low L/E

 (anti)neutrino anomalies using well known external or internal sources in a well-understood detector
- Concept successfully implemented (in a smaller scale) in GALLEX and SAGE

Also:

- Weinberg angle precision measurement at low energy (~1MeV)

- Tightening limits on *neutrino magnetic moment*

- Check of *g_A* and *g_V* (vector and axial current coefficients for the Fermi CC interaction) at *much lower energy* than current limits

v_e source description

- **150 kCi** (new batch of higher-activity spent fuel recently made available) of ¹⁴⁴Ce-¹⁴⁴Pr [τ_{1/2}(β⁻)~296d] for a ~1.5 year campaign
- * Thermal limits stable (~40-50°C shield exterior) in conjunction with calorimeter operation
- Production in Mayak (Russia), transport by rail to St. Petersburg - then ship to LeHavre, and road (through Cadarache and Frascati) to LNGS (1Q 2017).
- **19cm**-thick W alloy shield (>18.0 g/cm³)
 + hermetic plug

Calorimetry and sensitivity

* ~<1% calorimetry measurement needed for independent activity determination

- Two independent water-loop calorimeters (CEA Saclay & Genova/TUM): one of them doubles up as a deployable platform to operational position (developed for continuous calorimetry of the SOX-⁵¹Cr source)
- Inner vessel shape (and with it, Fiducial Volume) determination is paramount, although worst-case sensitivities still <u>cover all 95% c.l. anomaly</u> - calibrations will hugely help on South Pole
- Cerium spectral shape and background determinations (~contaminants) very advanced

Calorimetry and sensitivity

* ~<1% calorimetry measurement needed for independent activity determination

- Two independent water-loop calorimeters (CEA Saclay & Genova/TUM): one of them doubles up as a deployable platform to operational position (developed for continuous calorimetry of the SOX-⁵¹Cr source)
- Inner vessel shape (and with it, Fiducial Volume) determination is paramount, although worst-case sensitivities still <u>cover all 95% c.l. anomaly</u> - calibrations will hugely help on South Pole
- Cerium spectral shape and background determinations (~contaminants) very advanced

...and much more

THE END

This work is possible thanks to all the

Borexino Collaboration

Astroparticle and Cosmology Laboratory - Paris, France INFN Laboratori Nazionali del Gran Sasso - Assergi, Italy INFN e Dipartimento di Fisica dell'Università degli Studi - Genova, Italy INFN e Dipartimento di Fisica dell'Università degli Studi - Milano, Italy INFN e Dipartimento di Chimica dell'Università degli Studi - Perugia, Italy Institute for Nuclear Research - Gatchina, Russia Institute of Physics, Jagellonian University - Cracow, Poland Joint Institute for Nuclear Research - Dubna, Russia Kurchatov Institute - Moscow, Russia St. Petersburg Nuclear Physics Institute, Gatchina, Russia Max Planck Istitute fuer Kernphysik - Heidelberg, Germany Institut für Experimentalphysik - Hamburg, Germany Princeton University - Princeton, NJ, USA Technische Universität - München, Germany University of Massachusetts - Amherst, MA, USA Lomonosov Moscow State University - Moscow, Russia Skobeltsyn Institute of Nuclear Physics - Moscow, Russia University of California, Los Angeles (UCLA) - Los Angeles, CA, USA Virginia Tech - Blacksburg, VA, USA

Thank you

for your

attention!

EVEN MORE BOREXINO! (BACKUP)

Blue=-67 purple=+67 thicker=North slimmer=South

